首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The HOBr molecule is a potential reservoir of Br compounds in the atmosphere. In this work, the UV-visible spectrum of HOBr was measured over the range 242–400 nm. Its absorption consists of two maxima at 280 nm (max=2.7±0.4×10-19 cm2 molecules−1) and 355 nm (max=7.0±1.1×10-20 cm2 molecules−1), respectively, where the error is ±1. Atmospheric photolysis lifetime calculations for HOBr in the lower stratosphere have been made using the PHOTOGT model. The results show a strong dependence on the solar zenith angle (SZA) implying a longer lifetime at high latitudes and a relatively short lifetime at low latitudes for example 714 s (albedo of 25%, SZA of 20° and an altitude of 17 km), and 3226 s (albedo of 25%, SZA of 88° and an altitude of 17 km). The UV-visible absorption spectrum of Br2O, which is an intermediate in the preparation, used in this study and is together with H2O in equilibrium with HOBr, was measured from 205 to 450 nm. The spectrum shows a maximum at 315 nm (max=2.3±0.3×10-18 cm2 molecules−1) with a shoulder at 355 nm. From the results of the atmospheric lifetime calculations for Br2O, it is clear that this molecule has a short stratospheric lifetime and is not likely to have a large daytime concentration, for example, 20 s (albedo of 25%, SZA of 20° and an altitude of 17 km), and 83 s (albedo and 25%, SZA of 88° and an altitude of 17 km).  相似文献   

3.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   

4.
The reaction of CO + OH? in aqueous solution to give formate was studied as a carbon monoxide sink on the primitive earth and in the present ocean. The reaction is first order in OH? and first order in the molar CO concentration. The second order rate constant is given by log k(M?1hr?1) = 15.83?4886/T between 25°C and 60°C. Using the solubility of CO in sea water, and assuming a pH of 8 for a primitive ocean of the present size, the halflife of CO in the atmosphere is calculated to be 12 × 106 yr at 0°C and 5.5 × 104 yr at 25°C.Three other CO sinks would have been important in the primitive atmosphere: CO + H2 → H2CO driven by various energy sources, CO + OH → CO2 + H, and the Fischer-Tropsch reaction of CO + H2 → hydrocarbons, etc. It is concluded that the lifetime of a CO atmosphere would have been very short on the geological time scale although the relative importance of these four CO sinks is difficult to estimate.The CO + OH? reaction to give formate is a very minor CO sink on the earth at the present time.  相似文献   

5.
We present a new paleotemperature scale, based on the oxygen isotopic ratio of the non-exchangeable fraction of the oxygen from diatom silica. The equation t = 17.2 − 2.4 (δ18Osilica − δ18Owater − 40) − 0.2 (δ18Osilica − δ18Owater − 40)2 was derived using recent sediment samples from different oceanic areas, the temperature and isotopic composition of the local surface water. Comparison of our results with other relationships established for quartz-water or amorphous silica-water at higher temperature suggests no difference in isotopic fractionation between quartz-water and biogenic silica-water couples.  相似文献   

6.
Gas concentrations and isotopic compositions of water have been measured in hydrothermal waters from 13°N on the East Pacific Rise. In the most Mg-depleted samples ( 5 × 10−3 moles/kg) the gas concentrations are: 3–4.5 × 10−5 cm3 STP/kg helium, 0.62–1.24 cm3 STP/kg CH4, 10.80–16.71 × 10−3 moles/kg CO2. The samples contain large quantities (95–126 cm3/kg) of H2 and some carbon monoxide (0.26–0.36 cm3/kg) which result from reaction with the titanium sampling bottles. δ13C in methane and CO2 (−16.6 to −19.5 and −4.1 to −5.5 respectively) indicate temperatures between 475 and 550°C, whereas δ13CCO is compatible with formation by reduction of CO2 on Ti at 350°C close to the sampling temperature.3He/4He are very homogeneous at (7.5 ± 0.1)RA(3He/4He = 1.0 × 10−5) and very similar to already published data as well as CH4/3He ratios between 1.4 and 2.1 × 106.18O and D in water show enrichments from 0.39 to 0.69‰ and from 0.62 to 1.49‰ respectively. These values correspond to W/R ratios of 0.4–7. The distinct18O enrichments indicate that the isotopic composition of the oceans is not completely buffered by the hydrothermal circulations. The3He-enthalpy relationship is discussed in terms of both hydrothermal heat flux and3He mantle flux.  相似文献   

7.
8.
An improved resonant fluorescence instrument for measuring atomic oxygen concentration was developed to avoid the Doppler effect and the aerodynamic shock effect due to the supersonic motion of a rocket. The shock effect is reduced by adopting a sharp wedge-shaped housing and by scanning of the detector field of view to change the distance between the scattering volume and the surface of the housing. The scanning enables us to determine absolute values of atomic oxygen concentration from relative variation of the scattered light signal due to the self-absorption. The instrument was calibrated in the laboratory, and the numerical simulation reproduced the calibration result. Using the instrument, the altitude profile of atomic oxygen concentration was observed by a rocket experiment at Uchinoura (31°N) on 28 January 1992. The data obtained from the rocket experiment were not perfectly free from the shock effect, but errors due to the effect were reduced by the data analysis procedure. The observed maximum concentration was 3.8× 1011 cm−3 at altitudes around 94 km. The systematic error is estimated to be less than ±0.7×1011 cm−3 and the relative random error is less than±0.07× 1011 cm−3at the same altitudes. The altitude profile of the OI 557.7-nm airglow was also observed in the same rocket experiment. The maximum volume emission rate was found to be 150 photons cm−3 s−1 at 94 km. The observed altitude profiles are compared with the MSIS model and other in situ observations.  相似文献   

9.
Precipitation collected in continuously open containers for about a year at seven sites around the United States was analyzed for10Be,90Sr,210Pb and238U. Based on these data and long-term precipitation,90Sr and210Pb delivery patterns, the stratospheric, tropospheric and recycled10Be components in the collections were estimated and the global10Be production rate was assessed. Single station production rate estimates range from 0.52 × 106 atoms cm−2 yr−1 to 2.64 × 106 atoms cm−2 yr−1. The mean value is 1.21 × 106 atoms cm−2 yr−1 with a standard error of 0.26 × 106 atoms cm−2 yr−1.  相似文献   

10.
Airborne and ground-based (correlation spectrometer, cascade impactor, and photoelectric counter together with intake filter probes) measurements are described for the volcanic emissions from Popocatépetl volcano (Mexico) from December 23, 1994 to January 28, 1995. Measurements of SO2 restarted 48 h after the eruption onset of December 21, 1994. Maximum sulfur dioxide (4560 t d−1) plus 3.8×104 t d−1 of particulate matter were ejected on December 24, 1994. The maximum rate of ejection occurred coincidentally with the maximum amplitude of harmonic tremor and the maximum number of seismic type B events. Sulfur dioxide emission rates ranged from 1790 to 2070 t d−1 (December 23–24, 1994). Afterwards, sulfur dioxide emission rates clearly indicated a consistent decline. However, frequent gas and ash emission puffs exhibited SO2 fluxes reaching values as high as 3060 t d−1. The emission SO2 baseline for the period of study (February 1994–January 1995) was about 1000 t d−1. Ejection velocity of particulate matter was approximately 270 m s−1 reaching a height of about 2.5 km over the summit. The immediate aerosol dispersion area was estimated at 6.0×104 km2 maximum. The microscopic structure of particles (aerosol and tephra) showed a fragile material, probably coming from weathered crustal layers. X-ray fluorescence and neutron-activation analysis from the impactor samples found the following elements: Si, Al, Ca, S, P, Cl, K, Ni, Fe, Ti, Sc, Cu, Zn, Mn, Sr, Cr, Co, Y, Br, Se, Ga, Rb, Hg and Pb. Morphological analysis shows that ash samples might be from pulverized basaltic rock indicating that the Popocatépetl eruption of December 21, 1994 was at low temperature. The microscopic structure of puff material showed substance aggregates consisted of fragile rock, water and adsorbed SO2. These aggregates were observed within water droplets of approximately 1 mm and even larger. Sulfur transformations in the droplets occurred intensively. Volcanic ash contained 5–6% of sulfur during the first expulsion hours. Elemental relative concentrations with respect to Al show that both Si and S have relative concentrations >1, i.e., 13.73 and 2.17, respectively in agreement with the photoelectric counter and COSPEC measurements.  相似文献   

11.
The temporal variation of OH* emission and weighted rotational temperature has been studied for high-latitude summer conditions. Observations for 60°N latitude show OH weighted temperatures that always exceed 145 K even during periods of noctilucent clouds. Using a one-dimensional model the effects in excited OH concentration produced by changes in temperature, eddy diffusion, and water concentration have been analysed. We are forced to conclude that there remains a discrepancy between the OH temperatures predicted by the model and that obtained from OH* measurements. An increase in OH* concentration from June to the beginning of August, followed by a slow decrease during August has been obtained in agreement with the measurements. The 16-day modulation present in the measurements was simulated in a simple manner by varying the temperature in the mesopause region. This variation produces periodic modulations in both OH* concentration and weighted temperature of 16 days. The results show the temperature leading the OH* column concentration by three days. This phase shift is also present in the observations.  相似文献   

12.
Propagation of electromagnetic (EM) waves from an earthquake focus in the conductive Earth has been investigated using 1/1,000,000 scaling models taking earth-ionosphere and ocean-Moho plane parallel-plate waveguides into account. Microwaves at a frequency, ωm, a million times higher than that of seismic EM signal (SEMS), ω, were generated at the model focus. They are propagated in a salt solution modeling the earth's crust and reflected by ocean, fault planes, ionosphere and Moho plane all made by aluminum. Distribution of EM power was mapped by scanning a detector antenna over the model Earth's surface. The skin depth, δ, calculated by the exact skin depth equation, 1/δ=ω(μ/2)1/2 [(1+(1/ωρ)2)1/2 −1]1/2 where dielectric constant, and permeability, μ are the same but resistivity, ρ, 10−6 times smaller than that of Earth, gave 10−6 times small skin depth validating the model scaling index. Images for evanescent and wave-ripple standing waves disturbed by normal, strike-slip and dip-slip conductive fault planes have been obtained using an aluminum plate. The co-circular contour map above the epicenter due to evanescence was pushed to the north east direction from the epicenter by the presence of ocean for the Loma Prieta earthquake, while to north direction for the Kobe earthquake. The intensity of EM ULF emissions for the Loma Prieta earthquake is discussed quantitatively.  相似文献   

13.
Sulfur isotope effects during the SO2 disproportionation reaction to form elemental sulfur (3SO2+3H2O→2HSO4+S+2H+) at 200–330°C and saturated water vapor pressures were experimentally determined. Initially, a large kinetic isotopic fractionation takes place between HSO4 and S, followed by a slow approach to equilibrium. The equilibrium fractionation factors, estimated from the longest run results, are expressed by 1000 ln αHSO4S=6.21×106/T2+3.62. The rates at which the initial kinetic fractionation factors approach the equilibrium ones were evaluated at the experimental conditions.δ34S values of HSO4 and elemental sulfur were examined for active crater lakes including Noboribetsu and Niseko, (Hokkaido, Japan), Khloridnoe, Bannoe and Maly Semiachik (Kamchatka), Poás (Costa Rica), Ruapehu (New Zealand) and Kawah Ijen and Keli Mutu (Indonesia). ΔHSO4S values are 28‰ for Keli Mutu, 26‰ for Kawah Ijen, 24‰ for Ruapehu, 23‰ for Poás, 22‰ for Maly Semiachik, 21‰ for Yugama, 13‰ for Bannoe, 9‰ for Niseko, 4‰ for Khloridonoe, and 0‰ for Noboribetsu, in the decreasing order. The SO2 disproportionation reaction in the magmatic hydrothermal system below crater lakes where magmatic gases condense is responsible for high ΔHSO4S values, whereas contribution of HSO4 produced through bacterial oxidation of reduced sulfur becomes progressively dominant for lakes with lower ΔHSO4S values. Currently, Noboribetsu crater lake contains no HSO4 of magmatic origin. A 40-year period observation of δ34SHSO4 and δ34SS values at Yugama indicated that the isotopic variations reflect changes in the supply rate of SO2 to the magmatic hydrothermal system. This implies a possibility of volcano monitoring by continuous observation of δ34SHSO4 values. The δ18O values of HSO4 and lake water from the studied lakes covary, indicating oxygen isotopic equilibration between them. The covariance gives strong evidence that lake water circulates through the sublimnic zone at temperatures of 140±30°C.  相似文献   

14.
Fe-Mg interdiffusivities in (Fe,Mg)O magnesiowüstite have been measured in experiments conducted at pressures of 7-35 GPa and temperatures of 1573-1973 K using a Kawai-type high-pressure apparatus. The diffusion profiles were measured across the interface between MgO and (Fe0.5,Mg0.5)O samples by electron microprobe analysis, and the Fe-Mg interdiffusivities were determined as DFe-Mg=D0exp{−E*(1+PV*Mg/E*Mg)/RT}, where D0=4.1(+16.1−3.3)×10−7 m2/s, E*=(1−CMg)E*Fe+CMgE*Mg (activation energy for the concentration of Mg, where E*Fe=113(±74) kJ/mol and E*Mg=226(±32) kJ/mol), the activation volume V*Mg=1.8(±1.2)×10−6 m3/mol. By extrapolating these results to the P-T conditions of the core-mantle boundary, we conclude that the interdiffusivity of Fe-Mg in magnesiowüstite at the bottom of the lower mantle is at least one order of magnitude larger than that at the top of the lower mantle.  相似文献   

15.
This paper describes measurements of suspended sediment fluxes at a total of 32 stations situated on four reference sections in the turbid estuary of Chignecto Bay, Bay of Fundy, Canada. The purpose of the study was to determine the sediment budget (sources, transport paths and sinks) and the seasonal variations in particulate fluxes. The major sources of sediment are the eroding cliffs surrounding the bay (1.0 × 106 m3 y−1) and the seabed (6 × 106 m3 y−1. There are no present-day sinks within the estuary; sediment is principally moved in suspension to the wider part of the Bay of Fundy. Residuals in sediment mass transport are strongly affected by storms. These disrupt the logarithmic longitudinal sediment concentration profile which is normally present, and cause sediment to be transported out of the estuary. Well-defined turbid ribbons occur which meander unpredictably through the sampling sites; estimates of sediment mass transport are thus dubious.  相似文献   

16.
During July and August 1981 subsurface intrusion of upwelled nutrient-rich Gulf Stream water was the dominant process affecting temporal and spatial changes in phytoplankton biomass and productivity of the southeastern United States continental shelf between 29 and 32°N latitude. Intruded waters in the study area covered as much as 101 km including virtually all of the middle and outer shelf and approximately 50% of the inner shelf area.Within 2 weeks following a large intrusion event in late July, middle shelf primary production and Chl a reached 3 to 4 gC m d−1 and 75 mg m, respectively. At the peak of the bloom 80% of the water column primary production occurred below the surface mixed-layer, and new primary production (i.e., NO3-supported) exceeded 90% of the total. Chl a-normalized photosynthetic rates were very high as evidenced by high mean assimilation number (15.5 mg C mg Chl a−1 h−1), high mean α (14 mg C mg Chl a−1 Ein−1 m), and no photoinhibition. As a result of the high photosynthetic rates, mean light-utilization index (Ψ) was 2 to 3 times higher than reported for temperature sub-arctic and arctic waters.The results imply a seasonal (June to August) middle shelf production of 150 g C m−1, about 15% higher than previous estimates of annual production on the middle shelf. Intrusions of the scale we observed in 1981 may not occur every summer. However, when such events do occur, they are by far the most important processes controlling summer phytoplankton dynamics of the middle and outer shelf and of the inner shelf in the southern half of the study area.  相似文献   

17.
The characteristics of rain and point charges based on routine measurements extending over four rainy seasons are presented. An average rain current density of (1.0±0.1)×10–10 A m–2 and charge per unit volume of rain water of (0.43±0.02)×10–4 C m–3 for the locality are obtained, which are compared with data obtained elsewhere by other workers. The point-discharge current measurements lead to a revised estimate of (0.86±0.08)×10–9 A m–2 for the average point discharge current below storm clouds.  相似文献   

18.
LaCe ages are reported for two sets of Finnish pegmatites, Lövböle and Mustikkamäki, and for an Amiˆtsoq gneiss, Greenland. When λβ138La value (2.29 × 10−12 yr−1) obtained by radioactivity measurement [1] is used for the chronological calculation, the LaCe ages (2129, 2325, 3271 Myr) evaluated for these rocks are 18–35% older than the SmNd ages for the same samples. To make the LaCe age fit to the SmNd age for the same sample, a new value of (2.77 ± 0.21) × 10−12 yr−1 is evaluated for λβ138La. In this calculation, the LaCe and SmNd ages reported for a Bushveld gabbro [2] have been also taken into account together with those for the Lövböle pegmatite and the Mustikkamäki pegmatite, while the Amiˆtsoq gneiss (GGU110999) has been omitted because of the complicated thermal history of this sample.  相似文献   

19.
The 1975 sub-terminal activity was characterised by low effusion rates (0.3–0.5 m3 s−1) and the formation of a compound lava field composed of many thousands of flow units. Several boccas were active simultaneously and effusion rates from individual boccas varied from about 10−4 to 0.25 m3s−1. The morphology of lava flows was determined by effusion rate (E): aa flows with well-developed channels and levees formed when E > 2 × 10−3 m3 s−1, small pahoehoe flows formed when 2 × 10−3 m3 s−1 >E > 5 > 10−4 m3 s−1 and pahoehoe toes formed when E < 5 × 10−4 m3 s−1. There was very little variation with time in the effusion temperature, composition or phenocryst content of the lava.New boccas were commonly formed at the fronts of mature lava flows which had either ceased to flow or were moving slowly. These secondary boccas developed when fluid lava in the interior of mature aa flows either found a weakness in the flow front or was exposed by avalanching of the moving flow front. The resulting release of fluid lava was accompanied by either partial drainage of the mature flow or by the formation of a lava tube in the parent flow. The temperature of the lava forming the new bocca decreased with increasing distance from the source bocca (0.035°C m−1). It is demonstrated from the rate of temperature decrease and from theoretical considerations that many of the Etna lavas still contained a substantial proportion of uncooled material in their interior as they came to rest. The formation of secondary boccas is postulated to be one reason why direct measurements of effusion rates tend, in general, to overestimate the total effusion rates of sub-terminal Etna lava fields.  相似文献   

20.
Tropical mobile mud belts represent a major class of biogeochemical and diagenetic systems characterized by extensive and frequent physical reworking of fine-grained, organic-rich deposits underlying oxygenated waters. Large regions of the Gulf of Papua, Papua New Guinea deltaic complex are dominated by such conditions. A reworked mud belt lies within the inner shelf between 10 and 20 m depth on a sedimentary clinoform derived from coalescing deltas. Deposits across the topset are typically suboxic, nonsulfidic over the upper 0.5–1 m, and have low to moderate maximum pore water concentrations of dissolved Fe(II) and Mn(II) (100–200, but up to 800 μM). Sediments are reactive, with surficial ΣCO2 production 0.1–0.3 mM d−1 and benthic O2 fluxes 23±15 mmol m−2 d−1 (upper 20 cm). The highest rates occur within inner topset deposits (10–20 m) and near the high accumulation rollover region of the topset–foreset beds (40–50 m). Lower rates are found inshore along intertidal channels—mangrove fringe and within scoured or exposed consolidated deposits of the middle topset region. Remineralization rate patterns are independent of relative dominance by terrestrial or marine carbon in sediments. Dissolved O2 usually penetrates 2–5 mm into surface sediments when macrofaunal burrows are absent. More than 75% of the highly reactive sedimentary Fe(III) pool (350–400 μmol g−1) is typically diagenetically reduced in the upper 0.5 m. Pore water can be measureably depleted at depths >0.5 m, but dissolved H2S generally remains below detection over the upper 1–2 m. As in other deltaic topset regions, concentration gradients often indicate that compared to many marine deposits of similar sediment accumulation rates, relatively refractory Corg is supplied to the SO4 reducing zone. Sedimentary C/S ratios are 4–6 within the suboxic topset regions but decrease to <3 in offshore foreset beds where sulfidic diagenesis dominates. Only 15–20% of the diagenetically reduced Fe(II) is pyritic and a maximum of 10–25% is carbonate, implying that most Fe(II) is associated with authigenic or lithogenic silicates or oxides. The dominance of suboxic, nonsulfidic diagenetic processes reflect coupling between delivery of oxide-rich terrestrial debris, remobilization and reoxidation of deposits, and repetitive entrainment/remineralization of both labile and refractory organics. Distinct sedimentary indicators of reactive, suboxic mobile mud belts within tropical climatic zones are: abundant total highly reactive Fe (ΣFeR )>300 μmol g−1; most reactive Fe is diagenetically reduced (ΣFe(II)/ΣFeR0.7–0.8); the proportion of diagenetically reduced Fe present as pyrite is low (Py–Fe(II)<0.2); C/S 4–8; and Corg/particle surface area <0.4 (mg C m−2). These depositional environments must be most common in tropical climates during high sea stand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号