首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Observations of wind velocity and air temperature fluctuations were made in the nocturnal surface inversion layer over a sorghum field. Wave-like fluctuations of temperature and wind velocity with a period of 15–20 min were observed for about 2 hours, 3 to 5 hours before sunrise. Wave-like fluctuations of temperature were observed in the air layer above and within a plant canopy and were most noticeable at the top of the plant canopy. Spectral analysis of temperature and wind velocity fluctuations reveals a separation of energy into wave-like and turbulent fluctuations. Cospectral analysis shows that for both momentum and heat, vertical transports are partitioned almost equally in the frequency ranges characteristic of wave-like and turbulent fluctuations. This suggests wave- turbulence interactions at low frequencies in the air layer near a plant canopy.  相似文献   

2.
Downward fluxes of turbulent kinetic energy have been frequently observed in the air layer just above plant canopies. In order to investigate the mechanism for such downward transport, analysis of observational data is attempted. Height-dependency of turbulent kinetic energy flux and turbulence statistics including higher order moments is represented as a function of a non-dimensional height z/H, where z is an observational height and H an average height of plant canopies. Downward fluxes and non-Gaussianity of wind velocity fluctuations are predominant just above plant canopies and decrease with increasing height. The downward flux is closely related to the high intensity of turbulence and the non-Gaussianity of wind velocity fluctuations, especially with a positive skewness in the longitudinal wind and a negative skewness in the vertical wind. The analysis method of conditional sampling and averaging is applied to the present observations. The results show that the predominance of the intermittent inrush phase over the intermittent ejection phase leads to the above-mentioned non-Gaussianity. Finally, a simple explanation is given in order to interpret the turbulent flow structure in the air layer near the plant canopies, which is associated with the downward energy transport process.  相似文献   

3.
Particle image velocimetry (PIV) data obtained in a wind-tunnel model of a canopy boundary layer is used to examine the characteristics of mean flow and turbulence. The vector spacing varies between 1.7 and 2.5 times the Kolmogorov scales. Conditional sampling based on quadrants, i.e. based on the signs of velocity fluctuations, reveals fundamental differences in flow structure, especially between sweep and ejection events, which dominate the flow. During sweeps, the downward flow generates a narrow, highly turbulent, shear layer containing multiple small-scale vortices just below canopy height. During ejections, the upward flow expands this shear layer and the associated small-scale flow structures to a broad region located above the canopy. Consequently, during sweeps the turbulent kinetic energy (TKE), Reynolds stresses, as well as production and dissipation rates, have distinct narrow peaks just below canopy height, whereas during ejections these variables have broad maxima well above the canopy. Three methods to estimate the dissipation rate are compared, including spectral fits, measured subgrid-scale (SGS) energy fluxes at different scales, and direct measurements of slightly underresolved instantaneous velocity gradients. The SGS energy flux is 40–60% of the gradient-based (direct) estimates for filter sizes inside the inertial range, while decreasing with scale, as expected, within the dissipation range. The spectral fits are within 5–30% of the direct estimates. The spectral fits exceed the direct estimates near canopy height, but are lower well above and below canopy height. The dissipation rate below canopy height increases with velocity magnitude, i.e. it has the highest values during sweep and quadrant 1 events, and is significantly lower during ejection and quadrant 3 events. Well above the canopy, ejections are the most dissipative. Turbulent transport during sweep events acts as a source below the narrow shear layer within the canopy and as a sink above it. Transport during ejection events is a source only well above the canopy. The residual term in the TKE transport equation, representing mostly the effect of pressure–velocity correlations, is substantial only within the canopy, and is dominated by sweeps.  相似文献   

4.
To investigate tubulence characteristics and organized motion within and above an urban canopy, field observations were conducted in July 1991 and November 1992 in Sapporo, Japan. The measurement heights were 5.4, 10.3, 18, 35 and 45 m above ground; the canopy height was 7 m. The profiles of u peaked slightly above the canopy, while v and w had nearly uniform profiles. Vertical profiles of Reynolds stress - peaked slightly at 1.5 times the canopy height and decreased slowly with height thereafter. A four-quadrant analysis showed that sweep and ejection motions caused high-velocity fluid from above moves downward toward the surface and low-velocity fluid from below moves upward. An ensemble-averaging technique was used to isolate typical features of the flow and temperature fields. A time-height cross-section of velocity vectors and temperature contours showed details of the flow structures associated with temperature ramps. It has been noted that the organized motions play important roles in the transport of heat near the urban canopy, where the sweep motion causes negative temperature fluctuations and the ejection motion causes positive temperature fluctuations.  相似文献   

5.
Higher-order moments, minima and maxima of turbulent temperature and water vapour mixing ratio probability density functions measured with an eddy-covariance system near the ground were related to each other and to vertical boundary-layer profiles of the same scalars obtained through airborne soundings. The dependence of kurtosis on squared skewness showed a kurtosis intercept below the Gaussian expectation, suggesting a compression of the probability density function by the presence of natural boundaries. This hypothesis was corroborated by comparing actual minima and maxima of turbulent fluctuations to estimates obtained from the first four sample moments by fitting a four-parameter beta distribution. The most sharply defined boundaries were found for the minima of temperature datasets during the day, indicating that negative temperature fluctuations at the sensor are limited by the availability of lower temperatures in the boundary layer. By comparison to vertical profiles, it could be verified that the turbulent minimum of temperature near the ground is close to the minimum of potential temperature in the boundary layer. The turbulent minimum of water vapour mixing ratio was found to be equal to the mixing ratio at a height above the minimum of the temperature profile. This height roughly agrees with the top of the non-local unstable domain according to bulk Richardson number profiles. We conclude that turbulence statistics measured near the surface cannot be solely explained by local effects, but contain information about the whole boundary layer including the entrainment zone.  相似文献   

6.
提要:利用2013年春季在巴丹吉林沙漠北缘拐子湖地区的沙尘暴加强观测资料,对比分析该地区典型流动沙面晴天、扬沙和沙尘暴三种天气背景下各气象要素的变化特征及差异,同时对沙尘暴过程中近地层风沙活动特征进行分析。结果表明,随风速增加沙尘天气强度逐步提升且沙尘天气来临前风速、风向均表现出明显的调整现象,此后爆发过程中风速、风向相对稳定。随沙尘天气强度的增加气温逐渐减小且沙尘天气过程中地面呈利于沙尘起动的暖干状态,同时地面气压不断升高。悬浮的沙尘会导致拐子湖流动沙地各层地温有减小趋势,但减小程度相对较弱,使沙尘天气下各层地温仍保持良好的梯度变化和正弦型日变化趋势。拐子湖流沙地春季起沙风速为6.5m/s,输沙通量垂直分布状况在20cm左右具有明显的分段现象。地表100cm内总输沙量的50%和90%分别集中在地表20cm和56cm高度以内。观测期间整个5月地表0~100cm高度内的输沙通量为420.96kg/m。  相似文献   

7.
Abstract

Dawn‐to‐dusk evolution of air turbulence, sensible heat and latent heat above a forest during cloud‐free or near‐cloud‐free summer conditions is modelled by way of a system of differential equations. Temperatures in and above the canopy, near canopy‐top wind velocities, early morning leaf moisture (dew) and afternoon canopy ventilation (i.e. heat released from the canopy and from below the canopy) are included in the mathematical treatment. Computed results are compared with field data for atmospheric temperature and wind speed profiles up to 1200 m, within‐canopy temperature, and canopy‐level radiation, turbulent fluxes and wind speeds. Data were collected at a central New Brunswick mixed‐wood forest site dominated by spruce (Picea spp. ) and shade‐tolerant hardwoods for four representative summer days. It was found that the effective canopy temperature was not only affected by insolation, but also by the extent of canopy ventilation and the amount of dew on the foliage. The growth of the mixing layer was affected by canopy ventilation and by above‐canopy wind speeds. Model calculations closely simulated the meteorological observations.  相似文献   

8.
The representation of a neutral atmospheric flow over roughness elements simulating a vegetation canopy is compared between two large-eddy simulation models, wind-tunnel data and recently updated empirical flux-gradient relationships. Special attention is devoted to the dynamics in the roughness sublayer above the canopy layer, where turbulence is most intense. By demonstrating that the flow properties are consistent across these different approaches, confidence in the individual independent representations is bolstered. Systematic sensitivity analyses with the Dutch Atmospheric Large-Eddy Simulation model show that the transition in the one-sided plant-area density from the canopy layer to unobstructed air potentially alters the flow in the canopy and roughness sublayer. Anomalously induced fluctuations can be fully suppressed by spreading the transition over four steps. Finer vertical resolutions only serve to reduce the magnitude of these fluctuations, but do not prevent them. To capture the general dynamics of the flow, a resolution of 10 % of the canopy height is found to suffice, while a finer resolution still improves the representation of the turbulent kinetic energy. Finally, quadrant analyses indicate that momentum transport is dominated by the mean velocity components within each quadrant. Consequently, a mass-flux approach can be applied to represent the momentum flux.  相似文献   

9.
This is the first of two papers reporting the results of a study of the turbulence regimes and exchange processes within and above an extensive Douglas-fir stand. The experiment was conducted on Vancouver Island during a two-week rainless period in July and August 1990. The experimental site was located on a 5o slope. The stand, which was planted in 1962, and thinned and pruned uniformly in 1988, had a (projected) leaf area index of 5.4 and a heighth=16.7 m. Two eddy correlation units were operated in the daytime to measure the fluctuations in the three velocity components, air temperature and water vapour density, with one mounted permanently at a height of 23.0m (z/h=1.38) and the other at various heights in the stand with two to three 8-hour periods of measurement at each level. Humidity and radiation regimes both above and beneath the overstory and profiles of wind speed and air temperature were also measured. The most important findings are:
  1. A marked secondary maximum in the wind speed profile occurred in the middle of the trunk space (aroundz/h=0.12). The turbulence intensities for the longitudinal and lateral velocity components increased with decreasing height, but the intensity for the vertical velocity component had a maximum atz/h=0.60 (middle of the canopy layer). Magnitudes of the higher order moments (skewness and kurtosis) for the three velocity components were higher in the canopy layer than in the trunk space and above the stand.
  2. There was a 20% reduction in Reynolds stress fromz/h=1.00 to 1.38. Negative Reynolds stress or upward momentum flux perisistently occurred atz/h=0.12 and 0.42 (base of the canopy), and was correlated with negative wind speed gradients at the two heights. The longitudinal pressure gradient due to the land-sea/upslope-downslope circulations was believed to be the main factor responsible for the negative Reynolds stress.
  3. Momentum transfer was highly intermittent. Sweep and ejection events dominated the transfer atz/h=0.60, 1.00 and 1.38, with sweeps playing the more important role of the two atz/h=0.60 and 1.00 and the less important role atz/h=1.38. But interaction events were of greater magnitude than sweep and ejection events atz/h=0.12 and 0.42.
  相似文献   

10.
赖鑫  卞林根  江燕如 《气象科技》2011,39(2):190-196
2008年1月10日至2月2日,我国南方发生了大范围的持续冰雪灾害,贵州是受灾最严重的省份之一。通过对高度场、温度、降水量、流场、涡度等要素场的分析,重点探讨此次极端气象事件对贵州影响最明显的第3次过程,以及形成严重冰冻雨雪天气和温度异常偏低的主要环流特征。结果表明,在强拉尼娜的背景下,稳定在乌拉尔山以东的阻塞高压持续存在、极涡异常偏强偏东、西太平洋副高偏西偏强、南支槽较常年活跃等,是造成这次过程的主要原因。主要特征是850 hPa以下出现温度低于0℃的冷空气层,在700 hPa附近是相对较暖的气层,其上层是较冷的冰晶层,西南低空急流及槽前正的相对涡度平流明显,急流带来的暖湿平流提供了充足的水汽,并保证了融化层中源源不断的热量供应,上下层涡度平流的差异有利于上升运动的发展,为贵州第3次雨雪过程的发生提供了条件。  相似文献   

11.

This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme’s application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land–atmosphere interfaces.

  相似文献   

12.
Static pressure fluctuations in the microscale range were measured in a mature deciduous forest. Pressure measurements were taken at the ground and above the canopy, and mean profile data of windspeed were collected from above the canopy to near the forest floor. Time series, spectra, and cross-correlations were calculated under different canopy conditions, and relationships between surface pressure fluctuations and mean windspeeds were determined. High-frequency pressure fluctuations that occur over aerodynamically smoother surfaces do not occur at the forest floor. These surface fluctuations are advected by the wind above the canopy, not that within the trunk space. The shapes of the pressure spectra are affected by changes in windspeed. Comparisons of spectra above and below the canopy also show some effect of the canopy itself on the shape of the pressure spectra.  相似文献   

13.
The seasonal trend of vertical temperature profiles within and above an urban canopy has been investigated. We measured air temperatures and wind velocities along a 29-m tower in a residential area of Tokyo, Japan continually for 14 months. The height of the daily maximum temperature ZTmax varied with the season; ZTmax was at the roof level in winter but near the ground in summer. The seasonal change of ZTmax is likely due to the change of height at which solar energy is absorbed. At the time of the maximum temperature, the atmosphere above the canopy is always unstable whereas the air within the canopy is unstable in summer but stable in winter.  相似文献   

14.
Turbulence statistics, including higher order moments, in the surface layer over plant canopies were compared with those observed over several different surfaces, using a nondimensional height (z – d)/z 0: The values of (z – d)/z 0extend over a very wide range from 10 over plant canopies to 107 over the ocean. Several properties such as intensities of turbulence and skewness factors show a remarkable height-dependency in the air layer below (z – d)/z 0 = 102, which is supposed to be much influenced by the underlying surface. In that layer, some peculiar phenomena, such as a downward energy transport and positive flux of shear stress, are frequently observed.  相似文献   

15.
Air temperature time series within and above canopies reveal ramp patternsassociated with coherent eddies that are responsible for most of thevertical transport of sensible heat. Van Atta used a simple step-changeramp model to analyse the coherent part of air temperature structurefunctions. However, his ocean data, and our own measurements for aDouglas-fir forest, straw mulch, and bare soil, reveal that even withoutlinearization his model cannot account for the observed decrease of thecubic structure function for small time lag. We found that a ramp model inwhich the rapid change at the end of the ramp occurs in a finite microfronttime can describe this decrease very well, and predict at least relativemagnitudes of microfront times between different surfaces. Averagerecurrence time for ramps, determined by analysis of the cubic structurefunction with the new ramp model, agreed well with values determined usingthe Mexican Hat wavelet transform, except at lower levels within theforest. Ramp frequency above the forest and mulch scaled very well withwind speed at the canopy top divided by canopy height. Within the forest,ramp frequency did not vary systematically with height. This is inaccordance with the idea that large-scale canopy turbulence is mostlygenerated by instability of the mean canopy wind profile, similar to aplane mixing layer. The straw mulch and bare soil experiments uniquelyextend measurements of temperature structure functions and ramp frequencyto the smallest scales possible in the field.  相似文献   

16.
Turbulence Statistics Measurements in a Northern Hardwood Forest   总被引:3,自引:0,他引:3  
Tower-based turbulence measurements were collected in and over a mixed hardwood forest at the University of Michigan BiologicalStation (UMBS) UMBSflux site in the northern summerof 2000. Velocity and temperature fluctuations were measured at five levels within the canopy (up to the canopy height, H = 21.4 m), using one- and three-dimensional sonic anemometers and fine-wire thermocouples. Six additional thermocouples were distributed over the canopy-layer depth. Three-dimensional velocities and sonic temperatures were also measured above the canopy at 1.6H and at 2.15H on the AmeriFlux tower located at the UMBSflux site. Vertical profiles of buoyancy flux, mean horizontal velocity, Reynolds stress, and standard deviation and skewness of velocity components were calculated. The analysis of these measurements aims at a multi-layer parameterization framework of turbulence statistics forimplementation in Lagrangian stochastic models. Turbulence profiles and power spectra above the canopy were analyzed in the context of Monin-Obukhov similarity theory (MOST) and Kolmogorov theory, as determined by stability at the top level (2.15H), to assess the extent to which surface scaling is valid as the canopy top is approached. Velocity spectra were computed to explore the potential of estimating the viscous dissipation rate, and results show that the high frequency range of the spectra above the canopy exhibits the roll-off predicted by Kolmogorov theory. Similarly, velocity standard deviations above the canopy converge to MOST predicted values toward the top level, and spectral peaks shift with stability, as expected. Within the canopy, both turbulence statistics profiles and spectral distributions follow the general known characteristics inside forests.  相似文献   

17.
Turbulence structure in a deciduous forest   总被引:5,自引:2,他引:5  
Three-dimensional wind velocity components were measured at two levels above and at six levels within a fully-leafed deciduous forest. Greatest shear occurs in the upper 20% of the canopy, where over 70% of the foliage is concentrated. The turbulence structure inside the canopy is characterized as non-Gaussian, intermittant and highly turbulent. This feature is supported by large turbulence intensities, skewness and kurtosis values and by the large infrequent sweeps and ejections that dominate tangential momentum transfer. Considerable day/night differences were observed in the vertical profiles of the mean streamwise wind velocity and turbulence intensities since the stability of the nocturnal boundary layer dampens turbulence above and within the canopy.  相似文献   

18.
In the framework of the EGER (ExchanGE processes in mountainous Regions) project, the contribution of coherent structures to vertical and horizontal transports in a tall spruce canopy is investigated. The combination of measurements done in both the vertical and horizontal directions allows us to investigate coherent structures, their temporal scales, their role in flux transport, vertical coupling between the sub-canopy, canopy and air above the canopy, and horizontal coupling in the sub-canopy layer. The temporal scales of coherent structures detected with the horizontally distributed systems in the sub-canopy layer are larger than the temporal scales of coherent structures detected with the vertically distributed systems. The flux contribution of coherent structures to the momentum and sensible heat transport is found to be dominant in the canopy layer. Carbon dioxide and latent heat transport by coherent structures increase with height and reach a maximum at the canopy height. The flux contribution of the ejection decreases with increasing height and becomes dominant above the canopy level. The flux fraction transported during the sweep increases with height and becomes the dominant exchange process at the upper canopy level. The determined exchange regimes indicate consistent decoupling between the sub-canopy, canopy and air above the canopy during evening, nighttime and morning hours, whereas the coupled states and coupled by sweep states between layers are observed mostly during the daytime. Furthermore, the horizontal transport of sensible heat by coherent structures is investigated, and the heterogeneity of the contribution of coherent events to the flux transport is demonstrated. A scheme to determine the horizontal coupling by coherent structures in the sub-canopy layer is proposed, and it is shown that the sub-canopy layer is horizontally coupled mainly in the wind direction. The vertical coupling in most cases is observed together with streamwise horizontal coupling, whereas the cross-stream direction is decoupled.  相似文献   

19.
A conditional sampling technique using a multilevel scheme was applied to the detection of temperature and humidity microfronts and organized ejection/sweep motions under different atmospheric stabilities. Data were obtained with seven triaxial sonic anemometer/thermometers and three Lyman-alpha hygrometers within and above a deciduous forest. Both temperature and humidity microfronts were identified in unstable cases, but only humidity microfronts could be detected under neutral conditions. Inverted temperature ramps occurred under slightly stable conditions. Occasionally, wave-like patterns appeared within the canopy, seemingly coupled with inverse ramps occurring above the forest. The frequency of occurrence of scalar microfronts appears to have no clear dependence on atmospheric stability, and averages 74–84 s per cycle with a mode of about 50 s per cycle. However, the strength of ejections and sweeps, shown by the vertical velocity averaged within structures, was reduced by increasing atmospheric stability. Structures identified under different stabilities show many similarities in their patterns of scalar ramps, and associated velocity and surface pressure. Profiles of short-term averaged longitudinal velocity at different times during the microfront passage show that the air within the canopy was retarded and an intensified shear above the canopy occurred prior to the passage of the microfront. Results from the present conditional analysis strongly suggest an important role of shear instability in the formation of canopy coherent structure.  相似文献   

20.
Turbulent flow in a model plant canopy   总被引:2,自引:0,他引:2  
An array of slender, vertical, cylindrical rods was used in a wind tunnel to simulate a plant canopy. Turbulence measurements were made with a cross hot wire, both inside and above the canopy. Measurements were also made inside the canopy when its top was covered by boards, leaving no space above the rods. This artificially confined canopy provided reference data.The results show an exponential wind profile and constant turbulence intensity, skewness and mixing length along the height of the (unconfined) canopy, the contribution of the eddies shed by the rods to the turbulence observed inside the canopy was small, but clearly apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号