共查询到20条相似文献,搜索用时 15 毫秒
1.
Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry 总被引:39,自引:0,他引:39
Shan Gao Xiaomin Liu Honglin Yuan Bodo Hattendorf Detlef Günther Liang Chen Shenhong Hu 《Geostandards and Geoanalytical Research》2002,26(2):181-196
Forty two major (Na, Mg, Ti and Mn) and trace elements covering the mass range from Li to U in three USGS basalt glass reference materials BCR‐2G, BHVO‐2G and BIR‐1G were determined using laser ablation‐inductively coupled plasma‐mass spectrometry. Calibration was performed using NIST SRM 610 in conjunction with internal standardisation using Ca. Determinations were also made on NIST SRM 612 and 614 as well as NIST SRM 610 as unknown samples, and included forty five major (Al and Na) and trace elements. Relative standard deviation (RSD) of determinations was below 10% for most elements in all the glasses under investigation. Consistent exceptions were Sn and Sb in BCR‐2G, BHVO‐2G and BIR‐1G. For BCR‐2G, BHVO‐2G and BIR‐1G, clear negative correlations on a logarithmic scale exist between RSD and concentration for elements lower than 1500 μg g‐1 with logarithmic correlation coefficients between ‐0.75 and ‐0.86. There is also a clear trend of increasing RSD with decreasing concentration from NIST SRM 610 through SRM 612 to SRM 614. These suggest that the difference in the scatter of apparent element concentrations is not due to chemical heterogeneity but reflects analytical uncertainty. It is concluded that all these glasses are, overall, homogeneous on a scale of 60 μm. Our first results on BHVO‐2G and BIR‐1G showed that they generally agreed with BHVO‐2/BHVO‐1 and BIR‐1 within 10% relative. Exceptions were Nb, Ta and Pb in BHVO‐2G, which were 14‐45% lower than reference values for BHVO‐2 and BHVO‐1. Be, Ni, Zn, Y, Zr, Nb, Sn, Sb, Gd, Tb, Er, Pb and U in BIR‐1G were also exceptions. However, of these elements, Be, Nb, Sn, Sb, Gd, Tb, Pb and U gave results that were consistent within an uncertainty of 2s between our data and BIR‐1 reference values. Results on NIST SRM 612 agreed well with published data, except for Mg and Sn. This was also true for elements with m/z 85 (Rb) in the case of NIST SRM 614. The good agreement between measured and reference values for Na and Mg in BCR‐2G, BHVO‐2G and BIR‐1G, and for Al and Na in NIST SRM 610, 612 and 614 up to concentrations of at least several weight percent (which were possible to analyse due to the dynamic range of 108) indicates the suitability of this technique for major, minor and trace element determinations. 相似文献
2.
Dorrit E. Jacob 《Geostandards and Geoanalytical Research》2006,30(3):221-235
Fifty-two trace elements in NIST SRM 614, 616 and MPI-DING BM90/21-G glass reference materials as well as in NIST SRM 612, USGS BCR2-G and other MPI-DING reference glasses (KL2-G, GOR132-G, GOR128-G, ATHO-G, Tl-G, StHs6/80-G and ML3B-G) were determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Accurate ultra-low trace element abundances in the NIST SRM 614, 616 and BM90/21-G reference glasses down to lower ng g−1 levels were determined with relative standard deviations (RSD) of less than 10%. Limits of detection using He as carrier gas were up to two times lower than with Ar and were 0.004 to 0.12 μg g−1 for elements of lower mass numbers (amu < 85) and 0.002 to 0.06 μg g−1 for elements having amu < 85. The measured concentrations generally agree within 15% with previous studies except for B in NIST SRM 614 and 616, which appears to be heterogeneously distributed, and Co, Zn, Ga and Ag in NIST SRM 616 for which the existing data set is too small to evaluate the discrepancies. New values for As (0.593 μg g−1 ), Ag (0.361 μg g−1 ) and Cd (0.566 μg g−1 ) in NIST SRM 614 and new values for Na (94864 μg g−1 ) and As (0.276 μg g−1 ) in NIST SRM 616 are reported. 相似文献
3.
Tomoaki Morishita Yoshito Ishida Shoji Arai Miki Shirasaka 《Geostandards and Geoanalytical Research》2005,29(1):107-122
To understand and/or avoid small-scale chemical heterogeneities within geological materials prepared as normal thin sections, in situ multiple trace element determination coupled with the simultaneous microscopic observation of the sample during analysis is preferable. We have examined fifty trace elements in thin (< 30 μm) layers of the NIST SRM 614 and 616 glass reference materials by LA-ICP-MS using different pit diameters and internal standard elements (Ca and Si). Compositional heterogeneities of Tl, Bi, As and Cd were found in NIST SRM 614 and 616 at the spatial resolution of ca. 10 0 μm. Except for these elements, the RSDs of six determinations for most elements were better than 10% in NIST SRM 614 when ablation diameters were < 50 μm. The measured concentrations for most elements in NIST SRM 614 and 616 agree with previous values in the literature at the 95% confidence level with the exception of W and Bi. New LA-ICP-MS data for K, As and Cd are also reported. The results support the view that the latest LA-ICP-MS is a powerful and flexible analytical technique for the determination of multiple ultra-trace element compositions in geological materials prepared as normal thin sections of the type that has been used for polarising optical microscopic observations since the end of the 19th century. 相似文献
4.
Ingo Horn Richard W. Hinton Simon E. Jackson Henry P. Longerich 《Geostandards and Geoanalytical Research》1997,21(2):191-203
The microanalytical capability of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to determine ultra trace elemental concentrations has been demonstrated by the analysis of two low concentration glass standard reference materials, NIST SRM 614 and 616. Results for fifty two elements at concentrations in the low ng g-1 range are compared with those determined using secondary ion mass spectrometry (SIMS). Both techniques provide results at these concentrations that generally agree within 95% confidence limits, demonstrating the accuracy for ultra-trace level of in situ determinations by the two techniques. At concentrations of less than 20 ng g-1 in NIST SRM 616, an accuracy and precision of better than 10% has been obtained for most mono-isotopic rare earth elements, when a spot size of 50 μm is used. Limits of detection for selected elements were as low as 0.5 ng g-1 . 相似文献
5.
Adam J.R. Kent 《Geostandards and Geoanalytical Research》2008,32(2):129-147
This contribution presents data for laser ablation multicollector ICP‐MS (LA‐MC‐ICP‐MS) analyses of NIST SRM 610 and 612 glasses with the express purpose of examining the Pb isotope homogeneity of these glasses at the ~ 100 μm spatial scale, relevant to in situ analysis. Investigation of homogeneity at these scales is important as these glasses are widely used as calibrators for in situ measurements of Pb isotope composition. Results showed that at the levels of analytical uncertainty obtained, there was no discernable heterogeneity in Pb isotope composition of NIST SRM 610 and also most probably for NIST SRM 612. Traverses across the ~ 1.5 mm glass wafers supplied by NIST, consisting of between 75 and 133 individual measurements, showed no compositional outliers at the two standard deviation level beyond those expected from population statistics. Overall, the measured Pb isotope ratios from individual traverses across NIST SRM 610 and 612 wafers closely approximate single normally‐distributed populations, with standard deviations similar to the average internal uncertainty for individual measurement blocks. Further, Pb isotope ratios do not correlate with Tl/Pb ratios measured during the analysis, suggesting that regions of volatile element depletion (marked by low Tl/Pb) in these glasses are not associated with changes in Pb isotope composition. For NIST SRM 610 there also appeared to be no variation in Pb isotope composition related to incomplete mixing of glass base and trace element spike during manufacture. For NIST SRM 612 there was some dispersion of measured ratios, including some in a direction parallel to the expected mixing line for base‐spike mixing. However, there was no significant correlation parallel to the mixing line. At this time this cannot be unequivocally demonstrated to result from glass heterogeneity, but it is suggested that NIST SRM 610 be preferred for standardising in situ Pb isotope measurements. Data from this study also showed significantly better accuracy and somewhat better precision for ratios corrected for mass bias by external normalisation to Pb isotope ratios measured in bracketing calibrators compared to mass bias corrected via internal normalisation to measured 205Tl/203Tl, although the Tl isotopic composition of both glasses appears to be homogeneous. 相似文献
6.
New ID-TIMS, ICP-MS and SIMS Data on the Trace Element Composition and Homogeneity of NIST Certified Reference Material SRM 610-611 总被引:4,自引:0,他引:4
Alexander Rocholl Peter Dulski Ingrid Raczek 《Geostandards and Geoanalytical Research》2000,24(2):261-274
We present new concentration data for twenty four lithophile trace elements in NIST certified reference material glasses SRM 610-SRM 611 in support of their use in microanalytical techniques. The data were obtained by solution ICP-MS and isotope dilution TIMS analysis of two different sample wafers. An overall assessment of these new results, also taking into account ion probe studies that have been published in the literature, shows that these wafers can be considered to be homogeneous. Therefore, individually analysed wafers are believed to be representative of the entire batch of the SRM 610-611 glasses. Possible exceptions are the alkali metals (and a few volatile or non-lithophile trace elements). The analysed concentrations range between 370 μg g−1 (Cs) and 500 μg g−1 (Sr) and agree well with published values. On the basis of our new data and data recently published in the literature we propose "preferred average" values for the elements studied. These values are, within a few percent, identical to those proposed by other workers. 相似文献
7.
Strontium, Neodymium and Lead Isotope Analyses of NIST Glass Certified Reference Materials: SRM 610, 612, 614 总被引:2,自引:1,他引:2
The NIST glass certified reference materials, SRM 610-617, have been widely adopted by the geological community as calibration samples for a variety of in situ trace element analytical techniques. There is now an urgent requirement for similar reference materials for in situ isotopic analytical techniques. We have analysed SRM 610, 612 and 614 for their Pb, Sr and Nd isotopic compositions using thermal ionisation mass spectrometry. Large differences in isotopic composition were observed between each CRM, suggesting a significant trace element content in the initial starting material (base glass). As a result, isotopic compositions for one CRM cannot be extrapolated to another, and each must be calibrated for use independently. We present the first compilation of working values for these glasses. 相似文献
8.
激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展 总被引:4,自引:5,他引:4
激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)是目前地球科学分析领域的重要技术手段,元素微区分析标准物质研制是该分析技术发展的重要方向。本文对当前LA-ICP-MS元素微区分析标准物质的种类、元素分布以及应用上的优缺点和标准物质的制备方法进行了评述。现有的有证标准物质数量不多、种类不齐全,部分元素浓度较低,定值不确定度较大,应用上受到较大的局限性;研制标准也不成熟,均匀性检验方面尚未有统一的方法。本文参照岩石粉末标准物质均匀性检验方法提出了两步均匀性检验法,同时指出在标准物质种类方面,铂族元素及Au元素浓度适当、Pb-S等不同硫化物基体标准物质,以及化学成分不同的碳酸岩和磷酸岩基体标准物质是当前的迫切需求;在标准物质研制技术方面,纳米岩石粉末压片技术的研发、原位微区分析标准物质(固体)均匀性检验判别标准研究是亟待解决的问题。 相似文献
9.
A Merchantek LUV266 TM petrographic ultraviolet (UV) laser microprobe has been used in conjunction with a Finnigan MAT ELEMENT TM high resolution ICP double-focusing mass spectrometer (HR-ICP-MS) for solid microsampling and geochemical analysis. This new configuration for laser ablation has the advantage of coupling the high sensitivity and fast scanning technology applied in the ELEMENT with the ablation efficiency of a UV laser. Optimisation of the configuration on the synthetic NIST SRM 612 glass standard reference material using Q-switched UV laser energy of 2 mJ and a 5 Hz repetition rate demonstrates: (1) a linear element response factor throughout the mass spectrum, suggesting limited fractionation during laser ablation; (2) a high sensitivity and very low background noise for most elements of interest; (3) limits of detection ranging from 3 ng g-1 for Sc to 300 pg g-1 for U; (4) a flat topped peak shape suitable for precise isotopic measurements; and (5) a flat bottomed crater geometry which permits progressive ablation for the analysis of thin sections. Average precision and accuracy estimates based on replicate analyses of synthetic NIST standard reference material and USGS BCR-2G glasses are below 10% for most elements. 相似文献
10.
Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry 总被引:190,自引:0,他引:190
Honglin Yuan Shan Gao Xiaoming Liu Huiming Li Detlef Günther Fuyuan Wu 《Geostandards and Geoanalytical Research》2004,28(3):353-370
Various zircons of Proterozoic to Oligocene ages (1060-31 Ma) were analysed by laser ablation-inductively coupled plasma-mass spectrometry. Calibration was performed using Harvard reference zircon 91500 or Australian National University reference zircon TEMORA 1 as external calibrant. The results agree with those obtained by SIMS within 2s error. Twenty-four trace and rare earth elements (P, Ti, Cr, Y, Nb, fourteen REE, Hf, Ta, Pb, Th and U) were analysed on four fragments of zircon 91500. NIST SRM 610 was used as the reference material and 29 Si was used as internal calibrant. Based on determinations of four fragments, this zircon shows significant intra-and inter-fragment variations in the range from 10% to 85% on a scale of 120 μm, with the variation of REE concentrations up to 38.7%, although the chondrite-normalised REE distributions are very similar. In contrast, the determined age values for zircon 91500 agree with TIMS data and are homogeneous within 8.7 Ma (2 s ). A two-stage ablation strategy was developed for optimising U-Pb age determinations with satisfactory trace element and REE results. The first cycle of ablation was used to collect data for age determination only, which was followed by continuous ablation on the same spot to determine REE and trace element concentrations. Based on this procedure, it was possible to measure zircon ages as low as 30.37 0.39 Ma (MSWD = 1.4; 2 s ). Other examples for older zircons are also given. 相似文献
11.
In the past, there has been little interest in the trace element characteristics of quartz, and in consequence little activity in the trace element characteristics of reference materials with high silicon content. The main purpose of this paper is to contribute to the characterisation of two international certified reference materials, BCS 313/1 from the Bureau of Analysed Samples, (BAS), UK and SRM 1830 from the National Institute of Standards and Technology (NIST), USA. BCS 313/1 was analysed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), solution ICP-MS and instrumental neutron activation analysis (INAA). NIST SRM 1830 was analysed by LA-ICP-MS and INAA. Analytical results are reported for more than forty elements, most of them for the first time. For most elements, the results obtained by the different methods agree within 15 % relative. The recent, heightened interest in quartz and in particular the precise determination of trace0element contents in natural quartz samples requires the use of well characterised reference materials such as BCS 313/1 and SRM 1830, to which this study is designed to contribute. 相似文献
12.
Isotopic and Elemental Imaging of Geological Materials by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry 总被引:4,自引:0,他引:4
Jon D. Woodhead John Hellstrom Janet M. Hergt Alan Greig Roland Maas 《Geostandards and Geoanalytical Research》2007,31(4):331-343
Laser ablation ICP-MS represents a promising new development for the acquisition of elemental and isotopic images from a variety of different materials. Compared to existing methods for imaging, it offers relatively rapid throughput, very wide dynamic range, a relatively clean mass spectrum, utility at a variety of scales (from μm to cm) and multi-element/isotopic capability. Although developing rapidly in the biological sciences, the method has not yet seen widespread application to geological materials. This contribution documents some preliminary experiments aimed at understanding the fundamental aspects of elemental and isotopic image acquisition using laser ablation ICP-MS. In particular, we note that ablation cell designs must be optimised to promote rapid system response, in contrast to the signal-smoothing that is often preferred for simple spot analyses. Furthermore, experimental parameters must be carefully evaluated on a system-by-system basis to avoid the blurring effects of re-sampling phenomena. With careful attention to these details, and development of appropriate data processing software, laser ablation ICP-MS imaging has much to offer workers in the Earth and environmental sciences. 相似文献
13.
Determination of Trace Elements in Twenty Six Chinese Geochemistry Reference Materials by Inductively Coupled Plasma-Mass Spectrometry 总被引:20,自引:0,他引:20
We report new data for thirty seven elements determined in twenty six Chinese geochemistry reference materials using inductively coupled plasma-mass spectrometry and a reliable and simple dissolution technique. One hundred milligrams of sample were digested with 1 ml of HF and 0.5 ml of HNO3 in PTFE-lined stainless steel bombs heated to 200 °C for 12 hours. Insoluble residues were dissolved using 6 ml of 40% v/v HNO3 heated to 140 C for 3 hours. Analytical calibration was accomplished using aqueous standard solutions. Rhodium was used as an internal standard to correct for matrix effects and instrument drift. Precisions were typically better than 5% RSD. Most of the data presented here agree well with the published certified values. For the elements Zr, Hf and most other trace elements, the measured values were less than 10% in error when compared to certified values. 相似文献
14.
Marcel Guillong Kathrin Hametner Eric Reusser Stephen A. Wilson Detlef Günther 《Geostandards and Geoanalytical Research》2005,29(3):315-331
New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP. 相似文献
15.
A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials 总被引:37,自引:0,他引:37
Nicholas J.G. Pearce William T. Perkins John A. Westgate Michael P. Gorton Simon E. Jackson Clive R. Neal Simon P. Chenery 《Geostandards and Geoanalytical Research》1997,21(1):115-144
Microanalytical trace element techniques (such as ion probe or laser ablation ICP-MS) are hampered by a lack of well characterized, homogeneous standards. Two silicate glass reference materials produced by National Institute of Standards and Technology (NIST), NIST SRM 610 and NIST SRM 612, have been shown to be homogeneous and are spiked with up to sixty one trace elements at nominal concentrations of 500 μg g-1 and 50 μg g-1 respectively. These samples (supplied as 3 mm wafers) are equivalent to NIST SRM 611 and NIST SRM 613 respectively (which are supplied as 1 mm wafers) and are becoming more widely used as potential microanalytical reference materials. NIST however, only certifies up to eight elements in these glasses. Here we have compiled concentration data from approximately sixty published works for both glasses, and have produced new analyses from our laboratories. Compilations are presented for the matrix composition of these glasses and for fifty eight trace elements. The trace element data includes all available new and published data, and summaries present the overall average and standard deviation, the range, median, geometric mean and a preferred average (which excludes all data outside ± one standard deviation of the overall average). For the elements which have been certified, there is a good agreement between the compiled averages and the NIST data. This compilation is designed to provide useful new working values for these reference materials. 相似文献
16.
磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨 总被引:3,自引:1,他引:3
微区原位分析提供了固体物质的元素及同位素组成的空间分布信息,有利于解决不同的地质问题、环境问题和工业方面的问题。磁铁矿中微量元素地球化学组成有助于研究成矿时的物理化学条件和示踪新的矿床。本文建立了利用激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)分析磁铁矿中微量元素的方法,探讨了选择必要的分析元素,选择合适的内标、外标,选择恰当的束斑大小等方法。以LA-ICP-MS分析澳大利亚Ernest Henry IOCG矿床磁铁矿中微量元素的方法为例,采用NIST SRM 610作为外标,Fe作为内标较为合理;正常情况下采用32~60 μm的激光束,但对于个别样品中磁铁矿颗粒较小,可以考虑使用较小的激光束(24 μm或16 μm);为消除质谱干扰,Ti选择测量49Ti,Cu选择测量65Cu,Sn选择测量118Sn。 相似文献
17.
Adam J.R. Kent Benjamin Jacobsen David W. Peate Tod E. Waight Joel A. Baker 《Geostandards and Geoanalytical Research》2004,28(3):417-429
We present data for the concentrations of eleven rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb, Lu) in eleven international geochemical reference materials obtained by isotope dilution multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). We have analysed both rock powders and synthetic silicate glasses, and the latter provide precise data to support the use of these as reference materials for in situ trace element determination techniques. Our data also provide precise measurements of the abundance of mono-isotopic Pr in both glasses and powders, which allows more accurate constraints on the anomalous redox-related behaviour of Ce during geochemical processes. All materials were analysed in replicate providing data that typically reproduce to better than one percent. Sm/Nd ratios in all these materials also reproduce to better than 0.2% and are accurate to < 0.2% and can thus be used as calibrants for Sm-Nd geochronology. Our analyses agree well with existing data on these reference materials. In particular, for NIST SRM 610, USGS BHVO-2, AGV-1 and AGV-2, our measured REE abundances are typically within < 2% (and mostly 1%) of REE concentrations previously determined by isotope dilution analysis and thermal ionisation mass spectrometry, consistent with the higher degree of precision and accuracy obtained from isotope dilution techniques. Close agreement of results between basaltic glass reference materials USGS BHVO-2G and BCR-2G and the BHVO-2 and BCR-2 powders from which they were created suggests that little fractionation, concentration or dilution of REE contents occurred during glass manufacture. 相似文献
18.
Frances E. Jenner Peter Holden John A. Mavrogenes Hugh St.C. O'Neill Charlotte Allen 《Geostandards and Geoanalytical Research》2009,33(3):309-317
A combination of EMPA, sensitive high resolution ion microprobe (SHRIMP II) and/or LA-ICP-MS techniques was used to measure the concentration of selenium (Se) in NIST SRM 610, 612, 614 and a range of reference materials. Our new compiled value for the concentration of Se in NIST SRM 610 is 112 ± 2 μg g−1 . The concentration of Se in NIST SRM 612, using NIST SRM 610 for calibration, determined using LA-ICP-MS (confirmed using SHRIMP II) was 15.2 ± 0.2 μg g−1 . The concentration of Se in NIST SRM 614, using LA-ICP-MS was 0.394 ± 0.012 μg g−1 . LA-ICP-MS determination of Se in synthetic geological glasses BCR-2G, BIR-1G, TB-1G and the MPI-DING glasses showed a range in concentrations from 0.062 to 0.168 μg g−1 . Selenium in the natural glass, VG2, was 0.204 ± 0.028 μg g−1 . 相似文献
19.
Luo Yan Liu Yongsheng Hu Shenghong Gao Shan Open Laboratory of Constitution Interaction Dynamics of the Crust Mantle System Ministry of National Lands Resources China University of Geosciences Wuhan Lin Shoulin Faculty of Material Sc 《中国地质大学学报(英文版)》2001,12(3)
INTRODUCTIONLaserablationinductivelycoupledplasmamassspectrome tryisanincreasinglydevelopedanalyticaltechniqueforsolidsampleanalysis.LA ICP MSoffersattractivecharacteristicsofhighsensitivity ,lowdetectionlimits,minimalsampleprepara tion ,lessoxidesinterfe… 相似文献