首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
样品经盐酸-硝酸-氢氟酸-高氯酸-硫酸(五酸)加热分解完全,利用浓硫酸的氧化性,可将钼转化为钼酸盐进入溶液中,盐酸溶解盐类至溶液清亮,用电感耦合等离子体发射光谱法在波长202.0 nm处测定多金属矿石中的钼,克服了盐酸-硝酸-氢氟酸-高氯酸(四酸)分解样品测定结果偏低的问题,同时解决了国标方法分析流程长、成本高、使用试剂较多且不易操作的难题。方法检出限为2.8μg/g,经国家一级标准物质分析验证,测定值与标准值相符。对自制监控样品测定6次,方法精密度(RSD)为2.16%。通过不同溶矿方法、不同检测方法及不同实验室进行验证,证明该方法线性范围宽(0~50 mg/mL),操作简单,适用于批量多金属矿石样品中0.001%~2.00%钼的测定。  相似文献   

2.
钨钼矿石一般由多种矿物组成,组分较为复杂,不溶于盐酸、硝酸和王水,常采用碱熔和混合酸酸溶法进行样品消解。然而,碱熔法带来的基体效应严重影响仪器测试的准确性和检出限,而酸溶法对钨钼等难溶元素溶出效率较低,并且需要使用氢氟酸和王水等多种无机强酸进行长时间且操作过程复杂的前处理流程,同时还会造成分析测试仪器损害的问题。因此,开发一种操作简单且高效定量分析钨钼矿石中钨钼及其伴生元素的方法十分必要。本文在碱熔和酸溶的基础上,探索并建立了一种由直接烧结、盐酸-磷酸-柠檬酸络合提取与电感耦合等离子体发射光谱仪(ICP-OES)联用的方法,同时准确定量分析钨钼矿石中钨钼铜铅锌钙铁7种元素。与传统碱熔法相比,通过高温直接烧结让样品中含目标元素的矿物转化为酸可溶态,随后在盐酸-磷酸-柠檬酸混合酸体系的络合作用下,将目标元素转移至溶液中,从而实现快速准确定量测定。最佳实验条件为:600℃烧结1h、5mL磷酸-盐酸(体积比1∶20)提取、5mL 10g/L柠檬酸络合,过滤后上机测定。采用钨矿标准物质(GBW07240和GBW07241)和钼矿标准物质(GBW07238和GBW07239)以及两种实际钨钼矿石样品对本方法进行验证,结果表明7种目标元素测定含量均在标准值范围内,相对误差和相对标准偏差(RSD)均在10%以内。本研究发现,高温直接烧结与盐酸-磷酸-柠檬酸混合酸体系络合提取联用的样品前处理方法,可有效地避免传统碱熔和混合酸酸溶法的缺点,具有更为环保和低能耗的优点,同时可有效地降低化学分析实验室样品分析测试过程中酸气污染物的排放,可为战略性钨钼矿床资源开发和综合利用提供基础支撑。  相似文献   

3.
用盐酸-氢氟酸-硝酸微波消解对样品进行前处理,电感耦合等离子体发射光谱法测定岩石和矿物中的钼,选择202.03 nm为样品分析谱线,优化了微波消解的实验条件,可消解多个样品,减少了碱熔分解样品方法引入的基体干扰,避免了极谱法中汞对人体的伤害。用不同类型国家一级标准物质分析验证,测定结果与标准值吻合。方法精密度(RSD,n=8)小于2.0%,加标回收率为96.4%~101.3%,方法检出限为0.000 5%。该方法适用于岩石和矿物中钼的测定,制样速度快,操作简便安全,样品重现性好,能满足简单、快速、批量分析的要求。  相似文献   

4.
采用硝酸、硫酸、氢氟酸在高压密封微波消解体系中完全消解褐煤、烟煤和无烟煤样品,消解温度为180℃以上,以178.283 nm作为磷的分析谱线,电感耦合等离子体发射光谱法测定煤样中磷的含量。通过扣除背景的方法消除了基体干扰和光谱干扰,Si、Fe、Ca、Al、Mg对磷的检测无显著影响。磷浓度在0~10 mg/L范围内与等离子体发射强度呈良好的线性关系,方法检出限为0.09 mg/L,回收率为94.5%~101.2%,精密度(RSD,n=12)为1.89%~5.21%。方法用于分析标准物质,测定值与标准值一致。  相似文献   

5.
矽卡岩型铜多金属富矿石是西藏特有矿产,具有成矿元素多样且含量普遍较高的特点,矿物类型主要为硫化物型,成矿元素有Cu、Pb、Zn、Fe、Ag、Bi、Cd、Co等。采用湿法处理此类样品时常因银、铅等元素含量较高出现难溶解、易沉淀现象,导致测定结果偏低。本文采用盐酸预处理、硝酸-氢氟酸-高氯酸溶矿体系,能有效除去样品中的硫,样品分解效果好,选择稀释倍数为1000、溶液介质为10%盐酸,样品溶液不会产生沉淀,采用电感耦合等离子体发射光谱法测定各待测元素均可获得较好的准确度、精密度。方法测定范围为:Cu 0.0056%~20.0%,Pb 0.0087%~20.0%,Zn 0.0031%~20.0%,Fe 0.0090%~20.0%,Ag 5.40~3000μg/g,Bi 10.8~5000μg/g,Cd 0.69~5000μg/g,Co 2.09~5000μg/g。用国家标准物质进行验证,方法准确度小于5.40%,精密度(RSD,n=11)小于4.41%。该方法具有前处理流程简单、分析速度快、同时测定元素多、线性范围宽等优点,经实际样品测试与不同方法分析数据吻合。  相似文献   

6.
稀有多金属矿各类选矿样品中同一元素的含量相差较大,且同一样品中各元素的含量也有较大差异,如铌钽锂铍在尾矿和原矿中的含量只有几十至几百!g/g,而在精矿中的含量达到百分之几至百分之几十,伴生元素如钾、钠在不同样品中也有较大差异。应用敞口酸熔-电感耦合等离子体发射光谱法(ICP-OES)测定铌钽锂铍等元素通常采用三酸或四酸分解样品,多是测定尾矿、原矿及部分中矿样品中较低含量的铌钽锂铍,且同一测定体系中只测定了一种或两种元素。本文采用氢氟酸-硝酸-盐酸-高氯酸-硫酸分解样品,以3~4滴氢氟酸+5%硫酸+5%过氧化氢提取体系替代常规的有机酸(酒石酸等)提取体系,实现了应用ICP-OES同时测定稀有金属矿选矿试验各阶段产品中不同含量的铌钽锂铍钾钠铷铁钛等元素。各元素的谱线强度在0~500μg/mL浓度范围内呈良好的线性关系,相对标准偏差为0.37%~4.77%(n=6)。该方法提高了选矿全流程样品中各类元素的分析效率,已在选冶试验流程样品分析中得到了应用。  相似文献   

7.
杜米芳 《岩矿测试》2010,29(1):89-90
用电感耦合等离子体发射光谱法测定钼铁中的钼,优化了仪器操作条件,克服了常规重量法测定钼铁中钼步骤繁琐、耗时长、工作量大的不足。方法简便易行,快速准确,分析误差在化学分析允许的误差范围内,能替代原有的化学分析方法,基本满足生产和科研的要求。  相似文献   

8.
9.
端视电感耦合等离子体发射光谱法测定土壤中有效钼   总被引:2,自引:4,他引:2  
样品经草酸?草酸铵溶液(Tamm溶液)浸提,分取浸提液,蒸干灼烧破坏草酸盐,制备成硫酸介质溶液,采用端视电感耦合等离子体发射光谱法测定土壤中有效钼。方法检出限(3s)为0.013μg/g,精密度(RSD,n=12)为2.13%~6.70%。经国家一级标准物质验证,测定值与标准值吻合。  相似文献   

10.
乔爱香  江冶  李如燕 《江苏地质》2022,46(4):441-446
特氟龙空气滤膜试样用反王水浸泡预消解,电热板加热,反王水-高氯酸-氢氟酸四酸体系分解滤膜样品吸附的空气颗粒物。在无合适监控样品的情况下,采用国家一级标准物质GBW07401模拟滤膜吸附的空气颗粒物与空白滤膜一起消化分解、上机测定,优化ICP-AES光谱仪的最佳测试条件,分析样品中的Ba、Cr、Cu、Li、Mn、Ni、P、Pb、Sr、Ti、V、Zn、Al、Ca、Fe、K、Mg、Na共18种元素,测定值与标准物质的认定值相符,各元素分析结果的相对标准偏差RSD在1.42%~9.21%之间,方法回收率在89%~112%之间,元素检出限在0.002 0~0.35 μg/g 之间。滤膜中的Si元素测定采用微波马弗炉碱熔法,水提取酸化定容,同步采用国家一级标准物质GBW03105a模拟空气颗粒物样品加入空白滤膜,灰化碱熔,进行ICP AES测定。相对标准偏差RSD为7.68%,检出限为0.12 μg/g。采用酸溶法和碱熔法2种方法分解样品,实现了空气滤膜样品中19个多元素的快速测定。  相似文献   

11.
采用微波消解-电感耦合等离子体原子发射光谱法(ICP-OES)测定了不同食品中总硼的含量。对微波消解样品前处理条件和仪器参数进行了选择和优化。方法对硼元素的检出限为0.10 mg/kg。方法的精密度(RSD,n=6)为1.6%~6.8%;回收率为96.5%~104.0%。方法用于分析国家一级标准参考物质GBW 07605(茶叶)、GBW 08501(桃叶)、面粉与鱿鱼粉中的硼,测定值与标准值或参考值吻合。  相似文献   

12.
锑矿石化学物相分析涉及三个矿物相:锑华、辉锑矿和难溶锑酸盐,不同锑矿物相提取的溶剂不同、共存离子复杂、浓度梯度差别大,这些因素影响了电感耦合等离子体发射光谱法(ICP-OES)对锑化学物相的准确测定。本文以锑华、辉锑矿和锑酸盐的选择分离溶剂为研究对象,测试了盐酸、硝酸和硫酸钾-硝酸-硫酸不同介质对ICP-OES测定锑的影响。结果表明:同浓度的盐酸和硝酸介质对锑的测定没有影响,锑华和辉锑矿中锑含量的测定可使用同一标准溶液系列,盐酸或硝酸的浓度控制在15%~20%可避免锑的水解;混合酸介质(4g/L硫酸钾-15%硝酸-3%硫酸)对锑的测定有影响,可采用基体匹配方法解决,在测定锑酸盐相锑含量时,锑校准溶液的配制加入锑酸盐浸出剂相同量的混合酸。选择206.833nm谱线作为分析线,在优化的分析方法流程和测定参数条件下,锑华、辉锑矿和锑酸盐中锑的检出限分别为0.0006%、0.0012%和0.0021%;对不同浓度原生矿和氧化矿12次分析,测定值的相对标准偏差(n=12)为0.16%~5.76%,相态加和与全量的相对偏差绝对值为0.07%~7.38%。本方法精密度和准确度满足锑矿石化学物相分析的质量控制要求,解决了锑矿石化学物相快速准确的测量问题。  相似文献   

13.
六价铬Cr(Ⅵ)是建设用地土壤及固体废物环境监测的必测指标之一,为了配套现行土壤环境质量标准,建立操作简便、准确精密的Cr(Ⅵ)前处理和分析测定方法势在必行。本文采用0.1mol/L磷酸氢二钠溶液(pH=9.0)作为提取剂,微波炉消解,在优化的微波消解温度和时间内,保证了对固体样品基体的破坏作用,将晶格中的Cr(Ⅵ)全部释放到溶液中,并有效抑制了Cr(Ⅲ)氧化。用0.45μm滤膜在pH=9.0条件进行过滤后,可以将六价铬(溶液)与三价铬(沉淀)分离,借助电感耦合等离子体发射光谱法(ICP-OES)完成样品溶液中Cr(Ⅵ)的定量。结果表明:当样品量为1.00g,微波消解温度为90℃,消解时间为20min时能够保证固体废物中Cr(Ⅵ)的完全提取及准确测定。方法检出限为0.057mg/kg,相对标准偏差(n=7)低于3.20%,与HJ 687标准方法进行比对,测得的相对偏差介于-5.6%~7.6%;实际固体废物中Cr(Ⅵ)的加标回收率为94.3%~96.6%。与前人相关的电感耦合等离子体发射光谱法(检出限0.83mg/kg,加标回收率均值87.2%)相比,本方法的检出限更低,样品前处理时间更短,自动化程度高,可应用于环境监测领域。  相似文献   

14.
采用密闭式微波消解系统处理土壤样品,电感耦合等离子体发射光谱法或石墨炉原子吸收光谱法测定土壤样品中铜、砷、铅、锌、钴、铬、锰、镍、钒9个元素。分别从消解液的选择、用酸量及样品消解量等方面进行消解条件的优化,确定了一个最适合土壤消解的前处理体系。各元素的检出限为0.16~2.52μg/g,回收率为95.2%~106.6%,精密度为2.03%~9.79%(n=7)。方法简单快速,效率高,劳动强度低,是进行土壤中多元素测定的高效方法。  相似文献   

15.
采用王水溶解锑矿石常出现溶矿不彻底、提取过程中锑水解的问题,导致测定结果偏低;虽然原子荧光光谱法广泛应用于锑的测定,但是该方法由于仪器线性范围窄,对于高含量锑(5%)的测定容易引入较大稀释误差。本文对样品采用氢氟酸-硝酸-盐酸混合酸溶后,在提取过程中加入酒石酸与锑络合,充分抑制了锑的水解。实验结果表明:采用氢氟酸、硝酸、盐酸混合酸体系的溶矿方式,能够有效分解矿石中的硅酸盐组分,使溶解更加彻底,锑的测定结果优于王水溶矿,且检出限更低(1.10μg/g);通过酒石酸与锑的络合及盐酸对锑水解的抑制,锑的测定结果优于王水介质及盐酸介质的结果,且方法精密度(RSD,n=6)为0.11%~1.11%,较其他介质更稳定。在ICP-OES分析中通过对锑元素分析谱线的优选,可以获得更宽的线性范围,从而实现了对较高含量锑的准确测定。本方法能快速、有效溶解锑矿石并避免锑元素水解,经国家一级标物验证,所得结果与认定值相符,适用于分析锑矿石中含量范围在0.7%~40%的锑。  相似文献   

16.
粉煤灰中镓元素含量为12~230μg/g,测定粉煤灰中的镓对实现粉煤灰高附加值利用具有重要的意义。传统敞口酸溶法作为样品的预处理方法存在局限性,如需使用大量氢氟酸,对分析仪器腐蚀大,溶样时间长,在开放容器中易造成元素损失和环境污染。微波消解法具有消解完全、元素损失量少、消解时间短等优点,可以有效解决酸溶法的不足。本文选取内蒙古某电厂采集的粉煤灰,采用硝酸-氢氟酸-盐酸-高氯酸微波消解法对粉煤灰样品进行预处理,电感耦合等离子体发射光谱法(ICP-OES)测定元素含量。结果表明:使用硝酸-氢氟酸-盐酸-高氯酸(5∶1∶5∶1),消解温度190℃,消解时间30min,微波功率1400W时,镓被浸出完全。方法检出限为0.004mg/L,相对标准偏差(RSD)为1.7%,加标回收率为95.1%~100.9%。本方法在体系中引入盐酸,减少了氢氟酸的用量,显著缩短了除氟时间,降低了对分析仪器的损害,且操作方便,可应用于粉煤灰中微量元素镓的测定。  相似文献   

17.
研究了电感耦合等离子体发射光谱同时测定地质样品中次量钨、锡、钼的方法。为了避免基体干扰,采用氢氟酸低温分解试样,蒸干除硅,硅以四氟化硅的形式挥发除去。为了减小盐分,用少量过氧化钠熔融未被分解完全的试样残渣,热水提取,盐酸酸化,电感耦合等离子体发射光谱法同时测定钨、锡、钼。方法相对标准偏差(RSD,n=12)为钨10.80%,锡6.67%,钼8.33%。标准曲线线性浓度上限为:三氧化钨30.0 mg/L,锡40.0 mg/L,钼40.0 mg/L。方法经国家一级标准物质验证,分析结果与标准值相符。  相似文献   

18.
钨矿石和钼矿石具有丰富的共生或伴生元素,检测共生或伴生元素的含量有利于矿产资源的综合利用.在国家标准方法中钨矿石和钼矿石的共生或伴生元素含量是按元素分别检测,效率很低.本文在敞开体系中用盐酸+硝酸+氢氟酸+高氯酸消解样品,以7%盐酸溶解盐类,电感耦合等离子体发射光谱同时测定钨矿石和钼矿石中铋、钴、铜、锂、镍、磷、铅、锶、钒、锌等10种微量元素.选定了各元素的分析谱线和光谱级次,采用离峰背景校正法消除背景干扰,干扰元素校正系数法消除元素间的谱线重叠干扰.方法检出限为1.43 ~ 18.8 μg/g,加标回收率为90% ~ 110%.经钨矿石和钼矿石标准物质分析验证,测定结果与标准值基本吻合,方法精密度(RSD,n=10)小于8%.该方法克服了碱熔引入大量碱金属元素以及可能引入杂质的缺陷,又不用处理钨酸和钼酸沉淀,能快速测定钨矿石和钼矿石中微量共生或伴生元素.  相似文献   

19.
电感耦合等离子体发射光谱法测定锑精矿中多种微量元素   总被引:1,自引:2,他引:1  
建立了电感耦合等离子体发射光谱法(ICP-OES)测定锑精矿中10种微量元素Zn、Cd、Pb、Si、Mn、Fe、Mg、Ca、Cu、Ag的快速定量分析方法。探讨了锑精矿的溶样方法,发现采用氢溴酸挥锑后用浓酸溶解样品,稳定性较好。优化了仪器参数条件,对样品中各元素做加标回收试验。与原子吸收光谱法测定比较,方法检出限低,精密度(RSD,n=11)均小于6%,回收率为89.4%~108.0%,能满足进出口对锑精矿中杂质元素的检测要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号