共查询到18条相似文献,搜索用时 62 毫秒
1.
全球山地冰冻圈变化、影响与适应 总被引:1,自引:0,他引:1
冰冻圈是高山地区不可或缺的重要组成部分,居住着全球约10%的人口。近几十年来,冰冻圈变化对山区和周围地区的自然和人类系统产生了广泛而深远的影响,对海洋也发挥着重要作用。IPCC最新发布的《气候变化中的海洋和冰冻圈特别报告》(SROCC)指出,过去几十年全球高山区气温显著升高,使山地冰冻圈发生了大范围显著退缩。观测到的山地(特别是低海拔山区)积雪期缩短、雪深和积雪覆盖范围减小;冰川物质持续亏损,其中全球最大的冰川负物质平衡出现在南安第斯山、高加索山和欧洲中部,亚洲高山区冰川负物质平衡最小;多年冻土温度升高、厚度减薄,地下冰储量减少;河、湖冰持续时间缩短。随着气候持续变暖,山地冰冻圈在21世纪仍将呈继续退缩状态。到21世纪末,低海拔山区积雪深度和积雪期将减少,冰川物质损失继续增加,多年冻土持续退化。冰冻圈变化已经或将改变山地灾害发生频率和强度,并对水资源、生态系统和经济社会系统产生重要影响。应对山地冰冻圈变化应从管理和优化利用冰冻圈资源、加强冰冻圈变化灾害风险的有效治理、增强国际合作及公约制定等适应策略着手开展,增强适应能力,从而有益于推动山地生态系统和经济社会系统可持续发展。 相似文献
2.
极地海冰变化对气候的影响 总被引:4,自引:2,他引:4
本文为“极地海冰变化对气候的影响”专题研究工作的简单小结。本工作从资料分析特别是从数值试验研究了极地海冰广度异常的气候效应,着重揭示了极地海冰异常对大气环流和气候的影响是全球性的,它可激发出全球大气异常遥相关型波形,表现出具有与赤道太平洋海温异常同样生命的作用;讨论了极地海冰异常对大气环流影响的机制以及极地海冰变化特征和物理过程。 相似文献
3.
4.
解读政府间气候变化专门委员会(IPCC)第六次评估报告(AR6)粮食系统的影响与适应,对科学认识国际气候变化对农业影响学科前沿动态具有重要意义。最新发布的IPCC AR6在深化阐述粮食生产能力、种植布局、病虫害影响的基础上,高度确信人类活动导致的气候变暖对粮食系统产生了负面影响,论述了粮食运输及消费中的气候风险,解析了粮食生产-存储-运输-消费的全链条气候变化影响,延展了影响评估归因内容并丰富了农业环境影响等相关科学认识。对于粮食系统的适应能力,强调适应及减缓协同发展的气候恢复力发展路径,适应评估从适应能力、适应方式等理论逐步转向适应实施行动和成效评估,并注重适应行动的区域特异性和有效性。本次评估强调了气候变化对作物影响的检测和归因、关注了气候和农业环境变化复合影响、倡导基于生态系统的适应方案和技术,评估了现有适应技术的可行性和成效。报告内容对中国强化农业影响评估能力及把握国际学科动态具有参考价值。 相似文献
5.
6.
应用1951—1986年北半球海平面气压资料定义了冬季季风高压,并就季风高压与极地热状况的关系及其对东亚气温的影响进行分析。结果发现:前期秋季北极海冰及春季(3—4月)极区上空大气温度与季风高压关系密切。季风高压强弱变化对我国冬季气温具有显著影响,对苏联远东南部地区及日本等地的气温趋势也具有一定的影响作用。 相似文献
7.
利用NCEP/NCAR 10 hPa月平均高度场资料, 计算了1948_2007年南半球10 hPa极地涡旋的强度指数P、 面积指数S和中心位置指数(λc, φc)。用它们分析了南半球10 hPa极地涡旋的季节变化、 年际异常及其可能成因, 分析了10 hPa极地涡旋强度与南极涛动的关系。结果表明: (1) 南半球10 hPa极区12月~1月受反气旋控制, 3~10月受气旋控制, 2月、 11月为环流转换季节。(2) 1(7)月反气旋(气旋)指数P, S均在1970年代后期发生了显著的跃变; 跃变前反气旋(气旋)由极弱(极强)振荡地增强(减弱)至接近气候均值, 跃变后反气旋由极强振荡趋于气候均值, 气旋在偏弱的状态下振荡。(3) 1月反气旋中心位置存在显著的年代际变化, 而7月气旋中心位置的年际变化明显。(4) 臭氧异常可引起南半球10 hPa 1月极地反气旋年际异常(正相关), 但与7月极地气旋异常无关。(5) 1月、 7月极地涡旋强度指数P与南极涛动指数(AAOI)呈显著的负相关, 可由P来表征AAOI。 相似文献
8.
NOx在雪-气之间的交换能够影响到极地大气边界层的大气成分和大气化学过程,增强极地大气边界层的氧化性,并可能影响对冰雪大气成分记录的解释。近年来,人们认识到冰雪在光照下释放NOx是极地大气边界层NOx的一个重要来源。从以下几方面对大气边界层NOx的冰雪来源进行综述:NOx冰雪来源的观测和实验证据、冰雪释放NOx的机制和影响参数、极地NOx浓度和通量以及极地冰雪NOx化学过程对环境的影响。近年来,笔者已在处于北半球中纬度的青藏高原观测到冰雪表面光照下释放出比极地高1个量级浓度水平的NOx,因此需更深入的科学研究揭示其对青藏高原大气氧化性的影响。 相似文献
9.
利用NCEP/NCAR再分析值10 hPa月平均高度场资料定义和计算了1948-2007年北半球10 hPa极地涡旋的强度指数(P)、 面积指数(S)和中心位置指数(λc, φc)。用它们分析了北半球10 hPa极地涡旋的季节变化和年际异常规律, 研究了它们与全球增暖、 臭氧(O3)异常和极地涛动(AO)的关系。结果表明: (1)北半球10 hPa层高纬6~8月为反气旋(A)控制; 9月~3月为气旋(C)控制。春季环流转型(C→A)缓慢; 秋季转型(A→C)迅速。(2)P、 S异常的年际变化具有同步性, 故异常分析仅取P进行。隆冬(1月)P的异常主要表现为年际尺度(10年以下周期)振荡, 不存在明显的年代际变化; 盛夏(7月)极地反气旋强度年代际变化显著。(3)隆冬极地气旋中心位置的异常明显大于盛夏反气旋。(4)极区中平流层平均气温的演变1、 7月迥异, 但它们与P的演变同步; 与全球增暖趋势无显著相关, 但7月P与O3异常有显著正相关。(5)隆冬(1月)10 hPa气旋强度指数P与极地涛动指数AO存在显著正相关, 故可用10 hPa ′表示AO。 相似文献
10.
江西大雪天气的时空变化及其影响系统分析 总被引:3,自引:0,他引:3
利用NCEP2.5°×2.5°再分析资料和常规观测资料,对1980—2008年江西省50次区域性大雪过程的时空变化及其影响系统进行归纳分析,得出:江西省大雪发生频次具有5年左右振荡周期,20世纪90年代以前发生大雪次数较多,变化幅度大,20世纪90年代以后年际变化减小。空间分布上,自西北向东南出现大雪的频次逐渐减少。大雪期间,阻塞高压、中低纬锋区异常强盛;80%的大雪天气存在阻塞高压,以贝加尔湖阻塞高压最多;70%受南支槽影响;700 hPa切变线是对流层中低层的主要影响系统,其南侧西南急流最大风速达16 m·s~(-1)以上,雪区位于冷式切变线以南1~3个纬距内,或暧式切变附近;当850 hPa和700 hPa同时存在切变线时,降雪天气更加明显;对流层中低层有98%的大雪天气存在逆温:1000 hPa温度1 C,925~850 hPa温度≤-2℃,700 hPa温度≤0℃;地面冷空气多为中路,蒙古冷高压异常强大。 相似文献
11.
在气候系统五大圈层中,冰冻圈对气候变化高度敏感,近几十年来气候变暖已引起全球冰川、冻土、积雪和海冰等冰冻圈要素加速退缩,进而对区域水资源、生态环境、社会经济发展和人类福祉产生了深远影响。2018年10月,IPCC在韩国仁川公布了《全球1.5℃增暖特别报告》(SR1.5)。报告较系统地呈现了关于全球1.5℃温升目标的基本科学认知,并探讨了可持续发展及消除贫困目标下加强全球响应的路径。在冰冻圈相关内容方面,报告呈现了有关全球1.5℃和2℃温升下冰冻圈(主要是海冰和多年冻土)变化及其对大气圈、水圈、生物圈、岩石圈和人类圈影响的一些亮点结论,还关注了全球1.5℃和2℃温升下冰冻圈相关的气候变化热点(区)和地球系统临界因素。报告指出,随着温度不断升高,冰冻圈及其相关要素和热点(区)面临的风险将不断增加,但将全球温升控制在1.5℃而不是2℃或更高时的风险将大大降低。 相似文献
12.
2019年9月,IPCC正式发布《气候变化中的海洋和冰冻圈特别报告》(SROCC),这是IPCC首次以高山地区与极区冰冻圈和海洋为主题的评估报告。报告全面评估气候变化背景下海洋和冰冻圈变化及其广泛影响与风险,其核心结论包括:气候系统变暖背景下高山地区和极区的冰冻圈普遍退缩,未来冰冻圈将继续消融,高山地区和极区将面临更高的灾害风险;20世纪70年代以来全球海洋持续增暖,未来海洋将继续变暖、加速酸化,影响海洋生物多样性并危及海洋生态系统服务功能和人类社会;近几十年全球平均海平面加速上升,未来数百年海平面仍将持续上升,极端海面事件频发将加剧沿海地区社会-生态系统的灾害风险。报告强调,采取及时、积极、协调和持久的适应与减缓行动,是有效应对海洋和冰冻圈变化,实现气候恢复力发展路径和可持续发展目标的关键所在。本研究认为,需要高度重视海洋和冰冻圈在气候系统变化中的长期和不可逆影响,强化应对气候变化紧迫性认识;高度重视我国冰冻圈和沿海地区面临的气候风险,强化适应能力建设;推动我国牵头的国际大科学计划,强化跨学科、跨领域协同创新,持续提升我国在相关领域的国际影响力和科技支撑能力。 相似文献
13.
IPCC AR6 WGII评估了气候变化对城市、住区和关键基础设施的影响、风险及应对。气候变化对城市影响的程度和范围逐渐增加,全球城市化的过程与气候变化相互作用加剧了城市和住区的风险。通过社会基础设施、基于自然的解决方案和灰色/工程基础设施所采取的适应措施对气候恢复力发展均有贡献,而城市适应差距在世界各地普遍存在。气候恢复力发展需要多方协作、弥合政策行动差距、提升适应能力。评估报告的经验和案例为我国城乡地区适应和应对气候变化风险提供借鉴。 相似文献
14.
适应举措对降低人类和生态系统的气候变化风险有着积极的影响。IPCC第六次评估报告(AR6)第二工作组(WGII)报告全面评估了适应的可行性和有效性,深入评估了适应局限性和不良适应。报告认为,个人、地方、区域和国家各级的适应行动都在增加,但是在做决策时需考虑不良适应的风险。报告从经济、技术、制度、社会、环境和地球物理这6个维度,对23个适应措施的可行性进行了评估;这些适应措施分布在陆地、海洋与生态系统,城乡与基础设施系统,能源系统以及跨部门等四大系统,其中,基于森林的适应、具有恢复力的电力系统、能源可靠性等适应措施具有高信度的高可行性。适应措施的可行性和有效性会随着气候变暖的增加而降低,需要采用多种措施来降低未来气候变化风险。 相似文献
15.
2021年8月9日,IPCC发布了第六次评估报告(AR6)第一工作组报告,报告第三章“人类活动对气候系统的影响”定量评估了人类活动对气候系统的影响程度以及气候模式对观测到的平均气候、气候变化和气候变率的模拟性能。报告基于气候系统的多个圈层变量的综合评估明确指出,毋庸置疑的是,自工业化以来人为影响已经使大气、海洋和陆地升温;支撑本次评估的国际耦合模式比较计划第六阶段(CMIP6)气候模式模拟的大多数大尺度气候指标的近期平均气候,相比前一次评估报告(AR5)中的CMIP5模式结果有所改进。报告在更广泛的领域和区域提供了更多证据表明气候系统中的人类活动影响,但受制于观测、模式与过程认知的不足,在大气、海洋、冰冻圈、生物圈及气候变率模态的多个指标变化中人为影响的贡献方面仍然存在不确定性甚至缺少研究。 相似文献
16.
文中对IPCC第六次评估报告第二工作组报告关于观测和预估的气候变化影响与风险方面的主要结论进行了解读。报告表明,气候变化已经对自然和人类系统造成了广泛的不利影响,尤其是气候变化下的复合风险和极端事件呈现日益加剧和频繁的趋势。目前,不同地区和部门的关键风险已多达127种,且随着气候变暖以及生态社会脆弱性的加剧,将对人类和生态系统造成更加普遍和不可逆的影响。相对第五次评估报告,本报告进一步扩展了风险的内涵,归纳了8个代表性关键风险,更加全面地评估了5个“关注理由”的风险水平,评估结果有利于加深对于气候变化影响的认识和及时制定行动对策。 相似文献
17.
IPCC第六次评估报告(AR6)第二工作组(WGII)报告的第二章表明,气候变化对陆地和淡水生态系统影响的范围和程度较前期评估结果更为严峻。人为气候变化导致生态系统结构、功能和恢复力恶化,生物群落转移,疾病的传播范围和发病率增加,野火燃烧面积增加和持续时间延长,局部地区物种灭绝,极端天气的频率和强度增加。未来气温升高2~4℃情景下,陆地和淡水生态系统中高灭绝风险物种占比为10%~13%,野火燃烧面积增加35%~40%,森林地区50%以上树木面临死亡风险,15%~35%的生态系统结构发生转变,碳损失持续增加,气温的升高将进一步加剧这些风险造成的严重且不可逆的影响。通过生态系统保护和恢复等人为适应和减缓措施,可以在一定程度的气候变化范围内保护生态系统的生物多样性并增强生态系统服务在气候变化下的恢复力。加剧的气候变化将阻碍适应措施的制定和实施,为保证措施的有效性需要考虑气候变化的长期影响并加快适应措施的部署。 相似文献
18.
IPCC于2022年4月正式发布了第六次评估报告(AR6)第三工作组(WGⅢ)报告《气候变化2022:减缓气候变化》,该报告以已发布的第一和第二工作组报告作为基础,评估了各领域减缓气候变化的进展。报告的第九章建筑章节系统全面地评估了全球建筑领域的温室气体排放现状、趋势和驱动因素,综述并评估了建筑减缓气候变化的措施、潜力、成本和政策。报告主要结论认为,全球建筑领域有可能在2050年实现温室气体净零排放,但如果政策措施执行不力,将有可能在建筑领域形成长达几十年的高碳锁定效应。报告的主要结论将成为全球建筑领域应对气候变化行动的重要参考,对于我国建筑领域实现碳达峰、碳中和目标也有非常重要的借鉴意义。 相似文献