首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bonäsheden, Sweden's largest continuous dune field, situated in the county of Dalarna, central Sweden, has been investigated using LiDAR (light detection and ranging) remote sensing, ground penetrating radar as well as by field observations and luminescence dating. The use of LiDAR in conjunction with geographic information system (GIS) software proved to be efficient in mapping the inactive dune field and classifying the dune morphology, especially when slope raster images were used. The dunes have formed mostly by winds from the northwest (NW) and are of a transverse type. Still other dune types, such as parabolic dunes, and transverse dunes with a deviating orientation are present. Also, there seems to be different generations of dunes, suggesting a complex palaeowind environment with a change from predominantly north‐westerly winds to more westerly winds. Luminescence dating finally allows us to have an absolute chronology of the development of the Bonäsheden dune field, revealing formation of the dune field closely following the de‐glaciation of this part of Sweden (c. 10.5 ka). The well preserved transverse shape of the majority of the dunes suggests rapid stabilization by vegetation, although sand drift still seems to have been active on a noticeable scale for at least 1500 years and also, occasionally and patchy, as coversand deposition during the Late Holocene. A simple model is proposed for the dune field development of Bonäsheden based on our findings. This model is a useful addition since the majority of present day dune field models focus on the formation of parabolic dunes or large unvegetated dune fields. Our results suggest that most models cannot adequately simulate the formation of such small dune fields as that of Bonäsheden, with apparently rapidly fixated transverse dunes in a previously glaciated, now vegetated area. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Changes in vegetation cover within dune fields can play a major role in how dune fields evolve. To better understand the linkage between dune field evolution and interdune vegetation changes, we modified Werner's (Geology, 23, 1995: 1107–1110) dune field evolution model to account for the stabilizing effects of vegetation. Model results indicate that changes in the density of interdune vegetation strongly influence subsequent trends in the height and area of eolian dunes. We applied the model to interpreting the recent evolution of Jockey's Ridge, North Carolina, where repeat LiDAR surveys and historical aerial photographs and maps provide an unusually detailed record of recent dune field evolution. In the absence of interdune vegetation, the model predicts that dunes at Jockey's Ridge evolve towards taller, more closely‐spaced, barchanoid dunes, with smaller dunes generally migrating faster than larger dunes. Conversely, the establishment of interdune vegetation causes dunes to evolve towards shorter, more widely‐spaced, parabolic forms. These results provide a basis for understanding the increase in dune height at Jockey's Ridge during the early part of the twentieth century, when interdune vegetation was sparse, followed by the decrease in dune height and establishment of parabolic forms from 1953‐present when interdune vegetation density increased. These results provide a conceptual model that may be applicable at other sites with increasing interdune vegetation cover, and they illustrate the power of using numerical modeling to model decadal variations in eolian dune field evolution. We also describe model results designed to test the relative efficacy of alternative strategies for mitigating dune migration and deflation. Installing sand‐trapping fences and/or promoting vegetation growth on the stoss sides of dunes are found to be the most effective strategies for limiting dune advance, but these strategies must be weighed against the desire of many park visitors to maintain the natural state of the dunes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A test of granulometric control of desert dune geometry   总被引:1,自引:0,他引:1  
I. G. Wilson's hypothesis of coarse-tail grain-size control of dune spacing was derived from three dunefields in the Sahara and, although it was supplemented by measurements of spacing from other parts of the world, the grain-size data come only from North Africa. In this paper the hypothesis is tested in the Australian dunefields. Australian dunes do not form separate categories on a P20/s (twentieth percentile/spacing) plot and, when placed on Wilson's diagram, the Australian data form a continuum between dunes and draas. Ripples maintain their identity, suggesting that the average saltation length of sand controls ripple wavelength while dunes and Wilson's draas are formed by secondary flow of some kind. In Australia the spread of data on the P20/s diagram indicates that grain-size is not the prime control on s. Data from Australia and the Sahara indicate that direct linear relationships between s and h (dune spacing and height means respectively for blocks of dunes) occur but they have different slopes in different areas. These differences possibly reflect variations in vegetation and substrate as well as differences in wind regime. The separation of dunes from draas in the Sahara reflects the greater role of grain-size in an area where coarse grains frequently occur in dune crests. The relative paucity of coarse grains in Australian dune crests may reflect the fine-grained alluvium from which the dunes are derived. These differences may be ascribed to differing topography in Australia and the Sahara.  相似文献   

4.
Transgressive dune fields often comprise a multiplicity of landforms where vegetation processes largely affect landform dynamics, which in turn, also affect vegetation processes. These associations have seldom been studied in detail. This paper examines four separate landform types in a complex coastal transgressive dunefield located in the central Gulf of Mexico, in order to assess the relationships between dunefield habitat, local environmental factors, vegetation associations and landform evolution. Topographic surveys using tape and clinometer were conducted in conjunction with vegetation survey transects at four locations across the Doña Juana dunefield. Vegetation surveys allowed the estimation of relative plant cover of each plant species found along the transects. A large variety of landforms were found at the Doña Juana Dunefield: deflation plains, gegenwalle (counter) ridges, transverse dune trailing ridges, blowouts and parabolic dunes, aklé (fish‐scale shaped) dunefields and precipitation ridges, with plant species associations developing on these different landforms equally variable. Flood tolerant species were located in the lower parts (deflation plain and gegenwalle ridges) whereas the older and dryer parts were covered by coastal matorral shrubs. Burial‐tolerant species were dominant in the most mobile areas (blowouts and aklé dunefield and margin). The dune trailing ridge, with relatively milder conditions, showed the highest richness, with no dominant species. A dual interaction was found such that colonizing species both create and affect topography, and in turn, topography determines vegetation association and succession patterns. In coastal dunes, the vegetation and abiotic environment (namely the different landforms and the inherent micronevironmental variability) interact tightly and generate a complex and highly dynamic biogeomorphic system where substrate mobility and colonization processes reinforce one another in positive feedback. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Sedimentological, compositional and geochemical determinations were carried out on 54 desert and coastal dune sand samples to study the provenance of desert and coastal dunes of the Altar Desert, Sonora, Mexico. Grain size distributions of the desert dune sands are influenced by the Colorado River Delta sediment supply and wind selectiveness. The desert dune sands are derived mainly from the quartz‐rich Colorado River Delta sediments and sedimentary lithics. The dune height does not exert a control over the grain size distributions of the desert dune sands. The quartz enrichment of the desert dune sands may be due to wind sorting, which concentrates more quartz grains, and to the aeolian activity, which has depleted the feldspar grains through subaerial collisions. The desert dune sands suffer from little chemical weathering and they are chemically homogeneous, with chemical alteration indices similar to those found in other deserts of the world. The desert sands have been more influenced by sedimentary and granitic sources. This is supported by the fact that Ba and Sr concentration values of the desert sands are within the range of the Ba and Sr concentration values of the Colorado River quartz‐rich sediments. The Sr values are also linked to the presence of Ca‐bearing minerals. The Zr values are linked to the sedimentary sources and heavy mineral content in the desert dunes. The Golfo de Santa Clara and Puerto Peñasco coastal dune sands are influenced by long shore drift, tidal and aeolian processes. Coarse grains are found on the flanks whereas fine grains are on the crest of the dunes. High tidal regimens, long shore drift and supply from Colorado Delta River sediments produce quartz‐rich sands on the beach that are subsequently transported into the coastal dunes. Outcrops of Quaternary sedimentary rocks and granitic sources increase the sedimentary and plutonic lithic content of the coastal dune sands. The chemical index of alteration (CIA) values for the desert and coastal dune sands indicate that both dune types are chemically homogeneous. The trace element values for the coastal dune sands are similar to those found for the desert dune sands. However, an increase in Sr content in the coastal dune sands may be due to more CaCO3 of biogenic origin as compared to the desert dune sands. Correlations between the studied parameters show that the dune sands are controlled by sedimentary sources (e.g. Colorado River Delta sediments), since heavy minerals are present in low percentages in the dune sands, probably due to little heavy mineral content from the source sediment; grain sizes in the dune sands are coarser than those in which heavy minerals are found and/or the wind speed might not exert a potential entrainment effect on the heavy mineral fractions to be transported into the dune. A cluster analysis shows that the El Pinacate group is significantly different from the rest of the dune sands in terms of the grain‐size parameters due to longer transport of the sands and the long distance from the source sediment, whereas the Puerto Peñasco coastal dune sands are different from the rest of the groups in terms of their geochemistry, probably caused by their high CaCO3 content and slight decrease in the CIA value. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The ASTER Global Digital Elevation Model (GDEM) has made elevation data at 30 m spatial resolution freely available, enabling reinvestigation of morphometric relationships derived from limited field data using much larger sample sizes. These data are used to analyse a range of morphometric relationships derived for dunes (between dune height, spacing, and equivalent sand thickness) in the Namib Sand Sea, which was chosen because there are a number of extant studies that could be used for comparison with the results. The relative accuracy of GDEM for capturing dune height and shape was tested against multiple individual ASTER DEM scenes and against field surveys, highlighting the smoothing of the dune crest and resultant underestimation of dune height, and the omission of the smallest dunes, because of the 30 m sampling of ASTER DEM products. It is demonstrated that morphometric relationships derived from GDEM data are broadly comparable with relationships derived by previous methods, across a range of different dune types. The data confirm patterns of dune height, spacing and equivalent sand thickness mapped previously in the Namib Sand Sea, but add new detail to these patterns. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Extensive coastal dune ?elds occur on the Quaternary strandplain associated with the São Francisco River mouth. Two different generations of dunes are identi?ed. One is inactive, already ?xed by vegetation, comprising parabolic dunes. The other generation is active, bordering the present‐day shoreline and transgressing over the inactive dune ?eld. Three morphological provinces in the active coastal dune ?elds are recognized. On the updrift side of the São Francisco River mouth, they are: (a) sand‐sheet with shrub coppice and shadow dunes; (b) isolated dunes of the barchan‐transversal type up to 5 m high, and interdune areas; and (c) a 23 m high compound dune, with superimposed small dunes. The same provinces are recognized on the downdrift side of the river mouth, with two important exceptions: the barchan‐transversal and compound dunes are replaced, respectively, by (i) zibar‐type dunes up to 5 m high, and (ii) a 19 m high precipitation dune, which is associated with numerous blowouts. The prevailing eastern winds from August to January favour the development of the aeolian bedforms and the migration of dunes. The shoreline orientation almost transversal to the winds and the great supply of ?ne‐grained sediments contribute to the formation of barchan‐transversal types and compound dunes in the updrift side. On the other hand, in the downdrift side the shoreline orientation is almost parallel to the prevailing winds. This fact, in association with a coarser grain size in the beachface, favours the formation of zibar‐type and precipitation dunes with numerous blowouts. The rate of migration of individual dunes is about 20 to 24 m per year. This study suggests that the aeolian sedimentation is a relatively recent phenomenon at the Quaternary strandplain of the São Francisco River. The ?rst generation of dune ?elds initiated some time after 3000 years BP and the second generation originated some centuries ago. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Transverse dunes appear in regions of mainly unidirectional wind and high sand availability. A dune model is extended to two‐dimensional calculation of the shear stress. It is applied to simulate dynamics and morphology of three‐dimensional transverse dunes. In the simulations they seem to reach translational invariance and do not stop growing. Hence, simulations of two‐dimensional dune ?elds have been performed. Characteristic laws were found for the time evolution of transverse dunes. Bagnold's law of the dune velocity is modi?ed and reproduced. The interaction between transverse dunes led to the interesting conclusion that small dunes can travel over bigger ones. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
As with most dune fields, the White Sands Dune Field in New Mexico forms in a wind regime that is not unimodal. In this study, crescentic dune shape change (deformation) with migration at White Sands was explored in a time series of five LiDAR‐derived digital elevation models (DEMs) and compared to a record of wind direction and speed during the same period. For the study period of June 2007 to June 2010, 244 sand‐transporting wind events occurred and define a dominant wind mode from the SW and lesser modes from the NNW and SSE. Based upon difference maps and tracing of dune brinklines, overall dune behavior consists of crest‐normal migration to the NE, but also along‐crest migration of dune sinuosity and stoss superimposed dunes to the SE. The SW winds are transverse to dune orientations and cause most forward migration. The NNW winds cause along‐crest migration of dune sinuosity and stoss bedforms, as well as SE migration of NE‐trending dune terminations. The SSE winds cause ephemeral dune deformation, especially crestal slipface reversals. The dunes deform with migration because of differences in dune‐segment size, and differences in the lee‐face deposition rate as a function of the incidence angle between the wind direction and the local brinkline orientation. Each wind event deforms dune shape, this new shape then serves as the boundary condition for the next wind event. Shared incidence‐angle control on dune deformation and lee‐face stratification types allows for an idealized model for White Sands dunes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.

The Tarim Desert Highway in Xinjiang, China, the longest one in the world, has a length of 562 km, about 80% of which runs across, from north to south, the Taklimakan Desert. Obviously, the main problem of the road maintenance is the blown sand disaster. The research results showed: (1) the physical environment along the desert highway is characterized by strong winds, fine and loose ground materials, different dunes and so on, which provides the dynamical condition and material source for the formation of blown sand disaster to the road and its shelter system. Meanwhile, the trend and cross-section of the road and the structure of the shelter system, as damage objects, play important roles in the formation process of blown sand disaster; (2) the blown sand disaster to the shelter system is original from the intrusion of the drift sands and mobile dunes outside the shelter system, and the wind erosion and sand deposit caused by the air stream changes on the ground in the shelter system. The main damage object in the Tarim Desert Highway is the shelter system presently. The damage forms include wind erosion, sand burying and dune covering; and (3) the damaged length of the blocking sand fences is 83.7%, 88.4%, 72.4%, 72.8% and 40.3% and the damaged area of the straw checkerboard belts is 73.1%, 58.2%, 44.5%, 35.4% and 36.6%, in turn, in 5 different landform units from north to south, and, the disasters to fences and the straw checkerboard belts are 79.5% and 57.6% in the compound dunes while they are 64.6% and 37.7% in the interdunes respectively.

  相似文献   

12.
The southwestern Kalahari linear dunefield, which displays marked morphological variability, possesses a partial but temporally and spatially variable vegetation cover and has frequently been described as a palaeodunefield. Palaeo status has been ascribed on the basis of several criteria including the presence of vegetation, but also because dunes are thought to be out of alignment with modern resultant potential sand-moving wind directions and because present-day wind energy is regarded as low. For the period 1960–1992, wind data from eight dunefield meteorological stations are analysed in detail to examine these assertions. Potential sand transport directions, including spatial and temporal variations, and potential drift directions for the windiest three month periods, are calculated and explained. It is concluded that the present-day potential sand transport environment is markedly variable from year to year and from place to place. While periods of low sand transport energy do occur, it is also noted that the 1980s possessed considerable potential for sand transport in the dunefield. Directional variability is also relatively high, perhaps exceeding that under which linear dunes can be expected to form. Because linear dune aeolian activity has a number of states, however, the present-day wind environment may allow dune surface aeolian activity to occur which does not alter the overall pattern of the dunes.  相似文献   

13.
The Gran Desierto Sand-Sea contains dunes of crescentic and star form in simple, compound, and complex varieties. The dunes have developed in bimodal to complex wind regimes of intermediate energy. Transitions from simple through compound to complex crescentic dunes are associated with regional changes in wind regimes. Growth of large star dunes takes place by merging of smaller crescentic and reversing dunes from southerly directions and reworking of sand by northerly and westerly winds. Although wind regimes appear to be the major control of dune morphology in this sand-sea, there is a close correlation between the spacing of simple crescentic dunes and the grain size of the coarse 20th percentile.  相似文献   

14.
Repeated surveying of two sites on a Namib linear dune between 1980 and 2001 provides a 21‐year record of dune surface change. The surveys con?rm the view that the dunes are not inactive relics but are responding to the present‐day wind regime. They also provide no evidence that the dunes are migrating laterally. Examination of wind data for the survey period provides some evidence that the form of the crest of the dunes is actively responding to the natural year‐by‐year climate variability, such that an increase in the frequency of easterly winds leads to the development of a double‐crested form while fewer easterly winds lead to a single‐crested form. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The Mars Global Digital Dune Database (MGD3) now extends from 90°N to 65°S. The recently released north polar portion (MC‐1) of MGD3 adds ~844 000 km2 of moderate‐ to large‐size dark dunes to the previously released equatorial portion (MC‐2 to MC‐29) of the database. The database, available in GIS‐ and tabular‐format in USGS Open‐File Reports, makes it possible to examine global dune distribution patterns and to compare dunes with other global data sets (e.g. atmospheric models). MGD3 can also be used by researchers to identify areas suitable for more focused studies. The utility of MGD3 is demonstrated through three example applications. First, the uneven geographic distribution of the dunes is discussed and described. Second, dune‐derived wind direction and its role as ground truth for atmospheric models is reviewed. Comparisons between dune‐derived winds and global and mesoscale atmospheric models suggest that local topography may have an important influence on dune‐forming winds. Third, the methods used here to estimate north polar dune volume are presented and these methods and estimates (1130 km3 to 3250 km3) are compared with those of previous researchers (1158 km3 to 15 000 km3). In the near future, MGD3 will be extended to include the south polar region. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

16.
This paper examines a seemingly anomalous situation in southern Brazil where the dunefields on Santa Catarina Island (e.g. Joaquina Beach) migrate to the NNW, almost completely the opposite direction (c. 160) to the dunefields immediately to the south (e.g. Pinheira Beach), and some much further to the north (e.g. Cabo Frio) which migrate to the SSW. A variety of mechanisms are examined to explain the differences in dunefield migration including grain size variations, topographic effects on local winds, shoreline orientation, and regional wind field changes. The mean grain sizes of the two beaches, Pinheira and Joaquina, are not sufficiently different to restrict aeolian sediment transport in either place, nor to account for a lack of transport from the NNE to the SSW in the case of Joaquina. Some topographic steering of the wind is likely but could not account for the long‐term average difference in migration trends of the island dunefields compared to the mainland dunefields. While the orientation of the shoreline to prevailing winds is an important control on beach and dune sediment transport, it is not the dominant controlling mechanism. An analysis of the regional wind patterns demonstrates that there is a major shift in the regional wind field near the island such that the dominant island winds blow from the SW/SSW while those further south blow from the NE. It is concluded that this is the predominant reason for the divergence in the direction of migration of the dunefields. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
There is little understanding of the flow-field surrounding semi-vegetated linear dunes, and predictions of dune mobility are hampered by a lack of empirical data concerning windflow. In an attempt to characterize the near-surface airflow upwind of and over partially vegetated linear dunes in the southwest Kalahari Desert, this study presents measurements of vertical and horizontal wind velocity profiles across cross-sectional transects of seven partially vegetated linear dunes. Vegetation surveys combined with velocity measurements from vertical arrays of cup-anemometers, placed up to 2·3 m above the ground surface, were used to gain information concerning the modification of airflow structure caused by the intrusion of the dunes into the atmospheric boundary layer and to predict the variability of aerodynamic roughness (z0) from interdune to crest. The results suggest an acceleration of flow up the windward slopes of the dunes and, as such, the data correspond to classical theory concerning flow over low hills (essentially Jackson and Hunt (1975) principles). Where the theory is incapable of explaining the airflow structure and acceleration characteristics, this is explained, in part, by the presence of a spatially variable vegetation cover over the dunes. The vegetation is important both in terms of the varying aerodynamic roughness (z0) and problems concerning the definition of a zero-plane displacement (d). It is considered that any attempts to characterize surface shear stress over the Kalahari linear dunes, in order to predict sand transport and dune mobility, will be hampered by two problems. These are the progressively non-log-linear nature of the velocity profiles over the dunes caused by flow acceleration, and the production of thin near-surface boundary layers caused by areally variable aerodynamic roughness as a result of the partially vegetated nature of the dunes.  相似文献   

18.
Within the greater Ar Rub' al Khali (Empty Quarter) sand sea lies an internal depocentre, the Al Liwa Basin, which comprises a variety of mega‐scale dune types. Crescentic dunes dominant the north of the basin while megadunes of stellate or star form are a major landform of the south‐eastern reaches. Their development into dune fields is determined by the style and rate of dune–dune interactions, the boundary conditions imposed by a multi‐modal wind regime, fluctuating groundwater levels, and sediment availability under an assortment of climatic conditions throughout the Quaternary. As a result, dune field patterns are a collective response to these perturbations in space, time and environment. The R‐statistic is a collective measure of these responses, and is a metric capable of identifying the degree of pattern maturity or self‐organization of the aeolian system, and the pathways from which patterns evolve. The spatial signature of the southerly located star dunes is characterized by two definitive patterns of organization: the first, one of complete spatial randomness, the second, a low degree of spatial uniformity. In isolation, these results appear to be unrelated to those for crescentic dunes of the region in which a significantly higher degree of pattern dispersion is the norm. However, when spatial statistical measures are integrated with the theoretical understanding of dune–dune interactions and the involvement of environmental agents, the complex morphodynamic pathways and linkages between regional dune fields is better understood. In this case, both constructive (e.g. merging, lateral linking) and regenerative activity (e.g. calving) have played important roles in the development of dune size, and associated adjustments in spacing, and dune numbers, and subsequently dune field patterns. Synergetic patterns are emblematic of this vast dunescape, whereby transitional geographic, morphologic, dimensional and environmental modifications exist between the mega‐crescentic and mega‐stellate dunes of the Empty Quarter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The geomorphology, lithology and chronostratigraphy of extensive, late Pleistocene inland and river dune sands, aeolian sand sheets (‘cover sands’) and loess deposits of periglacial origin in northwestern Europe are well known. However, the idea that some of these aeolian sediments result from niveo-aeolian processes is still an open question, as no diagnostic sedimentary features have yet been reported. Moreover, actual niveo-aeolian sediments and related denivation forms, reported from various cold-climate regions, are not suitable analogues. Recent observations in active dune fields in northwestern Alaska indicate that interstratification of wind-driven snow and sand preferentially occurs on slip faces of transverse, barchanoid or parabolic dune ridges. Annual denivation forms develop: e.g. snow ramparts, sinkholes, snow hummocks, snow meltwater fans and tensional cracks. The surface consists of a cracked wet sand layer with a dimpled surface and spongy structure. Although the preservation potential of these features is low in this specific case, similar features may be observed in ancient sediments elsewhere and provide useful palaeoclimatic indicators. The niveo-aeolian concept should therefore not specifically be related to late Pleistocene cover sand deposition in northwestern Europe, as previously assumed.  相似文献   

20.
Distribution‐free statistical methods of comparative data analysis have identi?ed subtle granulometric differences attributed to the evolution of barchan form at Gurra‐Gurra waterhole. Geomorphic locations on the barchan dunes display statistically signi?cant grain‐size differences that assist in the interpretation of aeolian processes. In summer, very ?ne sands mantle the dunescape and are the fraction that most affects the parameters of sorting and skewness. The sur?cial sedimentological character is one of subtle contrasts between the processes of grain winnowing and intergranular protection. The second and third moment measures are parameters that best demonstrate the spatial granulometric differences. Dune‐forming processes at Gurra‐Gurra have produced dune sands that have a very narrow range of grain size, which, in turn, re?ects textural and mineralogical maturity, and hence an extensive transport history. The statistical techniques employed in this study can also be used for the comparison of temporal (seasonal) sedimentological change, and for the granulometric analysis and association of process for dunes of different morpho‐types. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号