共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake of cadmium ions from solution by a natural Mg-containing calcite was investigated in stirred flow-through reactor experiments. Input NaCl solutions were pre-equilibrated with calcite (pH 8.0) or not (pH 6.0), prior to being spiked with CdCl2. For water residence times in the reactor less than 0.5 h, irreversible uptake of Cd by diffusion into the bulk crystal had a minor effect on the measured cadmium breakthrough curves, hence allowing us to quantify “fast” Cd2+ adsorption. At equal aqueous activities of Cd2+, adsorption was systematically lower for the pre-equilibrated input solutions. The effect of variable solution composition on Cd2+ adsorption was reproduced by a Ca2+-Cd2+ cation exchange model and by a surface complexation model for the calcite-aqueous solution interface. For the range of experimental conditions tested, the latter model predicted binding of aqueous Ca2+ and Cd2+ to the same population of carbonate surface sites. Under these circumstances, both adsorption models were equivalent. Desorption released 80 to 100% of sorbed cadmium, confirming that fast uptake of Cd2+ was mainly due to binding at surface sites. Slow, irreversible cadmium uptake by the solid phase was measured in flow-through reactor experiments with water residence times exceeding 0.7 h. The process exhibited first-order kinetics with respect to the concentration of adsorbed Cd2+, with a linear rate constant at 25°C of 0.03 h−1. Assuming that diffusion into the calcite lattice was the mechanism of slow uptake, a Cd2+ solid-state diffusion coefficient of 8.5×10−21 cm2 s−1 was calculated. Adsorbed Cd2+ had a pronounced effect on the dissolution kinetics of calcite. At maximum Cd2+ surface coverage (∼10−5 mol m−2), the calcite dissolution rate was 75% slower than measured under initially cadmium-free conditions. Upon desorption of cadmium, the dissolution rate increased again but remained below its initial value. Thus, the calcite surface structure and reactivity retained a memory of the adsorbed Cd2+ cations after their removal. 相似文献
2.
Arsenate uptake by calcite: Macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms 总被引:1,自引:0,他引:1
Batch uptake experiments and X-ray element mapping and spectroscopic techniques were used to investigate As(V) (arsenate) uptake mechanisms by calcite, including adsorption and coprecipitation. Batch sorption experiments in calcite-equilibrated suspensions (pH 8.3; PCO2 = 10−3.5 atm) reveal rapid initial sorption to calcite, with sorption rate gradually decreasing with time as available sorption sites decrease. An As(V)-calcite sorption isotherm determined after 24 h equilibration exhibits Langmuir-like behavior up to As concentrations of 300 μM. Maximum distribution coefficient values (Kd), derived from a best fit to a Langmuir model, are ∼190 L kg−1.Calcite single crystals grown in the presence of As(V) show well-developed rhombohedral morphology with characteristic growth hillocks on surfaces at low As(V) concentrations (?5 μM), but habit modification is evident at As(V) concentrations ?30 μM in the form of macrostep development preferentially on the − vicinal surfaces of growth hillocks. Micro-X-ray fluorescence element mapping of surfaces shows preferential incorporation of As in the − vicinal faces relative to + vicinals. EXAFS fit results for both adsorption and coprecipitation samples confirm that As occurs in the 5+ oxidation state in tetrahedral coordination with oxygen, i.e., as arsenate. For adsorption samples, As(V) forms inner-sphere surface complexes via corner-sharing with Ca octahedra. As(V) coprecipitated with calcite substitutes in carbonate sites but with As off-centered, as indicated by two Ca shells, and with likely disruption of local structure. The results indicate that As(V) interacts strongly with the calcite surface, similar to often-cited analog phosphate, and uptake can occur via both adsorption and coprecipitation reactions. Therefore, calcite may be effective for partial removal of dissolved arsenate from aquatic and soil systems. 相似文献
3.
Effects of phosphate ions on intergranular pressure solution in calcite: An experimental study 总被引:1,自引:0,他引:1
Intergranular pressure solution (IPS) is a coupled chemical-mechanical process of widespread importance that occurs during diagenesis and low-temperature deformation of sedimentary rocks. Laboratory experiments on IPS in halite, quartz, and calcite have largely concentrated on the mechanical aspects of the process. In this study, we report the effects of pore fluid chemistry, specifically varying phosphate ion concentration, on the mechanical compaction by IPS of fine-grained calcite powders at room temperature and 1 to 4 MPa applied effective stress. Phosphate was investigated because of its importance as a biogenic constituent of sea and pore waters. Increasing the pore fluid phosphate concentration from 0 to 10−3 mol/L systematically reduced compaction strain rates by up to two orders of magnitude. The sensitivity of the compaction strain rate to phosphate concentration was the same as the sensitivity of calcite precipitation rates to the addition of phosphate ions reported in the literature, suggesting that the rate of IPS in phosphate-bearing samples was controlled by calcite precipitation on pore walls. The results imply that IPS and associated porosity/permeability reduction rates in calcite sediments may be strongly reduced when pore fluids are enriched in phosphates, for example, through high biologic productivity or a seawater origin. Future modeling of IPS-related processes in carbonates must therefore take into account the effects of pore fluid chemistry, specifically the inhibition of interfacial reactions. 相似文献
4.
Francesco Di Benedetto Francesco D’Acapito Gabriele Fornaciai Massimo Innocenti Giordano Montegrossi Luca A. Pardi Silvia Tesi Maurizio Romanelli 《Physics and Chemistry of Minerals》2010,37(5):283-289
An X-ray absorption spectroscopy (XAS) study of the Fe local environment in natural amethyst (a variety of α-quartz, SiO2) has been carried out. Room temperature measurements were performed at the Fe K-edge (7,112 eV), at both the X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions. Experimental results were then compared with DFT calculations. XANES experimental spectra suggest Fe to occur mainly in the trivalent state, although a fraction of Fe2+ is identified. EXAFS spectra, on the other hand, reveal an unusual short distance for the first coordination shell: = 1.78(2) Å, the coordination number being 2.7(5). These results allow to establish that Fe replaces Si in its tetrahedral site, and that numerous local distortions are occurring as a consequence of the presence of Fe3+ variably compensated by protons and/or alkaline ions, or uncompensated. The formal valence of Fe, on the basis of both experimental and DFT structural features, can be either 4+ or 3+. Taking into account the XANES evidences, we suggest that Fe mainly occurs in the trivalent state, compensated by protons, and that a minor fraction of Fe4+ is stabilised by the favourable local structural arrangement. 相似文献
5.
6.
微生物沉积碳酸钙固化砂质黏性紫色土试验研究 总被引:1,自引:0,他引:1
重庆紫色土是一种砂质黏性土,地区降雨集中,水力冲蚀作用剧烈,极易产生水土流失,微生物诱导方解石沉积(MICP)技术因能耗低、污染小而广泛应用于土体加固中。通过正交试验优化了巨大芽孢杆菌(BNCC 336739)的培养基和培养条件,活菌数增长126%,活性良好。采用巨大芽孢杆菌,进行低水压(9.8kPa)灌注固化砂质黏性紫色土试验,探究了固化效果的变化规律。结果表明:随固化次数增加,碳酸钙生成量和干密度逐级增加,无侧限抗压强度与碳酸钙生成量正相关;碳酸钙有效沉积越来越少,强度提高趋于稳定,固化9次后强度提高77%;随孔隙被碳酸钙填充和上下碳酸钙硬壳的形成,渗透性不断降低,最终下降两个数量级;通过试样上、中、下三部分碳酸钙生成量C的样本标准差s来反映碳酸钙分布离散程度,发现割线弹性模量在s的影响下随C增加而波动上升,波动表现为在C相近或s相差很大时,s越小割线弹性模量越大。研究成果可以为MICP技术在紫色土地区的地基、边坡加固和水土流失防护等工程应用提供科学依据和参考。 相似文献
7.
An atomic force microscopy study of calcite dissolution in saline solutions: The role of magnesium ions 总被引:1,自引:0,他引:1
In situ Atomic Force Microscopy, AFM, experiments have been carried out using calcite cleavage surfaces in contact with solutions of MgSO4, MgCl2, Na2SO4 and NaCl in order to attempt to understand the role of Mg2+ during calcite dissolution. Although previous work has indicated that magnesium inhibits calcite dissolution, quantitative AFM analyses show that despite the fact that Mg2+ inhibits etch pit spreading, it increases the density and depth of etch pits nucleated on calcite surfaces and, subsequently, the overall dissolution rates: i.e., from 10−11.75 mol cm−2 s−1 (in deionized water) up to 10−10.54 mol cm−2 s−1 (in 2.8 M MgSO4). Such an effect is concentration-dependent and it is most evident in concentrated solutions ([Mg2+] >> 50 mM). These results show that common soluble salts (especially Mg sulfates) may play a critical role in the chemical weathering of carbonate rocks in nature as well as in the decay of carbonate stone in buildings and statuary. 相似文献
8.
Imad A.M. Ahmed Neil M.J. Crout Scott D. Young 《Geochimica et cosmochimica acta》2008,72(6):1498-1512
Time-dependent sorption and desorption of Cd on calcite was studied over 210 days utilizing 109Cd as a tracer to distinguish between ‘labile’ and ‘non-labile’ forms of sorbed Cd. Stabilizing the calcite suspensions for 12 months under atmospheric PCO2 and controlled temperature was necessary to reliably follow Cd dynamics following initial sorption. Results revealed time-dependant Cd sorption and marked desorption hysteresis by calcite under environmentally relevant conditions. Data obtained were fitted to a first-order kinetic model and a concentric shell diffusion model. Both models described the progressive transfer of Cd2+ to a less reactive form within calcite and subsequent desorption of Cd subject to different initial contact times. The kinetic model provided a better fit to the combined sorption and desorption data (R2 = 0.992). It differentiates between two ‘pools’ of sorbed Cd2+ on calcite, ‘labile’ and ‘non-labile’, in which labile sorbed Cd is in immediate equilibrium with the free Cd2+ ion activity in solution whereas non-labile Cd is kinetically restricted. For the diffusion model (R2 = 0.959), the rate constants describing Cd dynamics in calcite produced a half-life for Cd desorption of ∼175 d, for release to a ‘zero-sink’ solution. Results from this study allow comment on the likely mechanisms occurring at the calcite surface following long-term Cd sorption. 相似文献
9.
The chemistry of orthophosphate uptake from synthetic seawater onto the surfaces of synthetic calcite, aragonite and low-magnesium biogenic calcite has been studied, in order to elucidate the kinetics of the process (generally believed to be the major control of dissolved reactive phosphate in carbonate-rich marine sediments). Our results differ from those obtained by others, who have studied orthophosphate uptake in low ionic strength solutions and at much higher supersaturations relative to apatite.In both ‘free drift’ and chemostat experiments, Mg and F have only a minor effect on the reaction rate. Even at constant solution composition the rate of orthophosphate uptake was found to decrease by 106 over a two week period. The data from the ‘free drift’ experiments can be fitted to the Elovich equation. This indicates that the kinetics observed for this reaction can be explained by an exponential decrease in available surface reaction sites and/or a linear increase in the activation energy associated with chemisorption as the reaction proceeds. 相似文献
10.
Gary K. Jacobs Derrill M. Kerrick Kenneth M. Krupka 《Physics and Chemistry of Minerals》1981,7(2):55-59
The heat capacity (C P) of a natural sample of calcite (CaCO3) has been measured from 350 to 775 K by differential scanning calorimetry (DSC). Heat capacities determined for a powdered sample and a single-crystal disc are in close agreement and have a total uncertainty of ±1 percent. The following equation for the heat capacity of calcite from 298 to 775 K was fit by least squares to the experimental data and constrained to join smoothly with the low-temperature heat capacity data of Staveley and Linford (1969) (C P in J mol?1 K?1, T in K): $$\begin{gathered} C_p = - 184.79 + 0.32322T - 3,688,200T^{ - 2} \hfill \\ {\text{ }} - (1.2974{\text{ }} \times {\text{ 10}}^{ - {\text{4}}} )T^2 + 3,883.5T^{ - 1/2} \hfill \\ \end{gathered} $$ Combining this equation with the S 298 0 value from Staveley and Linford (1969), entropies for calcite are calculated and presented to 775 K. A simple method of extrapolating the heat capacity function of calcite above 775 K is presented. This method provides accurate entropies of calcite for high-temperature thermodynamic calculations, as evidenced by calculation of the equilibrium: CaCO3 (s)=CaO(s)+CO2 (s). 相似文献
11.
12.
Mark J. Harris Ekhard K. H. Salje Bernd K. Guttler Michael A. Carpenter 《Physics and Chemistry of Minerals》1989,16(7):649-658
Natural samples of K-feldspar representing various states of Al, Si order were characterised using X-ray methods, transmission electron microscopy, and Fourier transform infrared spectroscopy. Line profiles of infrared absorption bands were observed to show strong correlation with the degree of Al, Si order present. In particular, the absorption frequencies of the 540 cm?1 and 640 cm?1 bands were seen to vary by ca. 10 cm?1 between sanidine and microcline, with modulated samples respresenting intermediate behaviour. Linewidths of these modes also decrease by ca. 50% in this series. The experimental results are discussed within the framework of Hard Mode Infrared Spectroscopy (HMIS), and it is shown that the absorption frequencies vary with the short range order parameter τ = (4t1-1)2 and the symmetry breaking order parameter describing Al, Si order, Q od=(t1 0?t1 m)/Q od=(t1 0+t1 m), where t1 is the average Al occupancy on the T1 sites and t1 o and t1 m are the individual site occupancies of the T1 o and T1 m sites, respectively. The structural state of orthoclase is characterised by strain-induced modulations with large spatial variations of the modulation wavelength. No such modulations were observed in the degree of local Al, Si order. Sanidine shows mode hardening in excess of the extrapolated effect of symmetry breaking Al, Si order, which is presumably related to nonsymmetry breaking ordering between T1 and T2 sites and/or as yet unobserved short range order of the symmetry breaking ordering scheme. The possibility of an additional phase transition in K-feldspar at temperatures above 1300 K is discussed. 相似文献
13.
Oxygen isotope partitioning between calcite and tremolite was experimentally calibrated in the presence of small amounts of a supercritical CO2–H2O fluid at temperatures from 520 to 680° C and pressures from 3 to 10 kbar. The experiments were carried out within the stability field of the calcite-tremolite assemblage based on phase equilibrium relationships in the system CaO–MgO–SiO2–CO2–H2O, so that decomposition of calcite and tremolite was avoided under the experimental conditions. Appropriate proportions of carbon dioxide to water were used to meet this requirement. Large weight ratios of mineral to fluid were employed in order to make the isotopic exchange between calcite and tremolite in the presence of a fluid close to that without fluid. The data processing method for isotopic exchange in a three-phase system has been applied to extrapolate partial equilibrium data to equilibrium values. The determined fractionation factors between calcite (Cc) and tremolite (Tr) are expressed as:1031n Cc-Tr=3.80 × 106/T
2-1.67By combining the present data with the experimental calibrations of Clayton et al. (1989) on the calcite-quartz system, we obtain the fractionation for the quartztremolite system: 1031n Qz-Tr=4.18 × 106/T
2-1.67Our experimental calibrations are in good agreement with the theoretical calculations of Hoffbauer et al. (1994) and the empirical estimates of Bottinga and Javoy (1975) based on isotopic data from naturall assemblages. At 700 C good agreement also exists between our experimental data and theoretical values calculated by Zheng (1993b). With decreasing temperature, however, an increasing difference between these data appears.Retrograde isotopic reequilibration by oxygen diffusion may be common for amphibole relative to diopside in metamorphic rocks. However, isotopic equilibrium in amphibole can be preserved in cases of rapid cooling. 相似文献
14.
Arsenic in mine waters: an international study 总被引:4,自引:4,他引:4
M. Williams 《Environmental Geology》2001,40(3):267-278
Hydrochemical data are presented for arsenic (As) in the mine waters of 34 gold and base-metal mining localities in seven
countries of south-east Asia, Africa and Latin America, encompassing contrasting climatic settings and at least eight discrete
styles of primary mineralization. Peak dissolved As concentrations at these sites range from 0.005–72 mg/l, with the United
States Environmental Protection Agency (US-EPA) potable water threshold of 50 μg/l exceeded in 25 cases. Arsenate (As5+) constitutes the dominant species at over 80% of sites. Very high dissolved As concentrations (>1 mg/l) show no systematic
between-site relationship with mine water pH/Eh regime. Important determinants of mine water As fluxes include iron hydrochemistry,
the presence of cyanic ore processing effluents, site geology, the paragenetic sequence that follows sulphide oxidation, climate
and mine management. Human toxicological impacts of As contamination have been recognized at only one case-study site, with
a further four considered to warrant more detailed risk assessment.
Received: 2 November 1999 · Accepted: 21 March 2000 相似文献
15.
Summary The orange cathodoluminescence (CL) of calcite is known to be due to the presence of Mn2+ cations. It has been demonstrated here using CL and electron paramagnetic resonance (EPR) crossed analysis from synthetic calcite that neither Fe2+ nor Fe3+ ions influence this luminescence emission. More complex natural calcium carbonates have been investigated to check whether or not this conclusion can be applied to them. For this purpose, different white marbles from Greek quarries were analysed with CL. The data are completed with neutron activation analysis (NAA) for manganese and iron contents. Again it is shown that only manganese plays a role in the orange CL of these white marbles. This result provides an important clue in the wide field of provenance determination of calcium carbonate used in ancient art.Received February 19, 2002; revised version accepted October 22, 2002
Published online March 10, 2003 相似文献
16.
The kinetics of calcite precipitation in the presence of alginate was investigated using the constant composition technique. In the concentration range investigated (0.0002-0.005 g L−1), alginate inhibits calcite precipitation. The extent of inhibition increased with increased alginate concentration and decreased solution supersaturation. Alginate adsorption, derived from normalized calcite precipitation rates, is described satisfactorily by the Langmuir adsorption model. At lowest supersaturation, alginate adsorption onto calcite probably reaches its maximal uptake of 7.5E-4 g m−2, corresponding to surface coverage of one molecule for each 200-300 nm2, depending on the molecular mass of alginate. This means that one alginate molecule can be bound over 100-150 Ca surface sites. Initially, on the surface of the inhibited calcite, XPS identified alginate but after further time in solution, when the system had recovered, XPS demonstrated that it disappeared from the surface, presumably buried under the newly formed calcite. The alginate affinity constant decreases with increasing supersaturation, evidence for incomplete adsorption. A simple model based on competition between growth and desorption effectively describes the observed change in the adsorption constant. 相似文献
17.
Laura E. Wasylenki Patricia M. Dove Darren S. Wilson 《Geochimica et cosmochimica acta》2005,69(12):3017-3027
This experimental study presents in situ measurements of step migration rates for layer growth of calcite at various levels of superaturation and fluid Sr concentrations. Our results show that Sr has complex behavior as an impurity. At low concentrations, Sr promotes faster growth. This effect may be associated with slight shifts in calcite solubility when Sr is incorporated or may be due to as yet uncharacterized kinetic effects. At higher concentrations, Sr stops step advancement by pinning kink-sites or step edges. The threshold concentration of Sr needed to halt growth is positively correlated with supersaturation.Addition of Sr to the calcite growth system leads to significant changes in hillock morphology. Hillocks become elongate perpendicular to the projection of the c-glide plane, in contrast to the changes previously reported for Mg. Step edges also become scalloped, and the boundary between the obtuse-stepped flanks disappears and is replaced by a new step direction with edges parallel to [010].Incorporation of Sr was measured at two supersaturation levels and identical fluid [Sr]. The results indicate a strong positive correlation between fluid supersaturation and crystal Sr content. Further, Sr is strongly fractionated between obtuse- and acute-stepped flanks by a factor of approximately two. The sensitivity of Sr uptake to supersaturation may explain apparently contradictory results in the literature regarding whether Sr uptake in the calcite produced by one-celled marine organisms is controlled by temperature. In addition, Sr contents of natural calcite samples may be good indicators of the levels of supersaturation at which the crystals grew.Results of this investigation demonstrate the importance of understanding impurity-specific interactions with calcite growth surfaces at the microscopic scale. Despite similar chemical behavior in some systems, Mg and Sr clearly have very different effects on calcite growth. If Sr and other impurities are to be used as robust indicators of growth conditions in natural calcite samples, well grounded understanding of the mechanisms of recording trace element signatures in calcite is an essential step toward correctly deciphering paleoenvironmental signals from fossil calcite compositions. 相似文献
18.
This work describes a laboratory study concerning the adsorption of isopropylxanthate ions onto modified zeolites particles. The separation of the loaded carrier and their removal, from aqueous solutions, was conducted by flocculation followed by dissolved air flotation, DAF. The zeolite employed was a natural sample (approximately 48% clinoptilolite and 30% mordenite) which was previously treated with sodium ions (activation) and modified with copper ions (Cu–Z) before the xanthate ions uptake. Adsorption capacities (qm) for Cu–Z were 0.34 meq g− 1 for the powdered form, and 1.12 meq g− 1 for the floc form. The adsorption capacity for the floc form appears to involve an enhanced electrostatic adsorption due to the positive sites on the floc surface. In all cases, the isopropylxanthate concentration in the treated water was found to be negligible (< 0.04 mg L− 1). The flotation technique showed to be a fast process, requires a low recycle ratio (20%) in air saturated water, and the treated water ended up with a very low residual turbidity (6.8 NTU). It is believed that this adsorption–flotation technique, here named adsorptive particulate flotation, using activated and modified natural zeolite has a high potential as an alternative for pollutants removal (copper and isopropylxanthate ions) from waste mining effluents. 相似文献
19.
E.J. ElzingaR.J. Reeder S.H. WithersR.E. Peale R.A. MasonK.M. Beck W.P. Hess 《Geochimica et cosmochimica acta》2002,66(16):2875-2885
Extended X-ray absorption fine-structure (EXAFS) spectroscopy is used to characterize the local coordination of selected rare-earth elements (Nd3+, Sm3+, Dy3+, Yb3+) coprecipitated with calcite in minor concentrations from room-temperature aqueous solutions. Fitting results confirm substitution in the Ca site, but first-shell Nd-O and Sm-O distances are longer than the Ca-O distance in calcite and longer than what is consistent with ionic radii sums for sixfold coordination in the octahedral Ca site. In contrast, first-shell Dy-O and Yb-O distances are shorter than the Ca-O distance and are consistent with ionic radii sums for sixfold coordination. Comparison of Nd-O and Sm-O bond lengths with those in lanthanide sesquioxides and with ionic radii trends across the lanthanide series suggests that Nd3+ and Sm3+ have sevenfold coordination in a modified Ca site in calcite. This would require some disruption of the local structure, with an expected decrease in stability, and possibly a different charge compensation mechanism between Nd and Sm vs. Yb and Dy. A possible explanation for the increased coordination for the larger rare-earth elements involves bidentate ligation from a CO3 group. Because trivalent actinides such as Am3+ and Cm3+ have ionic radii similar to Nd3+, their incorporation in calcite may result in a similar defect structure. 相似文献
20.
Calcite is commonly found as a vein-filling mineral in rocks. However, the factors controlling its deposition are complex and not well understood in quantitative terms. In order to advance our understanding of the processes involved, we have refined the model for calcium carbonate mass transport in subsurface carbonate rocks of Morse and Mackenzie (1993) and developed a new experimental technique to test it. This technique uses a flow-through reactor that simulates a vein opening. Agreement was observed between model predictions and experimental observations for the deposition of calcite in synthetic veins. The influences of surface area to solution volume ratio, solution saturation state with respect to calcite, and flow velocity were well predicted by the model.
The model predicts that in order to have a fairly uniform deposition of calcite within a vein, solution flow must be quite rapid (tens to thousands of cm h−1) or the solution must be only slightly supersaturated with respect to calcite. A low degree of solution supersaturation demands what may be unreasonably large volumes of solution flow to achieve vein filling for the vein configuration we have studied. 相似文献