首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three major igneous events, dated at ~1465, ~1070 and ~500 Ma, are represented in the Proterozoic of central Western Australia, yet their extent is poorly understood. The compositions of dated mafic rocks from the western Bangemall Supergroup of Western Australia have been used to establish a chemical fingerprint for the ~1465 Ma and ~1070 Ma intrusive events, and to assign sills of an unknown age to one of the two events. A similar approach has been used to identify the extent of ~500 Ma magmatism. Low-pressure fractionation or accumulation has exerted a strong influence on the chemistry of rocks from all magmatic events, but distinctive trace-element ratios (e.g. Th/Nb, Nb/Zr) and rare-earth element (REE) chemistry (e.g. Eu/Eu?, (Gd/Yb)CN) can discriminate different events. These ratios remain constant regardless of the degree of fractionation or accumulation, and reflect the chemistry of the respective mantle sources. Based on chemistry, ~500 Ma igneous rocks are not found in the Bangemall Supergroup. Neodymium model ages for ~1465 Ma sills overlap with crystallisation ages of subduction-related felsic intrusive rocks from the adjacent Gascoyne Complex, and this, combined with trace-element and REE chemistry, suggests that the mantle source for these sills underwent ~5% crustal contamination approximately 450 Ma prior to melting in a subduction zone environment. Unrealistically large amounts of contaminant are required to explain the chemistry of most ~1070 Ma sills, and their chemistry is better explained by melting of a heterogeneous mantle source, consistent with the overlap of Nd model ages and crystallisation ages. However, the relatively low εNd(T) and high 87Sr/86Sr(T), elevated light REE, Rb and Zr concentrations, and high Th/Nb of some ~1070 Ma eastern Bangemall Supergroup sills are indicative of crustal contamination. These sills are relatively depleted in chalcophile elements and platinum-group elements, consistent with coeval precipitation of sulfides and crustal contamination. The overlap in the maximum depositional age of host-rocks with the crystallisation age of some sills, the confining of most ~1465 Ma sills to older parts of the stratigraphy, and field evidence showing that some sills belonging to both the ~1465 and ~1070 Ma events were intruded into wet sediments, indicate a close temporal relationship between sedimentation and sill intrusion.  相似文献   

2.
Nodular cherts can provide a window on the original sediment composition, diagenetic history and biota of their host rock because of their low susceptibility to further diagenetic alteration. The majority of Phanerozoic cherts formed by the intraformational redistribution of biogenic silica, particularly siliceous sponge spicules, radiolarian tests and diatom frustules. In the absence of a biogenic silica source, Precambrian cherts necessarily had to have had a different origin than Phanerozoic cherts. The Mesoproterozoic Belt Supergroup in Glacier National Park contains a variety of chert types, including silicified oolites and stromatolites, which have similar microtextures and paragenesis to Phanerozoic cherts, despite their different origins. Much of the silicification in the Belt Supergroup occurred after the onset of intergranular compaction, but before the main episode of dolomitization. The Belt Supergroup cherts probably had an opal-CT precursor, in the same manner as many Phanerozoic cherts. Although it is likely that Precambrian seas had higher silica concentrations than at present because of the absence of silica-secreting organisms, no evidence was observed that would suggest that high dissolved silica concentrations in the Belt sea had a significant widespread effect on silicification. The rarity of microfossils in Belt Supergroup cherts indicates that early silicification, if it occurred, was exceptional and restricted to localized environments. The similarity of microtextures in cherts of different ages is evidence that the silicification process is largely controlled by host carbonate composition and dissolved silica concentration during diagenesis, regardless of the source of silica.  相似文献   

3.
《International Geology Review》2012,54(11):1030-1036
Marine carbonate rocks from the Delhi Supergroup show little deviation in whole-rock δ13Ccarb values, which are generally around 0% PDB. This narrow range and almost constant δ13Ccarb values persist despite close sampling through long, geographically widespread sections. The data suggest that, in contrast to the Neoproterozoic, the global rate of organic carbon burial was probably constant during deposition of the Delhi Supergroup, and perhaps generally during the Mesoproterozoic, as was the redox state of the atmosphere and hydrosphere.  相似文献   

4.
High-pressure metamorphism in the Western Cordillera of North America   总被引:1,自引:0,他引:1  
The Skagit Gneiss, a major component of the crystalline core of the North Cascades, was metamorphosed during a mid-Cretaceous(?) to early Tertiary high-P event driven by the collision of the Insular and Intermontane superterranes. Maximum pressures recorded by metapelitic rocks are 8–10 kbar at 650–725° C. High pressures are also indicated by coexisting staurolite and hornblende in amphibolites in the Skagit Gneiss and adjacent Cascade River Schist. Mineral reactions continued during nearly isothermal decompression from 8–10 kbar to c. 3–5 kbar. Early high-P minerals (e.g. kyanite) are present as armoured relics in garnet in gneisses that contain sillimanite and cordierite in the groundmass. Skeletal relics of kyanite are also present in the groundmass of lower-grade, staurolite-bearing schists that contain texturally later cordierite. This matrix kyanite may have been preserved as a result of rapid uplift following initial decompression at high temperature. These results represent a revision of the metamorphic history of the Skagit Gneiss, which was formerly thought to have experienced only relatively low-P Barrovian metamorphism. Qualitative estimates of metamorphic conditions based on stable matrix mineral assemblages result in an underestimation of maximum pressures because mineral reactions continued during decompression. Geobarometric results for the Skagit Gneiss are interpreted as evidence for major crustal thickening in the North Cascades. Recognition that pressures of c. 9 kbar were attained supports a contractional model for North Cascades orogenesis and requires that tectonic syntheses account for the burial of the Skagit Gneiss protoliths to a depth of c. 25–30 km.  相似文献   

5.
In the last 10 years, several teams of geologists from different institutions in India and abroad have vigorously investigated the Chhattisgarh basin (Bastar craton, India). Based on the new results and the lithologs of more than 350 water wells, resistivity and gamma-ray logs, and extensive geological traverses, we present a revised geological map, relevant cross sections, a new comprehensive stratigraphic column and a discussion of the new findings. Major outcomes of this revision are: (1) confirming the existence of two sub-basins (Hirri and Baradwar) and two depocentres; (2) establishing the age of the basin to be essentially Mesoproterozoic; (3) discarding the ‘unclassified Pandaria Formation’ and classifying the package of Pandaria rock units into Chandi, Tarenga, Hirri and Maniari formations in the Hirri sub-basin; (4) accepting the ‘group’ status of the Singhora Group and the newly proposed Kharsiya Groups in the Baradwar sub-basin; (5) establishing an intrabasinal correlation of formations; (6) reappraising the thicknesses of the different formations; and (7) finding that the geometry of the basin is ‘bowl-shaped’, which is compatible with a sag model for the origin and evolution of the basin.  相似文献   

6.
Trace element mobility during hydrothermal alteration of oceanic basalts   总被引:2,自引:0,他引:2  
Trace element analyses have been carried out on hydrothermally altered pillow basalts of greenschist facies dredged from the median valley of the Mid-Atlantic Ridge. Sr is leached from the rock, and its behavior is apparently controlled by the same reactions as Ca. Cu is also leached from the basalt, but often shows local precipitation in veins as sulfides. Fe, B, Li, Ba, Mn, Ni and Co show sufficient variations in concentration and location within the altered basalts to indicate that some mobilisation occurs, but there may be subsequent uptake or precipitation into the secondary mineral assemblages. V, Y, Zr and Cr do not appear to be affected by hydrothermal alteration.The production of a metal-enriched solution by hydrothermal alteration and subsequent precipitation of metal salts to form metalliferous sediments is indicated, as is precipitation of metal sulfides in the basaltic basement.  相似文献   

7.
大别山北部饶拔寨超镁铁岩体微量元素地球化学   总被引:3,自引:4,他引:3  
本文报道了饶拔寨超镁铁岩体的5个钻孔15个岩心样品的主量元素和微量元素成分。该岩体由上、下两部分构成。岩性以方辉橄榄岩为主,纯橄榄岩和二辉橄榄岩次之。主量元素成分表明岩体由饱满地幔经过不同程度部分熔融,形成了亏损程度不同的大陆岩石圈地幔。总体上下部岩体较上部亏损程度大。原始地幔标准化REE等不相容微量元素丰度模式表明岩体在熔融作用后又经过了地幔交代作用,形成不同程度LREE和LILE的富集。样品中有角闪石和金云母等含水矿物,表明有实性地幔交代作用。对比LREE与LILE的富集特征,表明可能有两类地幔交代作用,有两种不同性质的交代介质,LREE和Sr等的富集可能与硅酸盐熔体有关,而Rb、Ba、K等的富集可能与俯冲带流体活动有关。总体上下部岩体的交代作用较上部岩体的强。  相似文献   

8.
The Upper Kaimur Group of the Vindhyan Supergroup in Central India, primarily consists of three rock types-DhandraulSandstone, Scarp Sandstone and Bijaigarh Shale. Mineralogically and geochemically, they are quartz arenite, sublitharenite to litharenite and litharenite to shale in composition, respectively. The A-CN-K ternary plot and CIA and ICV values suggest that the similar source rocks suffered severe chemical weathering, under a hot-humid climate in an acidic environment with higher P CO 2, which facilitated high sediment influx in the absence of land plants. Various geochemical discriminants, elemental ratios like K2O/Na2O, Al2O3/TiO2, SiO2/MgO, La/Sc, Th/Sc, Th/Cr, GdN/YbN and pronounced negative Eu anomalies indicate the rocks to be of post-Archean Proterozoic granitic source, with a minor contribution of granodioritic input, in a passive margin setting. The sediments of the Upper Kaimur Group were probably deposited in the interglacial period in between the Paleoproterozoic and Neoproterozoic glacial epochs.  相似文献   

9.
A persistent problem in the study of garnet geochemistry is that the consideration of major elements alone excludes a wealth of information preserved by trace elements, particularly the rare-earth elements (REEs). This is despite the fact that trace elements are generally less vulnerable to diffusive resetting, and are sensitive to a broader spectrum of geochemical interactions involving the entire mineral assemblage, including the growth and/or dissolution of accessory minerals. We outline a technique for the routine acquisition of high-resolution 2D trace element maps by LA-ICP-MS, and introduce an extension of the software package XMapTools for rapid processing of LA-ICP-MS data to visualise and interpret compositional zoning patterns. These methods form the basis for investigating the mechanisms controlling geochemical mobility in garnet, which are argued to be largely dependent on the interplay between element fractionation, mineral reactions and partitioning, and the length scales of intergranular transport. Samples from the Peaked Hill shear zone, Reynolds Range, central Australia, exhibit contrasting trace element distributions that can be linked to a detailed sequence of growth and dissolution events. Trace element mapping is thus employed to place garnet evolution in a specific paragenetic context and derive absolute age information by integration with existing U–Pb monazite and Sm–Nd garnet geochronology. Ultimately, the remarkable preservation of original growth zoning and its subtle modification by subsequent re-equilibration is used to ‘see through’ multiple superimposed events, thereby revealing a previously obscure petrological and temporal record of metamorphism, metasomatism, and deformation.  相似文献   

10.
The 1.2 Ga-old Koldaha shale, central India reveals three orders of depositional cyclicities in its basal storm-dominated shelf succession. Visual appraisal as well as Fourier and MEM analyses concurs in this respect. Only the major storm events at intervals of a few thousands of years have left recognizable imprints. Interbedding of storm sandstones and fairweather shales is apparently climate-controlled. Packaging of about seven such climatic cycles results the second-order cyclicity befitting eccentricity cycles of contemporary scale. Nonetheless, for the erratic storm bed-thickness trends within the cycles some other factor/s might have played a role. The third order cycles are, more dominantly, correlatable with basinal tectonics.  相似文献   

11.
Archean clastic sedimentary rocks are well exposed in the Pilbara Block of Western Australia. Shales from turbidites in the Gorge Creek Group (ca. 3.4 Ae) and shales from the Whim Creek Group (ca. 2.7 Ae) have been examined. The Gorge Creek Group samples, characterized by muscovite-quartzchlorite mineralogy, are enriched in incompatible elements (K, Th, U, LREE) by factors of about two, when compared to younger Archean shales from the Yilgarn Block. Alkali and alkaline earth elements are depleted in a systematic fashion, according to size, when compared with an estimate of Archean upper crust abundances. This depletion is less notable in the Whim Creek Group. Such a pattern indicates the source of these rocks underwent a rather severe episode of weathering. The Gorge Creek Group also has fairly high B content (85 ± 29 ppm) which may indicate normal marine conditions during deposition.Rare earth element (REE) patterns for the Pilbara samples are characterized by light REE enrichment (LaNYbN ≥ 7.5) and no or very slight Eu depletion (EuEu1 = 0.82 – 0.99). A source comprised of about 80% felsic igneous rocks without large negative Eu-anomalies (felsic volcanics, tonalites, trondhjemites) and 20% mafic-ultramafic volcanics is indicated by the trace element data. Very high abundances of Cr and Ni cannot be explained by any reasonable provenance model and a secondary enrichment process is called for.  相似文献   

12.
中元古代(1800~1000 Ma)时期,华北克拉通发育多期与哥伦比亚超大陆裂解有关的岩浆事件群.本文结合区域地质特征、地球化学特点、沉积演化序列,讨论了各期裂解事件群的性质及特点,论述了华北克拉通中元古代时期岩浆事件群的大地构造意义.华北克拉通中元古代时期岩浆事件群具有幕式裂解的特点,约1.80~1.77 Ga岩浆事件群标志着华北克拉通的初始裂解,在这之后三大裂陷槽逐步打开,1.72~1.67 Ga,1.63~1.62 Ga岩浆事件群则是华北克拉通在中元古代早期持续裂解的具体体现,他们代表了哥伦比亚超大陆早期裂解的岩浆事件记录,而1.33~1.30 Ga期间以及1.23~1.20 Ga的岩浆事件则可能代表了哥伦比亚超大陆的晚期裂解事件.这些具有全球构造对比意义的岩浆事件群及高于庄组宏观化石生物群、中元古代时期氧化事件的出现,对一些学者提出的18亿~8亿年间"地球表面持续低氧"、"地球枯燥的10亿年"的认识增添了活力.  相似文献   

13.
Analytical data are presented for the following elements: Cs, Rb, Ba, K, Sr, Ca, Na, Fe, Mg, Cu, Co, Ni, Li, Sc, V, Cr, Ga, Al, Si, La, Y, and Zr. Eight samples were analysed by the spark source method for rare earths, Tl, Pb, Hf, Sn, Nb, Mo, Bi, and In. In addition to data on rhyolitic volcanics, a small number of intermediate volcanics and eugeosynclinal sediments were analysed for comparative purposes. The following features are shown by the trace element data:
  1. The rhyolitic rocks have consistently lower concentrations of most trace and minor elements when compared with recent estimates of average concentrations in granites. None of the criteria for strong fractionation (e.g. low K/Rb, Ba/Rb and K/Cs ratios) are present.
  2. The data do not indicate any systematic differences between the rhyolitic lavas and ignimbrites, although the very young rhyolitic pumices are consistently more “basic” in their element concentrations compared to the other rhyolitic analyses.
  3. The residual glasses (and devitrified matrices) are depleted, relative to the total rock compositions, in Fe, Mg, Ca, Sr, V, Sc, and Al, and enriched in Cs, Rb, K, Ba, and Si. Zr is depleted in the residual glasses separated from rhyolites, but not in the andesitic residual matrices.
  4. The rare earth fractionation patterns of the rhyolitic and andesitic extrusives are very similar, being intermediate between chondritic and sedimentary patterns i.e., there is no evidence of strong fractionation. The rhyolitic patterns also indicate a slight Eu depletion.
  5. Comparable trace and minor element behaviour (with the possible exception of Zr) seems to exist through the rhyolite-andesite compositional range. This is supported by the whole rock-residual liquid trends for the various elements studied, which broadly coincide with the observed whole rock trends, both through the rhyolitic-andesitic compositonal range, and within the rhyolitic compositional range.
The data are finally discussed in the light of the possible origin of the rhyolitic magmas. It is believed that the analytical data presented are qualitatively consistent with the recently proposed idea that the magmas are derived by partial fusion of the associated Triassic-Jurassic eugeosynclinal greywacke-argillite sedimentary sequence.  相似文献   

14.
Paleoclimatic settings have been reconstructed for the Campanian using original oxygen-isotopic analyses of well-preserved molluskan and foraminifera shells from Russian Far East, Hokkaido, USA, Belgium and some DSDP holes (95, 98, 102, 390A, and 392A) in North Atlantic. Early Early Campanian climatic optimum has been recognized from data on high bottom shelf water paleotemperatures in middle latitudes of both the western circum-Pacific (to 24.2°C) and the eastern circum-Pacific (to 26.4°C) areas and high bottom shallow water paleotemperatures in high latitudes of the Koryak Upland (22.4–25.5°C), which agrees with the data on the Campanian Barykovskaya flora in high latitudes (Golovneva and Herman, 1998) and Jonker flora and its equivalents in middle latitudes. Judging from the data on comparatively high bottom shallow water paleotemperature values in high latitudes, South Alaska (19.4°C) and the Koryak Upland (22.4–25.5°C), we also expect Latest Campanian temperature maximum, which has not been confirmed, however, for low and middle latitudes by neither of isotopic nor paleobotanic data now. Main climatic tendency during the Campanian (with the exception of Latest Campanian) has been learned from isotopic composition of Campanian aragonitic ammonoid shells from the Hokkaido-South Sakhalin (Krilyon) marine basin. In contrary to Huber’s et al. (2002) assumption, we expect warm greenhouse conditions during the most part of the Campanian.  相似文献   

15.
The Paleoproterozoic Wernecke Supergroup of Yukon was deposited when the northwestern margin of Laurentia was undergoing major adjustments related to the assembly of the supercontinent Columbia (Nuna) from 1.75 to 1.60 Ga. U–Pb detrital zircon geochronology coupled with Nd isotope geochemistry and major and trace element geochemistry are used to characterize the evolution of the Wernecke basin. The maximum depositional age of the Wernecke Supergroup is reevaluated and is estimated at 1649 ± 14 Ma. Detrital zircon age spectra show a bimodal age distribution that reflects derivation from cratonic Laurentia, with a prominent peak at 1900 Ma. Going upsection, the late Paleoproterozoic peak shifts from 1900 Ma to 1850–1800 Ma, and the proportion of Archean and early Paleoproterozoic zircon decreases. These modifications are a consequence of a change in the drainage system in western Laurentia caused by early phase of the Forward orogeny, several hundred km to the east. The exposed lower and middle parts of the Wernecke Supergroup are correlated with the Hornby Bay Group. Zircon younger than 1.75 Ga appear throughout the sedimentary succession and may have originated from small igneous suites in northern Laurentia, larger source regions such as magmatic arc terranes of the Yavapai and early Mazatzal orogenies in southern Laurentia, and possible arc complexes such as Bonnetia that may have flanked the eastern margin of East Australia. Basins with similar age and character include the Tarcoola Formation (Gawler Craton) and the Willyama Supergroup (Curnamona Province) of South Australia, the Isan Supergroup of North Australia, and the Dongchuan–Dahongshan–Hondo successions of southeast Yangtze Craton (South China). Nd isotope ratios of the Wernecke Supergroup are comparable with values from Proterozoic Laurentia, the Isan and Curnamona assemblages of east Australia, the Gawler Craton, and the Dahongshan–Dongchuan–Hondo successions of the Yangtze Craton of South China. These similarities are compelling evidence for a shared depositional system among these successions. Western Columbia in the Late Paleoproterozoic may have had a dynamic SWEAT-like configuration involving Australia, East Antarctica and South China moving along western Laurentia.  相似文献   

16.
A well preserved assemblage of compressed, straight, circular to sinuously coiled megascopic and helical carbonaceous fossils and other varied megascopic morphoforms are known from the Early Mesoproterozoic Rohtas Formation, Semri Group within Vindhyan Supergroup exposed in Katni district of central India. These megascopic remains are preserved as impressions, compressions, partially mineralized remains, and/or epi-relief. Some of the forms are typical filamentous empty sheaths and others are trichomes, with cell like entities under various stages of degradation. This study, based on fresh collections and also of the topotype material of the helically coiled megascopic fossils, straight forms and related fossilized remains occurring as epi-relief from Katni indicate that the two morphotaxa are distinct entities and possibly appear to be prokaryotes. Grypania spiralis and Katnia singhii are most likely of cyanobacterial origin. Spirally coiled and circular fossils, with epi-relief, and which probably represents a tissue grade organism, are considered as Spiroichnus beerii Mathur, 1983. Linear sheet-like carbonaceous solitary form has been placed in the morphotaxon Proterotainia and described as P. katniensis n. sp. Certain rare circular, carbonaceous forms are considered as Chuaria sp. A few circular disc-like forms found in the assemblage are treated as dubiofossils.  相似文献   

17.
Deposits of a transgressive-phase Lake Bonneville stillstand or oscillation are found just below the elevation of the regressive-phase Provo shoreline at numerous exposures throughout the Bonneville basin. Existence of these subProvo shoreline deposits provides a new explanation for the massive size of Provo depositional and erosional landforms, which can no longer be explained by a long stillstand at the Provo shoreline. Provo coastal landforms are large because they are superimposed on subProvo landforms. Results also help to clarify divergent interpretations regarding the relative age of the Provo shoreline and the number of times it was occupied by the water plane. Occupation of approximately the same level during both the transgressive and the regressive phase of Lake Bonneville may be coincidental, or it may indicate that a bedrock sill controlled outflow at subProvo as well as Provo time. Rise to the Bonneville level could have occurred after massive slope failure plugged the outlet pass.  相似文献   

18.
华北中元古代陆表海氧化还原条件   总被引:2,自引:0,他引:2  
文石海底沉淀是地球早期大气高CO2浓度、海洋贫氧条件下,CaCO3过饱和而直接沉淀于海底所形成的自生碳酸盐,可反映古海洋贫氧状态.对华北中元古界雾迷山组(ca 1.50~1.45 Ga)碳酸盐岩的研究发现:潮下带下部黑色纹层石由针状文石假晶等厚层与微生物席层交互堆叠而成;潮下带中部凝块石白云岩(A单元)主要由针状文石假...  相似文献   

19.
Data are presented for K, Ba, Sr, Rb, Li, Ga, Mg, Mn, and Fe for twelve rhyolitic plagioclases (An28-An46), one dacitic (An53), and three andesitic plagioclases (An68-An81). Additional data are presented for Ga, Gr, V, Ni, Co, Sc, Y, La, Sr, and Ba for two augites, nine hypersthenes, and five hornblendes separated from the same rocks. Distribution factors have been calculated, using these data, and previously published results for coexisting groundmass compositions (=liquids).The plagioclases show a positive correlation between, and a progressive increase in K and Ba (range 0.09–0.58% and 61–610 p.p.m. respectively) with increasing Ab-content. Sr (range 465–880 p.p.m.) shows a well defined maximum between An40-An55. The plagioclases have extremely high K/Rb ratios (mostly > 1,000).This volcanic series is characterised by relatively Mg-rich pyroxenes and hornblendes. The augites contain higher Sc, Cr, Y, Sr, and Y relative to their coexisting hypersthenes, while the hornblendes exhibit higher Sc, V, Ba, Sr, Y, and La relative to coexisting hypersthenes. Very marked differences in concentrations of these elements exist between the rhyolitic and andesitic ferromagnesian phenocrysts. There is also evidence of a systematic distribution of Sc, V, Cr, Y, Co, and Ni between coexisting hypersthenes and hornblendes, and between these minerals and their coexisting whole rock and groundmass compositions.The data are discussed from a petrological viewpoint, as they are interpreted to indicate that the phenocrysts crystallised in the magmas in which they are found, and are not xenocrystic. No evidence of hybridisation or contamination, subsequent to the onset of crystallisation, is found.  相似文献   

20.
华北克拉通中元古界底界年龄与盆地性质讨论   总被引:14,自引:0,他引:14  
乔秀夫  王彦斌 《地质学报》2014,88(9):1623-1637
国际地层委员会将中元古界底界界线年龄定为1600Ma,1600~1400Ma为Calymmian(盖层系),表示全球地台盖层形成时期。华北地台基底固结时间为1800Ma,固结后即进入伸展裂解作用时期,首先是山西吕梁山区、晋南中条山、豫西熊耳山区裂解发展成三叉裂陷槽(Aulacogen)。吕梁山区小两岭组火山岩形成年龄有1778±20Ma(SHRIMP U-Pb锆石)及1779±20Ma(LA-ICP-MS U-Pb锆石)两个数值;豫西熊耳群顶部马家河组和中部鸡蛋坪组及下部许山组火山岩年龄分别为1776±20Ma、1791±20Ma和1783±13Ma(SHRIMP U-Pb锆石),1776~1800Ma为火山岩的形成年龄;将1800Ma作为小两岭组与熊耳群两个火山岩组的底界年龄应当是合理的。吕梁山区的汉高山群为碎屑岩夹火山岩,代表吕梁-陕豫三叉裂陷槽北支中的快速充填,与小两岭组为同时期沉积。汉高山群、大古石组(熊耳群底部沉积岩)为1800Ma裂解开始的盖层沉积,小两岭组火山岩、相关的辉绿岩墙及熊耳群火山岩均为裂解时期的岩浆作用产物。北京密云环斑花岗岩侵位时间为1700Ma,代表燕山-太行山裂陷槽裂解的起始时间也即燕山地区长城系常州沟组底界年龄。北京密云地区环斑花岗岩风化壳上覆常州沟组年龄可确定为1650Ma,它不应被看作常州沟组最低层位的年龄,而是裂陷槽裂解后密云地区开始接受沉积的年龄,1700Ma、1650Ma代表常州沟组在不同地区的底界年龄,但均不等于长城系或中元古界的底界年龄。1600Ma为高于庄组底界年龄,即长城系与蓟县系的界线年龄,也是国际地层委员会中元古界的底界年龄。1600Ma代表燕山-太行山裂陷槽闭合的年龄,也是华北地台始自1800Ma伸展裂解作用的最终结束时期。1600Ma是新的陆表海盆地发展的起始时间,是重要的华北地台构造转换的时期。因此,1800与1600Ma代表华北地台重大地质构造事件的年龄,具大区域构造意义,依据对前寒武系界线年龄确定的原则,两个年龄值均可被选择为中元古界底界的界线年龄。但本文赞同中国全国地层委员会采用1800Ma作为中元古界的底界年龄,因其更符合中国的地质构造实际:华北地台裂解-克拉通内裂陷槽中的盖层充填,底界为1800Ma。华北地台中元古界盆地在不同时期,它的构造性质完全不同:1800~1600Ma为裂陷槽;1600~1400Ma发展成陆表海;1400~1300Ma转化为弧后盆地;1800Ma、1600Ma及1400Ma代表中元古代三个重要的区域构造转换的时间点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号