首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seismic response of free‐standing classical columns is analysed numerically through implementation of the distinct element method. Typical sections of two ancient temples are modelled and studied parametrically, in order to identify the main factors affecting the stability and to improve our understanding of the earthquake behaviour of such structures. The models were first subjected to harmonic base motions. The analysis showed that, for frequencies usually encountered in earthquake motions, intact multi‐drum free‐standing columns can withstand large amplitude harmonic excitations without collapse. The dynamic resistance decreases rapidly as the period of the harmonic excitation increases. Imperfections, such as initial tilt of the column or loss of contact area due to edge damage, also reduce the stability of the system significantly. The effects of such imperfections could be additive and the cumulative effect of many imperfections may render deteriorating abandoned monuments vulnerable to earthquakes. The response of more complete sections of the temple, such as two columns coupled with an architrave, did not deviate systematically from that of the single multi‐drum column or indeed of the equivalent single block. Therefore, a much simpler single block analysis can be used to size‐up the seismic threat to the monument. The model of the column of the Temple of Apollo at Bassae was also tested under recorded earthquake motions by scaling‐up the acceleration amplitude progressively until collapse of the column. It was found that the columns are particularly vulnerable to long‐period impulsive earthquake motions. A comparison of the instability thresholds associated with harmonic excitations and earthquake motions throws more light onto the dynamic response: it appears that around three cycles of monochromatic excitation at the predominant period of the expected earthquake motions lead to a gross prediction of the stability of a classical column during an earthquake. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
对一基础隔震钢筋混凝土框架结构在无填充墙情况下进行了环境激励下的动力测试,重点利用Hilbert-Huang变换与随机减量技术相结合的方法识别了其模态参数,并与随机子空间识别法、有理分式多项式法识别的结果进行了对比。识别结果表明在环境激励下,基础隔震结构的基本周期远小于多遇和罕遇地震工况下设计计算的基本周期;等效黏滞阻尼比很小,近乎于基础固定模型。对隔震层阻尼特性的分析表明,环境激励下可以将基础隔震结构视为经典的比例阻尼系统。进一步以识别的模态参数为基准,采用优化的方法数值反演了环境激励下该结构隔震层的实际水平等效刚度,结果表明其值为多遇地震下计算刚度取值的10.75倍。  相似文献   

3.
The important effects of bottom sediments on the seismic response of arch dams are studied in this paper. To do so, a three‐dimensional boundary element model is used. It includes the water reservoir as a compressible fluid, the dam and unbounded foundation rock as viscoelastic solids, and the bottom sediment as a two‐phase poroelastic domain with dynamic behaviour described by Biot's equations. Dynamic interaction among all those regions, local topography and travelling wave effects are taken into account. The results obtained show the important influence of sediment compressibility and permeability on the seismic response. The former is associated with a general change of the system response whereas the permeability has a significant influence on damping at resonance peaks. The analysis is carried out in the frequency domain considering time harmonic excitation due to P and S plane waves. The time‐domain results obtained by using the Fourier transform for a given earthquake accelerogram are also shown. The possibility of using simplified models to represent the bottom sediment effects is discussed in the paper. Two alternative models for porous sediment are tested. Simplified models are shown to be able to reproduce the effects of porous sediments except for very high permeability values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A numerical and experimental study on the sloshing behaviours of cylindrical and rectangular liquid tanks is addressed. A three‐dimensional boundary element method for space with the second‐order Taylor series expansion in time is established to simulate the sloshing phenomenon and its related physical quantities inside a liquid tank subjected to horizontal harmonic oscillations or recorded earthquake excitations. The small‐scale model experiments are carried out to verify some results of numerical methods in this study. The comparisons between numerical and experimental results show that the numerical method is reliable for both kinds of ground excitations. Finally, the water wave and the base shear force of a rectangular tank due to harmonic excitation are also presented at different frequencies. A huge cylindrical water tank subjected to a recorded earthquake excitation is used for application and discussion. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the applicability of global ductility in the conventional design procedure of structure–foundation systems under earthquake excitation. For a bilinear elastoplastic model, an equivalent ductility factor for the combined structure and foundation is derived, which can be used in conjunction with the enlarged period and increased damping due to soil–structure interaction (SSI) to determine the design strength. A geometric transformation rule for predicting the ductility demand developed in the structure alone from that experienced by the interacting system is also derived, without the need of computing the rigid-body motion of the foundation. To validate this practical approach for assessing both inelastic strengths as well as ductility demands, a number of numerical results for different system parameters and earthquake excitations are provided. The effects of principal parameters involved are also examined.  相似文献   

6.
Simple approximate expressions are derived for estimating equivalent modal parameters of a single soft-soil layer that has a straight line distribution of shear wave velocities and is on a flexible half space which is more rigid than the overlying soil layer. It is shown that radiation damping from the flexibility of the half space can be converted approximately into an equivalent material damping and that a site of a single soft-soil layer on a flexible half space can be replaced by an equivalent single layer, with the same shear wave velocity distribution, on a rigid bedrock. The implementation for modal analyses and non-linear analyses of the equivalent site under earthquake excitation is discussed.  相似文献   

7.
8.
The dynamic response of a rigid footing resting on an elastic tensionless Winkler foundation is examined. A parametric investigation, concerning the effect of the main parameters on the response, is performed for harmonic excitation. The parameters examined include the stiffness and the damping of the foundation, the excitation frequency and the superstructure characteristics and loads. The maximum rocking response, the minimum length of contact after uplift, the maximum stress developed at the soil and the factor of safety with respect to the bearing capacity of the soil are used to measure the effect of each dimensionless parameter. An example for earthquake excitation is also given for a plane frame. The results are compared to the ones of a simplified static approach based on the maximum values of the applied loads, similarly to the procedure that is usually applied in practice. The results show that the static approach can predict the response satisfactorily if resonance does not happen, if the stiffness of the foundation is not large compared to the stiffness of the superstructure and if the dynamic part of the axial force of the column is not large; in these cases, it may underestimate or overestimate the response significantly, depending on the sign of the dynamic axial force that is considered.  相似文献   

9.
An economical approach was developed to examine the effect of radiation damping on earthquake response of pilesupported offshore platforms. Parameteric studies were conducted to evaluate the effects of radiation damping on response. Various features of this effect were found for pile head stiffnesses, and responses of platforms subjected to harmonic and earthquake excitations.  相似文献   

10.
In recent papers the author has shown that when determining optimum parameters for an absorber which minimizes the vibration response of a complex system, the latter may be treated as an equivalent single degree-of-freedom system if its natural frequencies are well separated. Emphasis was on minimizing the displacement response when the excitation was a harmonic force. In the present paper simple expressions for optimum absorber parameters are derived for undamped one degree-of-freedom main systems for harmonic and white noise random excitations with force and frame acceleration as input and minimization of various response parameters. These expressions can be used to obtain optimum parameters for absorbers attached to complex systems provided that optimization is with respect to an absolute, rather than a relative, quantity. The requirement that the natural frequencies should be well separated is investigated numerically for the different cases. The effect of damping in the main system on optimum absorber parameters is investigated also.  相似文献   

11.
It is demonstrated that the addition of a tuned mass-spring-dashpot system with a relatively small mass and a high damping ratio can be an effective way to increase the inherent damping characteristics of buildings and reduce, thus, their response to earthquake excitations. The demonstration is based on a theoretical formulation and on numerical and experimental studies that confirm this formulation. In the theoretical formulation, it is shown first that, if certain conditions are satisfied, the damping ratios in two of the modes of the system that is formed by a building and an appendage in resonance are approximately equal to the average of the corresponding damping ratios of the building and the appendage. Based on this finding, it is then shown that an attached appendage with a high damping ratio and tuned to the fundamental frequency of a building may increase the damping ratio in the fundamental mode of the building to a value close to half the damping ratio of the appendage. In the numerical study, the response of a ten-storey shear building is analysed under two different earthquake ground motions with and without the proposed resonant appendages. Appendages with damping ratios of 20 and 30 per cent are considered. In this study, it is found that under one of the ground motions the maximum displacement of the building's roof is reduced 30 per cent with the appendage with 20 per cent damping and 39 per cent with the one with 30 per cent damping. Similarly, with these two appendages the building's base shear is reduced 31 and 41 per cent, respectively. In the experimental study, a wooden three-storey structural model is tested in a shaking table with and without an appendage designed and constructed to have a damping ratio of 53-5 per cent. The test is conducted under random and sinusoidal base excitations. In the shaking table test under random excitation, the attached appendage reduces the response of the model 38-6 per cent, while in that under sinusoidal vibration 45-2 per cent.  相似文献   

12.
A new method of stiffness‐damping simultaneous identification of building structures is proposed using limited earthquake records. It is shown that when horizontal accelerations are recorded at the floors just above and below a specific storey in a shear building model, the storey stiffness and the damping ratio can be identified uniquely. The viscous damping coefficient and the linear hysteretic damping ratio can also be identified simultaneously in a numerical model structure. The accuracy of the present identification method is investigated through the actual limited earthquake records in a base‐isolated building. It is further shown that an advanced identification technique for mechanical properties of a Maxwell‐type model can be developed by combining the present method with a perturbation technique. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Optimal mass ratios that minimize the response of a laminated beam with an attached absorber are tabulated for various values of beam damping. The beam is treated as an equivalent one degree of freedom (1DOF) main system vibrating in the fundamental mode. The beam is subjected to Gaussian white noise force and Gaussian white noise base frame acceleration. Optimal absorber frequency ratios and absorber damping ratios have been tabulated by others; the results for the classical 1DOF main system with attached absorber suggest that the optimized non-dimensional response decreases monotonically as the mass ratio increases. However, to generalize this monotonic relation may lead to inappropriate conclusions. If we define a constraint such that an increase in absorber mass leads to a proportional decrease in available beam construction material, i.e. effectively the combined mass of the beam and absorber is minimized, then variations in the mass ratio will affect the beam's parameters such as mass, stiffness and damping. Since some of these parameters are used for non-dimensionalising the response, inspection of non-dimensional responses may in some cases lead to inappropriate conclusions. This paper shows the optimal mass ratios for minimizing the response of a structure exposed to earthquake or fluid flow type random excitations.  相似文献   

14.
Equivalent viscous damping for steel concentrically braced frame structures   总被引:1,自引:1,他引:0  
The direct displacement based seismic design procedure utilises equivalent viscous damping expressions to represent the effect of energy dissipation of a structural system. Various expressions for the equivalent viscous damping of different structural systems are available in the literature, but the structural systems examined in the past have not included concentrically braced frame structures. Thus, this study describes the development of an equivalent viscous damping equation for concentrically braced frame structures based on the hysteretic response of 15 different single storey models. Initially, equivalent viscous damping is calculated based on the area based approach and then corrected for the earthquake excitation. An iterative procedure is adopted to calibrate the equivalent viscous damping expression to the results of inelastic time history analyses using a number of spectrum-compatible real accelerograms. From the results of this research, a new damping expression is developed as a function of the ductility and the non dimensional slenderness ratio.  相似文献   

15.
The response of buried pipelines to random excitation by earthquake forces is obtained using a lumped mass model. The earthquake is considered as a stationary random process characterized by a power spectral density function (PSDF). The cross spectral density function between two random inputs along the length of the pipe is defined with the help of the local earthquake PSDF which is the same for all points, and a frequency dependent exponentially decaying (with distance) function. Soil resistance to dynamic excitation along the pipelength is obtained in an approximate manner with the help of frequency independent impedance functions derived from half-space analysis and Mindlin's static stresses within the soil due to point loads. The proposed method has the advantage that it can take into consideration the cross terms in soil stiffness and damping matrices and can consider any boundary condition that needs to be satisfied at the ends of the pipe. A parametric study is also made to show the influence of cross terms in the soil stiffness and damping matrices on the response of the pipe.  相似文献   

16.
The effects of soil–structure interaction on the performance of a nonlinear seismic base isolation system for a simple elastic structure are examined. The steady-state response of the system to harmonic excitation is obtained by use of the equivalent linearization method. Simple analytical expressions for the deformation of the base isolation system and of the superstructure at resonance are obtained in terms of an effective replacement oscillator characterized by amplitude-dependent frequency, damping ratio, and excitation. Numerical results suggest that the seismic response of a structure resting on an inelastic base isolation system may be larger when the flexibility of the soil is considered than the corresponding response obtained by ignoring the effects of soil–structure interaction. It is shown that, in the undamped case and in the absence of soil–structure interaction effects, a critical harmonic excitation exists beyond which the steady-state resonant response of the isolators and structure become unbounded.  相似文献   

17.
A magnetorheological (MR) damper has been manufactured and tested and a non‐linear model is discussed. The parameters for the model are identified from an identification set of experimental data; these parameters are then used to reconstruct the force vs. displacement and the force vs. velocity hysteresis cycles of the MR damper for the hysteretic model. Then experiments are conducted on a three‐storey frame model using impact excitation, which identifies dynamic parameters of the model equipped with and without the MR damper. Natural frequencies, damping ratios and mode shapes, as well as structural properties, such as the mass, stiffness and damping matrices, are obtained. A semi‐active control method such as a variable structure controller is studied. Based on the ‘reaching law’ method, a feedback controller is presented. In order to evaluate the efficiency of the control system and the effect of earthquake ground motions, both numerical analysis and shaking table tests of the model, with and without the MR damper, have been carried out under three different ground motions: El Centro 1940, Taft 1952, and Ninghe 1976 (Tangshan Earthquake in Chinese). It is found from both the numerical analysis and the shaking table tests that the maximum accelerations and relative displacements for all floors are significantly reduced with the MR damper. A reasonable agreement between the results obtained from the numerical analysis and those from the shaking table tests is also observed. On the other hand, tests conducted at different earthquake excitations and various excitation levels demonstrate the ability of the MR damper to surpass the performance of a comparable passive system in a variety of situations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The predominant period and corresponding equivalent viscous damping ratio, also known in various loading codes as effective period and effective damping coefficient, are two important parameters employed in the seismic design of base‐isolated and conventional building structures. Accurate determination of these two parameters can reduce the uncertainty in the computation of lateral displacement demands and interstory drifts for a given seismic design spectrum. This paper estimates these two parameters from data sets recorded from a full‐scale five‐story reinforced concrete building subjected to seismic base excitations of various intensities in base‐isolated and fixed‐base configurations on the outdoor shake table at the University of California, San Diego. The scope of this paper includes all test motions in which the yielding of the reinforcement has not occurred and the response can still be considered ‘elastic’. The data sets are used with three system identification methods to determine the predominant period of response for each of the test configurations. One of the methods also determines the equivalent viscous damping ratio corresponding to the predominant period. It was found that the predominant period of the fixed‐base building lengthened from 0.52 to 1.30 s. This corresponded to a significant reduction in effective system stiffness to about 16% of the original stiffness. The paper then establishes a correlation between predominant period and peak ground velocity. Finally, the predominant periods and equivalent viscous damping ratios recommended by the ASCE 7‐10 loading standard are compared with those determined from the test building. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
The hydrological contribution to polar motion is a major challenge in explaining the observed geodetic residual of non-atmospheric and non-oceanic excitations since hydrological models have limited input of comprehensive global direct observations. Although global terrestrial water storage (TWS) estimated from the Gravity Recovery and Climate Experiment (GRACE) provides a new opportunity to study the hydrological excitation of polar motion, the GRACE gridded data are subject to the post-processing de-striping algorithm, spatial gridded mapping and filter smoothing effects as well as aliasing errors. In this paper, the hydrological contributions to polar motion are investigated and evaluated at seasonal and intra-seasonal time scales using the recovered degree-2 harmonic coefficients from all GRACE spherical harmonic coefficients and hydrological models data with the same filter smoothing and recovering methods, including the Global Land Data Assimilation Systems (GLDAS) model, Climate Prediction Center (CPC) model, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis products and European Center for Medium-Range Weather Forecasts (ECMWF) operational model (opECMWF). It is shown that GRACE is better in explaining the geodetic residual of non-atmospheric and non-oceanic polar motion excitations at the annual period, while the models give worse estimates with a larger phase shift or amplitude bias. At the semi-annual period, the GRACE estimates are also generally closer to the geodetic residual, but with some biases in phase or amplitude due mainly to some aliasing errors at near semi-annual period from geophysical models. For periods less than 1-year, the hydrological models and GRACE are generally worse in explaining the intraseasonal polar motion excitations.  相似文献   

20.
An array of 24 strong-motion accelerometers produced records for the New-Lian River Bridge, a five-span continuous bridge, during 25 February 1995 earthquake (weak motion) and 25 June 1995 earthquake (strong motion). This paper describes the application of linear discrete-time system identification methodology to the array of strong-motion measurements, in order to assess seismic response characteristics of the bridge. The structural system identification will concentrate not only on the global identification but also on the local structural system identification. Results of this application show that: (1) weak and strong ground excitation will induce significant differences on the dynamic response of the bridge; (2) linear models provide an excellent fit to the measured motions of the bridge from the records of these two seismic events; (3) the rigid-body rocking of the bridge pier during strong shaking is significant and cannot be ignored during identification; (4) the transverse motion at mid-span of the bridge is controlled by the quasi-static response from the boundary system and this phenomenon is quite significant during strong ground excitation. Also, systematic estimates of modal damping ratio and equivalent assessments of pier stiffness developed in the bridge during earthquake are discussed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号