首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Leaf waxes (i.e., n-alkyl lipids or n-alkanes) are land-plant biomarkers widely used to reconstruct changes in climate and the carbon isotopic composition of the atmosphere. There is little information available, however, on how the production of leaf waxes by different kinds of plants might influence the abundance and isotopic composition of n-alkanes in sedimentary archives. This lack of information increases uncertainty in interpreting n-alkyl lipid abundance and δ13C signals in ancient settings. We provide here n-alkyl abundance distributions and carbon isotope fractionation data for deciduous and evergreen angiosperm and gymnosperm leaves from 46 tree species, representing 24 families. n-Alkane abundances are significantly higher in angiosperms than gymnosperms; many of the gymnosperm species investigated did not produce any n-alkanes. On average, deciduous angiosperms produce 200 times more n-alkanes than deciduous gymnosperms. Although differences between angiosperms and gymnosperms dominate the variance in n-alkane abundance, leaf life-span is also important, with higher n-alkane abundances in longer-lived leaves. n-Alkanol abundances covary with n-alkanes, but n-alkanoic acids have similar abundances across all plant groups. Isotopic fractionation between leaf tissue and individual alkanes (εlipid) varies by as much as 10‰ among different chain lengths. Overall, εlipid values are slightly lower (−4.5‰) for angiosperm than for gymnosperm (−2.5‰) n-alkanes. Angiosperms commonly express slightly higher Δleaf (photosynthetic discrimination) relative to gymnosperms under similar growth conditions. As a result, angiosperm n-alkanes are expected to be generally 3-5‰ more depleted in 13C relative to gymnosperm alkanes for the same locality. Differences in n-alkane production indicate the biomarker record will largely (but not exclusively) reflect angiosperms if both groups were present, and also that evergreen plants will likely be overrepresented compared with deciduous ones. We apply our modern lipid abundance patterns and εlipid results to constrain the magnitude of the carbon isotope excursion (CIE) at the onset of the Paleocene-Eocene Thermal Maximum (55.8 Ma). When Bighorn Basin (WY) sediment n-alkanes are interpreted in context of floral changes and modern n-alkane production estimates for angiosperms and gymnosperms, the CIE is greater in magnitude (−5.6‰) by ∼1‰ compared to previous estimates that do not take into account n-alkane production.  相似文献   

3.
This study reports the first observation of predominant even C-numbered n-alkanes from sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13–4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. The n-alkanes showed a bimodal distribution that is characterised by a centre at n-C16n-C20 with maximum values at n-C18 and n-C27n-C31 as well as at n-C29. The first mode shows a strong even C-number predominance (OEP16–20 0.34–0.66). In contrast, the second mode has a strong odd C-number predominance (OEP27–31 1.20–2.45). Certain types of special autochthonous bacteria are a possible source for this distribution of even C-numbered n-alkanes in lacustrine sediments. These bacteria may have a high production rate in weak oxic–anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded palaeoclimate change.  相似文献   

4.
To constrain seasonal changes in the long-range atmospheric transport of land-derived lipid biomarker compounds, we investigated the compound-specific stable isotopic composition of marine aerosol n-alkanes collected from 1990 to 1993 at a remote island, Chichi-Jima (27°04′N, 142°13′E), in the western North Pacific. Compound-specific isotope analysis revealed, in particular, strong seasonal changes in the δ13C values of the C29 and C31n-alkanes (biomarkers for higher plants). Lighter δ13C values were observed in winter (typically −32 to −34‰), with a transition to heavier values in summer (typically −28 to −31‰). Using a mixing equation and typical end members for C3 and C4 plants, we found that this is due to relative increases in the contributions from C4 plants in the summer season. Using backward air-mass trajectory analyses, it was shown that the Asian continent was the major source region for C3 plant material during winter/spring, whereas Indonesia/Australia and possibly the Americas were the major source regions for C4 material during the summer/autumn. Also observed was an enhanced atmospheric transport of n-alkanes from C4 plants in 1991 summer/autumn during a strong El Nino event, which was associated with forest and bushfires in Indonesia and Australia. In addition to providing information on contemporary processes, this study also provides a base for future paleoclimatological work in ocean sediments.  相似文献   

5.
A 4-year study in a central Texas cave quantifies multiple mechanisms that control dripwater composition and how these mechanisms vary at different drip sites. We monitored cave-air compositions, in situ calcite growth, dripwater composition and drip rate every 4-6 weeks. Three groups of drip sites are delineated (Groups 1-3) based on geochemical variations in dripwater composition. Quantitative modeling of mineral-solution reactions within the host carbonate rock and cave environments is used to identify mechanisms that can account for variations in dripwater compositions. The covariation of Mg/Ca (and Sr/Ca) and Sr isotopes is key in delineating whether Mg/Ca and Sr/Ca variations are dictated by water-rock interaction (i.e., calcite or dolomite recrystallization) or prior calcite precipitation (PCP). Group 1 dripwater compositions reflects a narrow range of the extent of water-rock interaction followed by varying amounts of prior calcite precipitation (PCP). Group 2 dripwater compositions are controlled by varying amounts of water-rock interaction with little to no PCP influence. Group 3 dripwater compositions are dictated by variable extents of both water-rock interaction and PCP. Group 1 drip sites show seasonal variations in dripwater Mg/Ca and Sr/Ca, whereas the other drip sites do not. In contrast to the findings of most previous dripwater Mg/Ca-Sr/Ca studies, these seasonal variations (at Group 1 drip sites) are independent of changes in water flux (i.e., rainfall and/or drip rate), and instead significantly correlate with changes in cave-air CO2 concentrations. These results are consistent with lower cave-air CO2, related to cool season ventilation of the cave atmosphere, enhancing calcite precipitation and leading to dripwater geochemical evolution via PCP. Group 1 dripwater Mg/Ca and Sr/Ca seasonality and evidence for PCP as a mechanism that can account for that seasonality, have two implications for many other regions where seasonal ventilation of caves is likely: (1) speleothem trace-element records may provide seasonal signals, and (2) such records may be biased toward recording climate conditions during the season when calcite is depositing. Additionally, we use our results to construct a forward model that illustrates the types of speleothem Mg/Ca and Sr/Ca variations that would result from varying controls on dripwater compositions. The model provides a basis for interpreting paleo-dripwater controls from high frequency Mg/Ca and Sr/Ca variations for speleothems from caves at which long term monitoring studies are not feasible.  相似文献   

6.
The degradation and preservation affecting the biomarker record of ancient metazoa are not fully understood. We report on a five month experiment on the fate of fatty acids (FAs) during the degradation of recent whale vertebrae (Phocoena phocoena). Whale bones were analysed for extractable FAs and macromolecularly bound n-acyl compounds. Fresh bone showed extractable FAs dominated by 16:1ω7c, 16:0, 18:1ω9c and 18:0. Calculated degradation rate constant (k) values showed a rapid decrease in FA concentration, with k values higher for unsaturated than for saturated compounds (0.08/day for 18:1ω9c, 0.05/day for 16:0). The appearance or increased abundance of distinctive methyl branched (e.g. i/ai-15:0 and -17:0, 10Me-16:0) and hydroxy FAs (e.g. 10OH-16:0 and 10OH-18:0) were observed, providing clear evidence for the microbial degradation of bone organic matter and an input of lipids from specialised bacteria. Catalytic hydropyrolysis (HyPy) of demineralised extraction residues released up to 0.13% of the total n-C16 and n-C18 moieties in the degraded bones. This revealed that only a small, yet sizeable, portion of bone-derived fatty acyl units was sequestered into (proto)kerogen during the earliest stages of degradation.  相似文献   

7.
Jin, Z. D., Bickle, M. J., Chapman, H. J., Yu, J., An, Z., Wang, S. & Greaves, M. J. 2010: Ostracod Mg/Sr/Ca and 87Sr/86Sr geochemistry from Tibetan lake sediments: Implications for early to mid‐Pleistocene Indian monsoon and catchment weathering. Boreas, 10.1111/j.1502‐3885.2010.00184.x. ISSN 0300‐9483 Lacustrine sediment serves as a valuable archive for tracing catchment weathering processes associated with past climatic and/or tectonic changes. High‐resolution records of fossil ostracod Mg/Ca, Sr/Ca and 87Sr/86Sr ratios from a lake sediment core from the central Tibetan Plateau reveal a temporal link between lake‐water chemistry and catchment weathering and distinct monsoonal oscillations over the early to mid‐Pleistocene. Between 2.01 and 0.95 Ma, lake‐water chemistry was dominated by a high proportion of carbonate weathering related to variations in the Indian monsoon, resulting in relatively low and constant ostracod 87Sr/86Sr but obvious fluctuations in Mg/Ca, Sr/Ca and δ18O. Across the mid‐Pleistocene transition (MPT), a significant increase in 87Sr/86Sr and frequently fluctuating ratios of ostracod Mg/Ca, Sr/Ca and δ18O are coincident with increases in both Chinese loess grain size and Arabian Sea lithogenic flux. This correlation indicates an increased glaciation and a strong monsoon seasonal contrast over the plateau. The increase in lake‐water 87Sr/86Sr across the MPT highlights a change in catchment weathering patterns, rather than one in climate‐enhanced weathering intensity, with an increased weathering of 87Sr‐rich minerals potentially induced by marked extensive glaciation and strong seasonality in the central plateau.  相似文献   

8.
Although the methane in marine methane hydrates is mainly of microbial origin, information about the distribution of methanogens in subseafloor sediments is limited. To address this issue, we analyzed sediment core samples from two sites in the Nankai Trough, off the Pacific coast of central Japan, including those bearing methane hydrates from depths > 100 m below the seafloor (mbsf), for isopranyl ether-linked polar lipids (i.e. with polar head groups of phosphate, sugar, or both) as biomarkers of archaea, including methanogens. In most samples, including the deepest (381 mbsf), archaeol, and sn-2- and sn-3-hydroxyarchaeols were detected as their hydrolyzed derivatives. Concentrations of these three archaeal lipids correlated strongly with each other, suggesting a common biological source. The δ13C values of phytane derived from the phytanyl groups in the archaeal lipids were distinctly higher than those of methane, indicating that methanogens rather than anaerobic methanotrophic archaea were the major biological source. Depth profiles of polar sn-2-hydroxyarchaeol concentration were consistent with those of the potential methane production activity previously estimated from incubation of core sediments from the same sites. This observation, together with results of previous studies showing the presence of sn-2-hydroxyarchaeol mainly in shallow young sediments, strongly suggests that this polar lipid is a valid biomarker for in situ methanogens in sediments. There was a strong correlation between the concentration of polar sn-2-hydroxyarchaeol and that of total organic carbon, suggesting that bulk organic matter concentration is a primary control on the distribution of methanogens in sediments.  相似文献   

9.
The vertical distribution of pyrite, acid volatile sulphide (AVS), carbon, and total S (St) were determined directly in the sediments of three lakes of different trophic status. The results showed that freshwater pyrite formation reflects the redox status of the sediment or overlying waters. It appears to form chiefly in reducing sediments which are subject to oxidizing influences, by either a low turnover of organic carbon or periodic incursions of oxygen. Although there are high concentrations of AVS in the near-surface sediments of productive lakes, very little is diagenetically converted to pyrite.The feasibility of using sulphur ratios to diagnose whether rocks were formed in marine or freshwater environments is assessed. New values for FeS2/FeS of 0.5-5 show that this ratio does not provide a reliable test. Values of C/Sp, where Sp represents pyrite sulphur, lie within the range of 160–700 and are much higher than previously measured ratios of C/St of 1–50. These new determinations show that, if pyrite sulphur is unequivocally measured, C/S ratios may be a more sensitive indicator of salinity than had been previously thought.  相似文献   

10.
We review the oxygen isotopic compositions of minerals in chondrules and compound objects composed of a chondrule and a refractory inclusion, and bulk oxygen isotopic compositions of chondrules in unequilibrated ordinary, carbonaceous, enstatite, and Kakangari-like chondrites, focusing on data acquired using secondary ion mass-spectrometry and laser fluorination coupled with mass-spectrometry over the last decade. Most ferromagnesian chondrules from primitive (unmetamorphosed) chondrites are isotopically uniform (within 3–4‰ in Δ17O) and depleted in 16O (Δ17O>−7‰) relative to amoeboid olivine aggregates (AOAs) and most calcium–aluminum-rich inclusions (CAIs) (Δ17O<−20‰), suggesting that these classes of objects formed in isotopically distinct gaseous reservoirs, 16O-poor and 16O-rich, respectively. Chondrules uniformly enriched in 16O (Δ17O<−15‰) are exceptionally rare and have been reported only in CH chondrites. Oxygen isotopic heterogeneity in chondrules is mainly due to the presence of relict grains. These appear to consist of chondrules of earlier generations and rare refractory inclusions; with rare exceptions, the relict grains are 16O-enriched relative to chondrule phenocrysts and mesostasis. Within a chondrite group, the magnesium-rich (Type I) chondrules tend to be 16O-enriched relative to the ferrous (Type II) chondrules. Aluminum-rich chondrules in ordinary, enstatite, CR, and CV chondrites are generally 16O-enriched relative to ferromagnesian chondrules. No systematic differences in oxygen isotopic compositions have been found among these chondrule types in CB chondrites. Aluminum-rich chondrules in carbonaceous chondrites often contain relict refractory inclusions. Aluminum-rich chondrules with relict CAIs have heterogeneous oxygen isotopic compositions (Δ17O ranges from −20‰ to 0‰). Aluminum-rich chondrules without relict CAIs are isotopically uniform and have oxygen isotopic compositions similar to, or approaching, those of ferromagnesian chondrules. Phenocrysts and mesostases of the CAI-bearing chondrules show no clear evidence for 16O-enrichment compared to the CAI-free chondrules. Spinel, hibonite, and forsterite of the relict refractory inclusions largely retained their original oxygen isotopic compositions. In contrast, plagioclase and melilite of the relict CAIs experienced melting and 16O-depletion to various degrees, probably due to isotopic exchange with an 16O-poor nebular gas. Several igneous CAIs experienced isotopic exchange with an 16O-poor nebular gas during late-stage remelting in the chondrule-forming region. On a three-isotope diagram, bulk oxygen isotopic compositions of most chondrules in ordinary, enstatite, and carbonaceous chondrites plot above, along, and below the terrestrial fractionation line, respectively. Bulk oxygen isotopic compositions of chondrules in altered and/or metamorphosed chondrites show evidence for mass-dependent fractionation, reflecting either interaction with a gaseous/fluid reservoir on parent asteroids or open-system thermal metamorphism. Bulk oxygen isotopic compositions of chondrules and oxygen isotopic compositions of individual minerals in chondrules and refractory inclusions from primitive chondrites plot along a common line of slope of 1, suggesting that only two major reservoirs (gas and solids) are needed to explain the observed variations. However, there is no requirement that each had a permanently fixed isotopic composition. The absolute (207Pb–206Pb) and relative (27Al–26Mg) chronologies of CAIs and chondrules and the differences in oxygen isotopic compositions of most chondrules (16O-poor) and most refractory inclusions (16O-rich) can be interpreted in terms of isotopic self-shielding during UV photolysis of CO in the initially 16O-rich (Δ17O−25‰) parent molecular cloud or protoplanetary disk. According to these models, the UV photolysis preferentially dissociates C17O and C18O in the parent molecular cloud and in the peripheral zones of the protoplanetary disk. If this process occurs in the stability field of water ice, the released atomic 17O and 18O are incorporated into water ice, while the residual CO gas becomes enriched in 16O. During the earliest stages of evolution of the protoplanetary disk, the inner solar nebula had a solar H2O/CO ratio and was 16O-rich. During this time, AOAs and the 16O-rich CAIs and chondrules formed. Subsequently, the inner solar nebula became H2O- and 16O-depleted, because ice-rich dust particles, which were depleted in 16O, agglomerated outside the snowline (5 AU), drifted rapidly towards the Sun and evaporated. During this time, which may have lasted for 3 Myr, most chondrules and the 16O-depleted igneous CAIs formed. We infer that most chondrules formed from isotopically heterogeneous, but 16O-depleted precursors, and experienced isotopic exchange with an 16O-poor nebular gas during melting. Although the relative roles of the chondrule precursor materials and gas–melt isotopic exchange in establishing oxygen isotopic compositions of chondrules have not been quantified yet, mineralogical, chemical, and isotopic evidence indicate that Type I chondrules may have formed in chemical and isotopic equilibrium with nebular gas of variable isotopic composition. Whether these variations were spatial or temporal are not known yet.  相似文献   

11.
We have determined the accumulation rates and carbon isotopic compositions (δ13C) of long-chain (C24-C32) terrigenous plant wax fatty acids in 19 surface sediment samples geographically distributed throughout the Arabian Sea in order to assess the relationship between plant wax inputs and the surrounding monsoon wind systems. Both the accumulation rate data and the δ13C data show that there are three primary eolian sources of plant waxes to the Arabian Sea: Africa, Asia, and the Arabian Peninsula. These sources correspond to the three major wind systems in this region: the summer (Southwest) monsoon, the winter (Northeast) monsoon, and the summer northwesterlies that blow over the Arabian Peninsula. In addition, plant waxes are fluvially supplied to the Gulf of Oman and the Eastern African margin by nearby rivers. Plant wax δ13C values reflect the vegetation types of the continental source regions. Greater than 75% of the waxes from Africa and Asia are derived from C4 plants. Waxes delivered by northwesterly winds reflect a greater influence (25-40%) of C3 vegetation, likely derived from the Mesopotamian region. These data agree well with previously published studies of eolian dust deposition, particularly of dolomite derived from the Arabian Peninsula and the Mesopotamian region, in surface sediments of the Arabian Sea. The west-to-east gradient of plant wax δ13C and dolomite accumulation rates are separately useful indicators of the relationship between the northwesterly winds and the winds of the Southwest monsoon. Combined, however, these two proxies could provide a powerful tool for the reconstruction of both southwest monsoon strength as well as Mesopotamian aridity.  相似文献   

12.
This paper reports the isotope effects in an open-system Fischer-Tropsch type (FTT) synthesis, with implications for the origin of natural abiogenic hydrocarbons. The starting form of carbon was CO2, with carbon and hydrogen isotopic compositions measured for products of catalytic hydrogenation of CO2 on iron and cobalt catalysts (FTCO2-Fe and FTCO2-Co) at 350 and 245 °C, respectively, and 10 MPa. The carbon isotopic composition of the resulting saturated hydrocarbons (alkanes) as a function of carbon number shows a positive trend for both FTCO2-Fe and FTCO2-Co, with a fractionation of 2-4‰ and 3-6‰ between CH4 and C2H6 over the Fe and Co catalysts, respectively. The unsaturated hydrocarbons (alkenes) do not show any trend. A strong kinetic isotope fractionation (>40‰) occurred between CO2 and CH4 in both experiments. The hydrogen isotope fractionation between alkanes appeared to be similar to that found in natural (thermogenic and biogenic) gases, with enrichment in deuterium of longer hydrocarbon chains; the dominant H/D fractionation occurred between CH4 and C2H6. Alkenes in the products of the FTCO2-Fe reaction are enriched in deuterium (∼50‰) and do not show any trend versus carbon number. We suggest that other than FTT reactions or a simple mixing are responsible for the occurrence of the inverse isotopic trends in both δ13C and δD found in light hydrocarbons in some terrestrial environments and meteorites.  相似文献   

13.
Branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids occur in soils and peat bogs and are assumed to be produced by anaerobic bacteria. Two indices based on the distribution of these lipids in soils, the Cyclisation of Branched Tetraethers (CBT) and the Methylation of Branched Tetraethers (MBT) index have been shown to linearly relate to pH, and to mean annual air temperature (MAT) and pH, respectively. To directly evaluate the impact of changes in soil temperature on the MBT/CBT proxy, we determined these indices in soils sampled from a transect away from two hot springs in California, which provided a set of soils similar in composition but with different temperatures (12–41 °C). The CBT values of these geothermally heated soils show a good relation with pH (R2 0.76), similar to that of a global MBT/CBT calibration set. Also, the relationship between MBT, soil pH and temperature for the geothermally heated soils is similar to that of a global soil calibration set, although the intercept for the geothermally heated soils is significantly lower, likely because our data set is based on in situ soil temperatures rather than MAT. The results confirm the dependence of the MBT index on soil temperature and pH and support the applicability of the MBT/CBT indices as a proxy for continental palaeotemperatures and past soil pH.  相似文献   

14.
15.
New Nd and Sr isotope data are presented in this paper for sediments from the Yellow and Yangtze River drainage basins. The average 143Nd/144Nd isotope compositions of fine-grained sediments from two drainage basins seem similar. The T DMNd ages of sediments from the two drainage basins are relatively uniform but exhibit subtle differences. This reflects the different underlying bedrocks, in association with the unique tectonic terranes that comprise central and southeastern China, including the North China Block, the Yangtze Block, the South China Block, the Tibet Plateau and the Qinling-Dabie Orogenic Belt. In contrast, there is an obvious difference in the 87Sr/86Sr ratios between fine-grained sediments of the Yellow and Yangtze Rivers, which actually reflects an increase in chemical weathering intensity from northwestern to southeastern China.  相似文献   

16.
Branched glycerol dialkyl glycerol tetraether (GDGT) lipids are abundant and ubiquitous in lake sediments, potentially allowing for a paleolimnological application of the so-called MBT/CBT proxy (methylation index of branched tetraethers/cyclization ratio of branched tetraethers). To investigate the origin and characteristics of these compounds in lacustrine environments, we examined the distributions of GDGTs in soils, river sediments and lake sediments from Lake Towuti on the island of Sulawesi, Indonesia. We found significant differences in the degree of methylation and cyclization (expressed by way of the MBT and CBT indices) between the soil samples and the aquatic samples, suggesting that there may be in situ production of GDGTs in the aquatic environment. Based on these findings, we urge caution in the application of the MBT/CBT paleoproxy to lake sediments and encourage more rigorous study of these compounds in freshwater environments.  相似文献   

17.
Bacterial and archaeal lipids, such as glycerol dialkyl glycerol tetraethers (GDGTs) and dialkyl glycerol diethers, are increasingly used as proxies for specific environmental parameters, such as air temperature and soil pH in lacustrine environments. Little is known, however, about the distribution and applicability of bacterial and archaeal lipids on the Tibetan Plateau. We investigated nine different watersheds across the plateau by way of sediments from lakes and rivers, as well as the surrounding soils. Our transect study included a salinity gradient and focused on saline lakes, which are rarely examined. We analyzed archaeal isoprenoid (i) and bacterial branched (b) GDGTs, as well as archaeol to trace their sources and environmental factors, influencing their distributions. We could show that iGDGTs were produced in situ and bGDGTs were primarily soil-derived although we could not exclude in situ production of bGDGTs in the lakes. The most important environmental variables correlating with GDGT distributions were temperature and salinity. Bacterial GDGT distributions correlated mainly with salinity, while archaeal lipid distributions correlated with temperature. Based on the correlation of methylation (MBT′) and cyclisation (CBT) indices of bGDGTs with pH and mean annual air temperature (MAAT), we established local calibrations for the Tibetan lakes. TEX86 could also be applied to reconstruct temperature, which was strongly biased towards measured summer lake water temperature, indicating enhanced production of iGDGTs in the summer months. Existing proxies show, therefore, potential for palaeoclimate reconstruction on the Tibetan Plateau if local calibrations are applied.  相似文献   

18.
We present hafnium (Hf) and neodymium (Nd) isotopic compositions and concentrations in surface waters of the eastern Atlantic Ocean between the coast of Spain and South-Africa. These data are complemented by Hf and Nd isotopic and concentration data, as well as rare earth element (REE) concentrations, in Saharan dust.Hafnium concentrations range between a maximum of 0.52 pmol/kg in the area of the Canary Islands and a minimum value of 0.08 pmol/kg in the southern Angola Basin. Neodymium concentrations also show a local maximum in the area of the Canary Islands (26 pmol/kg) but are even higher between ∼20°N and ∼4°N reaching maximum concentrations of 35 pmol/kg. These elevated concentrations provide evidence of inputs from weathering of the Canary Islands and from the partial dissolution of dust from the Sahara/Sahel region. The inputs from ocean island weathering are also reflected in radiogenic Hf and Nd isotopes.The Hf isotopic compositions of dust samples themselves are highly variable, ranging between εHf = −20 and −0.6. The combined Hf and Nd isotopic compositions of dust plot close to the “terrestrial array” during periods of appreciable dust load in the atmosphere. During low atmospheric dust loading combined Hf and Nd isotopic compositions similar to seawater are observed. Most of the variability can be explained in terms of variable degrees of zircon loss from the dust samples, which in turn is linked to sorting during atmospheric transport to the eastern Atlantic Ocean and possibly presorting by sedimentary redistribution on the continent. In addition, increasing relative proportions of radiogenic clay minerals with decreasing grain size may contribute to the radiogenic Hf isotopic compositions observed.While the Nd isotopic composition in the surface ocean reflects the Nd isotopic composition of the Saharan dust adjacent to the Sahara/Sahel region, the release of Hf from that dust appears to be incongruent and results in surface ocean Hf isotopic compositions which are ∼10 εHf more radiogenic than the bulk dust. Radiogenic Hf appears to be released from clays and possibly from trace apatite. Rare earth element patterns of dust samples indicate the presence of apatite but provide no evidence for ferromanganese grain coatings, suggesting that such coatings are insignificant in the release of Hf and Nd from Saharan dust to the surface ocean.The Nd isotopic composition of the surface waters becomes less radiogenic south of the equator, most likely reflecting the release of Nd from Congo river sediments. The release of Hf from Saharan dust and the Congo river sediments, however, does not produce distinct Hf isotopic signatures in the surface ocean, implying that the mobile fraction of Hf integrated over large continental areas is isotopically uniform. The Hf isotopic uniformity in the surface ocean means that the limited variability in deep water isotopic compositions is consistent with a short deep water residence time and reflects homogenous continental inputs rather than efficient deep water homogenization.  相似文献   

19.
The continental fragments in Northwest China are key to revealing the tectonic and crustal evolution of the Central Asian Orogenic Belt (CAOB). However, their tectonic correlation, affinity and implications have not been well defined. The early to mid-Paleozoic sediments in the northern Alxa area can help to understand this question. These sediments were deposited in a deep to shallow marine environment during a regression. The southeast paleocurrent attributes their provenance to the northwest. Detrital zircons from the collected sandstones record peak ages of approximately 1726 Ma, 1462 Ma, 915 Ma and 438 Ma. The zircon εHf(t) values are negative to positive at 1726 Ma, 915 Ma and 438 Ma, but only positive at 1462 Ma. The detrital zircon U–Pb ages and Hf isotopes suggest the provenance to be the blocks in Central Tianshan and Southern Beishan or their analogs, rather than the Tarim Craton. The source blocks show no tectonic affinity to the Tarim Craton but might be accreted to it in the Neoproterozoic Rodinia. The provenance analyses show tectonic correlation among the northern Alxa, Tianshan and Beishan orogenic belts. The Late Devonian molasse deposits, geochemical shifting to continental margins and suddenly increased early Paleozoic zircons indicate an arc-continent collision. The discovery of more indicators for continental fragments advocates a multiterrane model and dominant crustal reworking/contamination for the tectonocrustal evolution of the CAOB at least during the early to mid-Paleozoic.  相似文献   

20.
A diverse collection of globally distributed soil samples was analyzed for its glycerol dialkyl glycerol tetraether (GDGT) membrane lipid content. Branched GDGTs, derived from anaerobic soil bacteria, were the most dominant and were found in all soils. Isoprenoid GDGTs, membrane lipids of Archaea, were also present, although in considerably lower concentration. Crenarchaeol, a specific isoprenoid membrane lipid of the non-thermophilic Crenarchaeota, was also regularly detected and its abundance might be related to soil pH. The detection of crenarchaeol in nearly all of the samples is the first report of this type of GDGT membrane lipid in soils and is in agreement with molecular ecological studies, confirming the widespread occurrence of non-thermophilic Crenarchaeota in the terrestrial realm. The fluvial transport of crenarchaeol and other isoprenoid GDGTs to marine and lacustrine environments could possibly bias the BIT index, a ratio between branched GDGTs and crenarchaeol used to determine relative terrestrial organic matter (TOM) input. However, as crenarchaeol in soils is only present in low concentration compared to branched GDGTs, no large effect is expected for the BIT index. The fluvial input of terrestrially derived isoprenoid GDGTs could also bias the TEX86, a proxy used to determine palaeo surface temperatures in marine and lacustrine settings and based on the ratio of cyclopentane-containing isoprenoid GDGTs in marine and lacustrine Crenarchaeota. Indeed, it is shown that a substantial bias in TEX86-reconstructed sea and lake surface temperatures can occur if TOM input is high, e.g. near large river outflows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号