首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 71 毫秒
1.
2010年11月16日至12月17日在南京、常州、苏州三城市设置采样点,24 h采集大气PM2.5样品,并测定其水溶性无机离子和元素的浓度,在此基础上讨论PM2.5及无机组分的时空分布特征。结果表明,采样期间,PM2.5污染较严重,且苏州最重,常州次之,南京最轻,南京、苏州、常州日均浓度分别是国家二级标准(75 μg/m3)的1.44、2.32、1.53倍;三市PM2.5离子组分中,阴离子均以SO42-和NO3-为主,阳离子以Ca2+和Mg2+为主;苏州Na+和Cl-之间的相关性较高,其受到海盐输送影响较大;三城市PM2.5中Ca是最主要元素,Al次之。运用主成分法分析南京、常州和苏州PM2.5的来源可知,三城市PM2.5受多个污染源影响,包括生物质燃烧、地表扬尘、五金工业及汽车尾气排放等。  相似文献   

2.
2014年3月13日至4月20日在福建三明市利用PM2.5中流量采样器采集大气中PM2.5膜样品,测定了PM2.5的质量浓度,并用热/光碳分析仪和离子色谱分析了其组分变化特征.结果表明,三明市观测期间PM2.5的平均质量浓度为73.61±0.73 μg/m3,有机碳(OC)和元素碳(EC)的平均质量浓度分别为7.26±1.00和5.63±0.27 μg/m3,水溶性离子中SO42-、NH4+、NO3-和Na+的质量浓度分别为18.08±12.19、4.18±3.56、2.77±1.16和2.73±0.23 μg/m3,总和占总水溶性离子的87.76%.结合后向轨迹分析了福建三明市的污染物来源特征.该地区OC/EC的平均比值小于2,SOC(二次有机碳)生成量很少,主要以一次有机污染物为主,OC、EC与K+的相关性分析表明OC、EC与K+的来源相近,可以判断OC、EC绝大部分来源是生物质燃烧产生的污染物.在水溶性离子分析中,观测期间NO3-/SO42-为0.159±0.02,表明三明市主要以固定源为主,机动车辆等移动源贡献较少.  相似文献   

3.
对2015年3月至2018年2月共36个月荆门市PM2.5浓度值按月和季节作特征分析,利用HYSPLIT轨迹模型对污染最为严重的冬季进行后向48h气团轨迹模拟。结果表明:PM2.5月均浓度表现为1月最高,达到107μg/m3,7月最低,为30μg/m3,冬季平均值为92μg/m3,显著高于其它季节,并且冬季高浓度PM2.5主要与本地地面5—11m/s的偏北(N、NNE)大风伴随出现;气团轨迹分为西南、东北、西北三个路径,近地面传输的东北路径和高空传输的西南路径气团均引起PM2.5浓度升高,而西北路径气团整体上对污染物具有一定清除作用;东北路径方向的河南以及靠近荆门市的西北、西南向地区为48h的潜在源贡献大值区。在通过气象条件定性判断荆门未来的PM2.5浓度变化时,因东北路径近地面传输的特性,应关注上游潜在源区内地面站点PM2.5的浓度值;对于高空传输的西南路径,应关注高空水汽的输送情况,以及轨迹高度下降地区即水汽的沉降区是否在潜在源区;西北路径为干冷空气的高空传输,在较接近荆门时轨迹高度才开始明显下降,应关注西北方向近距离潜在源区的地面站点PM2.5的浓度值。  相似文献   

4.
为了监测北京奥运主场馆附近大气颗粒物的污染状况以及评估奥运污染源减排措施对北京大气颗粒物质量浓度变化的影响,利用颗粒物在线监测仪器TEOM于2007年和2008年夏季,在奥运主场馆附近的中国科学院遥感应用研究所办公楼楼顶对大气颗粒物PM10和PM2.5进行了连续同步观测。结果表明,2007年夏季监测点附近大气PM10与PM2.5质量浓度的平均值分别为153.9和71.2μg·m-3,而2008年夏季PM10与PM2.5质量浓度的平均值分别为85.2和52.8μg·m-3。与奥运前一年同时段相比,奥运时段大气PM10和PM2.5的质量浓度分别下降44.5%和25.1%。对比分析奥运前后的2次典型污染过程发现,空气相对湿度的增加和偏南气流输送的共同影响易造成大气颗粒物的累积增长,而降雨的湿清除作用和偏北气流则会使大气颗粒物浓度迅速降低。在相近的气象条件下,奥运前后的污染过程中,大气细粒子的日均增长速率分别为25.1和13.9μg·m-3·d-1,而大气粗粒子的日均增长速率分别为20.8和2.2μg·m-3·d-1,奥运时段污染累积过程中大气粗、细粒子的增长速率分别显著低于和略低于奥运前同时段污染过程中颗粒物的增长速率。污染源减排措施的实施是奥运期间大气颗粒物质量浓度降低的主要原因,从控制效果来看,奥运期间实施的污染源减排措施对大气粗粒子的控制效果明显好于大气细粒子。  相似文献   

5.
蔡敏  严明良  包云轩 《气象科学》2018,38(5):648-658
为了探明PM_(2.5)中水溶性无机离子的来源和气象因子对其浓度变化的影响,利用2012年2、5、8和11月苏州市PM_(2.5)中水溶性无机离子浓度和本站气象观测数据,分析了苏州市水溶性无机离子的时间变化特征,解析了当地PM_(2.5)中水溶性无机离子的主要来源,探讨了气象因素对离子组分的影响。结果表明:(1)苏州市PM_(2.5)中水溶性无机离子年均浓度大小依次为:SO_4~(2-)NO_3~-NH_4~+Na~+Cl~-K~+Ca~(2+)Mg~(2+)F~-;SO_4~(2-)、NH_4~+和NO_3~-为PM_(2.5)中最重要的3种水溶性无机离子物种,其总和占PM_(2.5)总质量浓度的50.9%。各离子的季节浓度特征均为冬季最高、夏季最低。(2)通过运用主成分分析法对苏州市PM_(2.5)中水溶性无机离子进行来源分类解析,发现第一类为二次污染源和生物质燃烧,其贡献率为32.84;第二类为道路扬尘及工业排放,其贡献率为19.99%;第三类为海盐污染,其贡献率为18.43%。(3)通过水溶性无机离子与气象条件的相关性分析发现,风向、风速和温度与水溶性无机离子浓度的相关性较显著,这三者是颗粒物浓度变化的主要影响因子。(4)利用HYSPLIT后向轨迹模式对外来污染物进入苏州市的轨迹进行聚类分析后发现:因受季风气候影响,苏州市外来污染物的输入路径存在明显的季节性变化特征,其中夏半年输送主径源自海上,冬半年主径源自内陆。  相似文献   

6.
长三角4个省会(直辖市)城市(上海、南京、合肥、杭州)中,合肥与南京的PM2.5浓度演变有较高的一致性。应用聚类分析的方法对2013-2015年合肥非降水日(日降水量低于10 mm)100 m高度(代表近地层)和1000 m高度(代表边界层中上部)的72 h后向轨迹进行分类,结合合肥2013-2015年PM2.5日均浓度资料,探讨近地层和边界层中上部输送轨迹与长三角西部PM2.5浓度的关系。近地层和边界层中上部分别得到7组和6组不同的后向轨迹;不同输送轨迹对应的PM2.5浓度、重污染(重度以上污染,PM2.5日均浓度大于150 μg/m3)天数、能见度、地面风速、相对湿度等都有显著不同,尤其是在近地层。100 m高度,平均长度最短、来向偏东的轨迹组对应的PM2.5浓度均值最高(约是组内均值最低值的2倍)、重污染天数最多,且占比最高(30%),重污染日对应的气流在过去72 h下降高度均值仅28 m,明显低于其他PM2.5污染等级日;来向偏西北、长度较短的轨迹组,PM2.5浓度均值和重污染天数为第2高,这一类轨迹占比14%,气流到达本地前存在明显的下沉运动,反映了远距离输送加剧本地PM2.5重污染的特征。这两类轨迹常对应PM2.5日均浓度的上升。PM2.5平均浓度最低的2个轨迹组分别是来自东北和西南的较长轨迹组,所占比例分别为6.4%和10.3%,这2类轨迹往往对应着PM2.5日均浓度下降。1000 m高度的结果与100 m高度结果类似,但PM2.5平均浓度的组间差异不及100 m高度,与2001-2005年PM10浓度与输送轨迹的关系不同。对3 a中84个重污染日两个高度的后向轨迹进行聚类,近地层和边界层中上部各得到7类和6类PM2.5重污染日的天气形势。近地层92%的重污染日对应的海平面气压形势场上,从华北到华东属于均压区,气压梯度小,轨迹来向以偏东到偏北方向为主,垂直方向延伸高度在950 hPa以下。1000 m高度,77%的重污染日属于相对较短的轨迹组,对应的850 hPa高度场特征为从中国西北(新疆)到东南受高压控制,长三角或位于高压底部,或位于两高压之间的均压区。这对PM2.5浓度预报有较好的指示意义。  相似文献   

7.
为了解成都市PM2.5污染特征及其与地面气象要素的关系,利用环境空气质量监测资料和地面气象观测资料,分析了PM2.5质量浓度的季节、月和日变化特征,并分不同空气质量等级分析空气质量与地面气象要素的关系。结果表明:PM2.5质量浓度具有明显的季节、月和日变化特征,且成都市区6个监测站的变化趋势比较一致;成都市相对湿度较大,地面风速较小,约62%的样本分布在相对湿度80%~100%,约85%的样本分布在地面风速0~2 m·s-1,地面风速对成都市PM2.5的水平输送、扩散、稀释不利;降水对PM2.5的清除量随PM2.5初始浓度、降雨持续时间和累积降雨量增加而增大。  相似文献   

8.
南京市城市不同功能区PM10和PM2.1质量浓度的季节变化特征   总被引:1,自引:0,他引:1  
使用Anderson-Ⅱ型9级撞击采样器测量了南京市鼓楼商业区、江北工业区、钟山风景区和宁六高速公路交通源春、夏、秋三季的大气气溶胶质量浓度。分析结果表明:南京市PM2.1和PM10的质量浓度存在明显的季节变化,秋季>春季>夏季;ρPM10春季为167.47 μg/m3,夏季为 85.99 μg/m3,秋季为238.99 μg/m3;ρPM2.1春季为59.66 μg/m3,夏季为42.80 μg/m3,秋季为100.15 μg/m3。不同季节中ρPM10ρPM2.1均存在较好的相关性,夏季相关性最好,相关系数为0.952;秋季次之,相关系数为0.783;春季相对较差,相关系数为0.613。城市不同功能区之间ρPM2.1ρPM10的质量浓度值差异很大,交通源>工业区>商业区>风景区。城市不同功能区的质量浓度谱分布基本一致,均为双峰型分布,峰值分别位于0.43~0.65 μm/m3和9.0~10.0 μm/m3。南京市春、夏、秋三个季节大气粒子质量浓度谱为双峰分布,粒子主要集中在0.43~3.3 μm/m3的粒径段。江北工业区ρPM10ρPM2.1质量浓度的相关系数为0.814,略高于鼓楼商业区的0.797。  相似文献   

9.
依据一种基于建筑用地比例和土地利用信息熵的城乡站点划分方法,将西安市环境与气象站点划分为城区、郊区和两类乡村站,讨论其PM2.5的城乡分布特征及与城市热岛效应强度(Urban Heat Island Intensity,UHII)间的相关关系。结果表明,不同季节西安市呈现不同的PM2.5城乡分布特征和日变化特征,两类乡村站点PM2.5差异明显且下风向乡村站点(乡村D)对应的UHIID对城区和乡村的影响程度大于上风向乡村站点(乡村U)对应的UHIIU。在城区较多本地排放的影响下,乡村PM2.5浓度与 UHIIU(或UHIID)相关系数均大于城区。随着UHIID的增加,城乡PM2.5相对浓度差值(RUPIID)整体呈下降趋势且UHIID与RUPIID在春夏秋季显著负相关。UHIID增大,城区近地面PM2.5的水平扩散能力减弱,但PM2.5的垂直扩散能力较乡村更强,从而UHIID通过影响PM2.5的传输扩散特征,进一步影响西安市RUPIID。  相似文献   

10.
使用Anderson-Ⅱ型9级撞击采样器测量了南京市鼓楼商业区、江北工业区、钟山风景区和宁六高速公路交通源春、夏、秋三季的大气气溶胶质量浓度。分析结果表明:南京市PM2.1和PM10的质量浓度存在明显的季节变化,秋季>春季>夏季;ρPM10春季为167.47 μg/m3,夏季为 85.99 μg/m3,秋季为238.99 μg/m3;ρPM2.1春季为59.66 μg/m3,夏季为42.80 μg/m3,秋季为100.15 μg/m3。不同季节中ρPM10ρPM2.1均存在较好的相关性,夏季相关性最好,相关系数为0.952;秋季次之,相关系数为0.783;春季相对较差,相关系数为0.613。城市不同功能区之间ρPM2.1ρPM10的质量浓度值差异很大,交通源>工业区>商业区>风景区。城市不同功能区的质量浓度谱分布基本一致,均为双峰型分布,峰值分别位于0.43~0.65 μm/m3和9.0~10.0 μm/m3。南京市春、夏、秋三个季节大气粒子质量浓度谱为双峰分布,粒子主要集中在0.43~3.3 μm/m3的粒径段。江北工业区ρPM10ρPM2.1质量浓度的相关系数为0.814,略高于鼓楼商业区的0.797。  相似文献   

11.
O_3和PM_(2.5)是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O_3和PM_(2.5)浓度的时空分布特征及其影响因素。结果表明:长三角地区O_3年平均浓度为50~73μg·m~(-3),平均为61μg·m~(-3);除芜湖和宣城外,其余31城市均存在不同程度的超标状况,超标率为0.34%~18.86%,平均为5.68%。O_3在5月和9月达到浓度高值;四季O_3日变化均呈单峰型,峰值出现在15∶00,夏季O_3峰值浓度最高值为157μg·m~(-3)。O_3浓度沿海城市整体高于内陆城市;夏季宿迁—淮安—滁州片区O_3污染较重。O_3与NO_2、CO显著负相关,且与NO_2相关性较强;O_3与气温、日照时数显著正相关,与相对湿度、降水呈负相关。PM_(2.5)年平均浓度在25~62μg·m~(-3)范围内,平均为49μg·m~(-3);各城市均出现PM_(2.5)超标,滁州PM_(2.5)超标率最大,为23.91%。PM_(2.5)在3月和12、1月达到浓度峰值;其日变化呈双峰型,09∶00—10∶00和22∶00—23∶00达到峰值。冬季徐州PM_(2.5)浓度最高,为102μg·m~(-3)。PM_(2.5)与NO_2、CO、SO_2、PM_(10)显著正相关,与气温、风速、降水负相关。  相似文献   

12.
京津冀位于华北平原腹地,面临着严重的空气污染问题,尤其是河北省的重点工业城市唐山,长期位于全国空气质量最差的前十名。为改善空气质量,过去的十多年间我国颁布实施了多项污染防治计划,但唐山的PM2.5和夏季O3浓度仍超国家标准。为此,使用WRF(Weather Research and Forecasting Model)-CMAQ(Community Multiscale Air Quality Model)模型量化了唐山市2020年PM2.5和O3浓度的行业贡献并分析其协同控制可行性。工业源对唐山市PM2.5浓度贡献最大,约占45%,其次是居民源约占16%。冬季能源、居民源和农业源占比为全年最高,分别达17%、19%和11%。O3浓度的背景值约占一半以上,4月占比最高。在非背景值中,唐山O3浓度最大来源为工业源,约占53%,其次是交通源,约占22%。生物源、交通源和能源行业的贡献在7月有所上升,分别约10%、27%和20%。不同污染情...  相似文献   

13.
自2014年以来,中国细颗粒物(PM2.5)浓度大幅度下降,但臭氧(O3)浓度逐年缓慢上升,厘清PM2.5和O3(P-O)相关性尤为关键.在本研究中,2014—2019年北京和南京PM2.5年均质量浓度下降幅度分别为-6.86和-6.15 μg·m-3·a-1;而日最大8小时平均O3质量浓度(MDA8 O3)年均增长幅度为1.50和1.75 μg·m-3·a-1.研究期间,北京地区MDA8 O3质量浓度小于100 μg·m-3,P-O呈负相关;而当质量浓度大于100 μg·m-3时,P-O为正相关.通过Pearson相关系数研究P-O两者相关性.在两个城市每月相关性分析中,在每日时间尺度5—9月为强的正相关;而小时时间尺度11月至次年2月趋于负相关.在北京,P-O每月和季节相关性变化大于南京.在日变化中,夏季在16时为强的正相关,春秋两季在13—17时为弱的正相关,而在春、秋和冬季8时,却为强的负相关.  相似文献   

14.
综合利用中国环境监测网公布的合肥市2013-2015年大气污染物浓度数据和合肥市气象站的常规气象资料,以及激光雷达探测资料、公益性行业(气象)专项(GYHY201206011)获得的气溶胶离子成分分析结果,分析了合肥市PM2.5重污染(日均浓度>150 μg/m3)特征。结果表明:(1)2013-2015年,合肥市PM2.5浓度和重污染天数空间分布差异明显,东北部多、西南部少,1月各站差异最大。除了低浓度日(日均浓度≤35 μg/m3),PM2.5浓度都存在明显的日变化,午后低、早晚高,且随着污染程度加重,早上峰值出现时间推后。(2)重污染日臭氧以外的气态污染物浓度都显著上升。(3)重污染日常伴随着霾和轻雾天气,以稳定、小风天气为主,重污染日白天相对湿度偏高、风速偏小,600 m以下的消光系数显著增大且峰值高度降低。(4)重污染日PM2.5中水溶性无机离子含量增高,其中NO3-含量的占比增加最多,超过了SO42-的占比。   相似文献   

15.
合肥市PM_(2.5)对城市辐射和气温的影响   总被引:2,自引:0,他引:2  
本文利用2013年2月—2014年3月安徽省合肥市地面总辐射(即向下短波辐射)、气温、地面温度、相对湿度等气象资料和PM_(2.5)浓度资料,分析了合肥地区PM_(2.5)和地面总辐射、地温和气温的关系,研究发现:(1)PM_(2.5)浓度是影响总辐射的重要人为因子,在中午无云条件下,地面总辐射与PM_(2.5)的浓度呈现较强的负相关关系,相关系数为-0.62。归一化地面总辐射和PM_(2.5)的相关系数为-0.76,在早晨和傍晚的相关系数较小。平均而言,白天无云时PM_(2.5)浓度每增加1μg·m-3,地面总辐射下降0.92 W·m-2。(2)在白天无云时,气温、地面温度和PM_(2.5)浓度有明显负相关关系,PM_(2.5)浓度对地面温度的影响远大于对气温的影响,在夏季的影响高于其它季节。气温、地温和PM_(2.5)浓度的线性拟合直线的平均斜率分别为-0.022和-0.12,相当于PM_(2.5)浓度增加10μg·m-3,地温和气温分别平均下降0.22℃和1.2℃。(3)在天气尺度上,PM_(2.5)浓度对总辐射、气温和地面温度有非常明显的影响,在2013年9月清洁个例和2013年12月的污染个例中,PM_(2.5)浓度每增加1μg·m-3,将引起总辐射下降1.8 W·m-2和0.5 W·m-2,地温下降0.11℃和0.02℃,气温下降0.03℃和0.01℃,因此在天气预报过程中也需要考虑空气污染状况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号