首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper investigates the response of asymmetric‐plan buildings with supplemental viscous damping to harmonic ground motion using modal analysis techniques. It is shown that most modal parameters, except dynamic amplification factors (DAFs), are affected very little by the plan‐wise distribution of supplemental damping in the practical range of system parameters. Plan‐wise distribution of supplemental damping significantly influences the DAFs, which, in turn, influence the modal deformations. These trends are directly related to the apparent modal damping ratios; the first modal damping ratio increases while the second decreases as CSD moves from right to left of the system plan, and their values increase with larger plan‐wise spread of the supplemental damping. The largest reduction in the flexible edge deformation occurs when damping in the first mode is maximized by distributing the supplemental damping such that the damping eccentricity takes on the largest value with algebraic sign opposite to the structural eccentricity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Investigated are earthquake responses of one‐way symmetric‐plan, one‐storey systems with non‐linear fluid viscous dampers (FVDs) attached in series to a linear brace (i.e. Chevron or inverted V‐shape braces).Thus, the non‐linear damper is viscous when the brace is considered rigid or viscoelastic (VE) when the brace is flexible. The energy dissipation capacity of a non‐linear FVD is characterized by an amplitude‐dependent damping ratio for an energy‐equivalent linear FVD, which is determined assuming the damper undergoes harmonic motion. Although this formulation is shown to be advantageous for single‐degree‐of‐freedom (SDF) systems, it is difficult to extend its application to multi‐degree‐of‐freedom (MDF) systems for two reasons: (1) the assumption that dampers undergo harmonic motion in parameterizing the non‐linear damper is not valid for its earthquake‐induced motion of an MDF system; and (2) ensuring simultaneous convergence of all unknown amplitudes of dampers is difficult in an iterative solution of the non‐linear system. To date, these limitations have precluded the parametric study of the dynamics of MDF systems with non‐linear viscous or VE dampers. However, they are overcome in this investigation using concepts of modal analysis because the system is weakly non‐linear due to supplemental damping. It is found that structural response is only weakly affected by damper non‐linearity and is increased by a small amount due to bracing flexibility. Thus, the effectiveness of supplemental damping in reducing structural responses and its dependence on the planwise distribution of non‐linear VE dampers were found to be similar to that of linear FVDs documented elsewhere. As expected, non‐linear viscous and VE dampers achieve essentially the same reduction in response but with much smaller damper force compared to linear dampers. Finally, the findings in this investigation indicate that the earthquake response of the asymmetric systems with non‐linear viscous or VE dampers can be estimated with sufficient accuracy for design applications by analysing the same asymmetric systems with all non‐linear dampers replaced by energy‐equivalent linear viscous dampers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates the effects of supplemental viscous damping on the seismic response of one‐storey, asymmetric‐plan systems responding in the inelastic range of behaviour. It was found that addition of the supplemental damping reduces not only deformation demand but also ductility and hysteretic energy dissipation demands on lateral load resisting elements during earthquake loading. However, the level of reduction strongly depends on the plan‐wise distribution of supplemental damping. Nearly optimal reduction in demands on the outermost flexible‐side element, an element generally considered to be the most critical element, was realized when damping was distributed unevenly in the system plan such that the damping eccentricity was equal in magnitude but opposite in algebraic sign to the structural eccentricity of the system. These results are similar to those noted previously for linear elastic systems, indicating that supplemental damping is also effective for systems expected to respond in the inelastic range. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
This study investigates the effectiveness of the modal analysis using two‐degree‐of‐freedom (2DOF) modal stick to deal with the seismic analysis of one‐way asymmetric elastic systems with supplemental damping. The 2DOF modal stick possessing the non‐proportional damping property enables the modal translation and rotation to not be proportional even at elastic state. The analytical results of one‐storey and three‐storey buildings obtained by the proposed method are compared with those obtained by direct integration of the equation of motion and conventional approximate method, which neglects the off‐diagonal elements in the transformed damping matrix. It is found that the proposed simplified method, compared to conventional approximate methods, can significantly improve the accuracy of the analytical results and, at the same time, without obviously increasing computational efforts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
There is no consensus at the present time regarding an appropriate approach to model viscous damping in nonlinear time‐history analysis of base‐isolated buildings because of uncertainties associated with quantification of energy dissipation. Therefore, in this study, the effects of modeling viscous damping on the response of base‐isolated reinforced concrete buildings subjected to earthquake ground motions are investigated. The test results of a reduced‐scale three‐story building previously tested on a shaking table are compared with three‐dimensional finite element simulation results. The study is primarily focused on nonlinear direct‐integration time‐history analysis, where many different approaches of modeling viscous damping, developed within the framework of Rayleigh damping are considered. Nonlinear direct‐integration time‐history analysis results reveal that the damping ratio as well as the approach used to model damping has significant effects on the response, and quite importantly, a damping ratio of 1% is more appropriate in simulating the response than a damping ratio of 5%. It is shown that stiffness‐proportional damping, where the coefficient multiplying the stiffness matrix is calculated from the frequency of the base‐isolated building with the post‐elastic stiffness of the isolation system, provides reasonable estimates of the peak response indicators, in addition to being able to capture the frequency content of the response very well. Furthermore, nonlinear modal time‐history analyses using constant as well as frequency‐dependent modal damping are also performed for comparison purposes. It was found that for nonlinear modal time‐history analysis, frequency‐dependent damping, where zero damping is assigned to the frequencies below the fundamental frequency of the superstructure for a fixed‐base condition and 5% damping is assigned to all other frequencies, is more appropriate, than 5% constant damping. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This paper proposes bi‐directional coupled tuned mass dampers (BiCTMDs) for the seismic response control of two‐way asymmetric‐plan buildings subjected to bi‐directional ground motions. The proposed BiCTMD was developed from the three‐degree‐of‐freedom modal system, which represents the vibration mode of a two‐way asymmetric‐plan building. The performance of the proposed BiCTMD for the seismic response control of elastic two‐way asymmetric‐plan buildings was verified by investigating the reductions of the amplitudes of the associated frequency response functions. In addition, the investigation showed that the proposed BiCTMD is effective in reducing the seismic damage of inelastic asymmetric‐plan buildings. Therefore, the BiCTMD is an effective approach for the seismic response control of both elastic and inelastic two‐way asymmetric‐plan buildings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This study investigated the effects of neglecting off‐diagonal terms of the transformed damping matrix on the seismic response of non‐proportionally damped asymmetric‐plan systems with the specific aim of identifying the range of system parameters for which this simplification can be used without introducing significant errors in the response. For this purpose, a procedure is presented in which modal damping ratios computed by neglecting off‐diagonal terms of the transformed damping matrix are used in the traditional modal analysis. The effects of the simplification are evaluated first by comparing the aforementioned modal damping ratios with the apparent damping ratios obtained from the complex‐valued eigenanalysis. The variation of a parameter that was defined by Warburton and Soni as an indicator of the errors introduced by the simplification is examined next. Finally, edge deformations obtained from the simplified procedure are compared with those obtained from the direct integration of the equations of motion. It is found that the simplified procedure may be used without introducing significant errors in response for most practical values of the system parameters. Furthermore, estimates of the edge deformations, in general, tend to be on the conservative side. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Closed‐form solution for seismic response of adjacent buildings connected by hydraulic actuators with linear quadratic Gaussian (LQG) controllers is presented in this paper. The equations of motion of actively controlled adjacent buildings against earthquake are first established. The complex modal superposition method is then used to determine dynamic characteristics, including modal damping ratio, of actively controlled adjacent buildings. The closed‐form solution for seismic response of the system is finally derived in terms of the complex dynamic characteristics, the pseudo‐excitation method and the residue theorem. By using the closed‐form solution, extensive parametric studies can be carried out for the system of many degrees of freedom. The beneficial parameters of LQG controllers for achieving the maximum response reduction of both buildings using reasonable control forces can be identified. The effectiveness of LQG controllers for this particular application is evaluated in this study. The results show that for the adjacent buildings of different dynamic properties, if the parameters of LQG controllers are selected appropriately, the modal damping ratios of the system can be significantly increased and the seismic responses of both buildings can be considerably reduced. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Output‐only system identification is developed here towards assessing current modal dynamic properties of buildings under seismic excitation. Earthquake‐induced structural response signals are adopted as input channels for two different Operational Modal Analysis (OMA) techniques, namely, a refined Frequency Domain Decomposition (rFDD) algorithm and an improved Data‐Driven Stochastic Subspace Identification (SSI‐DATA) procedure. Despite that short‐duration, non‐stationary, earthquake‐induced structural response signals shall not fulfil traditional OMA assumptions, these implementations are specifically formulated to operate with seismic responses and simultaneous heavy damping (in terms of identification challenge), for a consistent estimation of natural frequencies, mode shapes, and modal damping ratios. A linear ten‐storey frame structure under a set of ten selected earthquake base‐excitation instances is numerically simulated, by comparing the results from the two identification methods. According to this study, best up‐to‐date, reinterpreted OMA techniques may effectively be used to characterize the current dynamic behaviour of buildings, thus allowing for potential Structural Health Monitoring approaches in the Earthquake Engineering range.  相似文献   

10.
The effects of Rayleigh damping model on the engineering demand parameters of two steel moment‐resisting frame buildings were evaluated. Two‐dimensional models of the buildings were created and response history analysis were conducted for three different hazard levels. The response history analysis results indicate that mass‐proportional damping leads to high damping forces compared with restoring forces and may lead to overestimation of floor acceleration demands for both buildings. Stiffness‐proportional damping, on the other hand, is observed to suppress the higher‐mode effects in the nine‐story building resulting in lower story drift demands in the upper floors compared with other damping models. Rayleigh damping models, which combine mass‐proportional and stiffness‐proportional components, that are anchored at reduced modal frequencies lead to reasonable damping forces and floor acceleration demands for both buildings and does not suppress higher‐mode effects in the nine‐story building. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
One widespread problem in damping estimation of high-rise buildings is the neglect of structural modal directions, which may induce beating in measured dynamic responses along building geometric axes and thereby induce errors in damping estimations to some extent. Based on a proposed two degrees of freedom (2-DOF) simulation model, the effects of neglecting the modal directions on damping estimate are systematically investigated. The results show that the angular differences between the modal directions and the building geometric axes, as well as the frequency difference between the involved modes, both have significant effects on the damping estimate of high-rise buildings. This paper proposes a spectral method to determine the modal directions of high-rise buildings and further validate this method by an analysis of full-scale measurements from four skyscrapers. The damping ratios estimated based on the responses along the identified modal directions are more accurate than those based on those measured along the building geometric axes. Furthermore, an empirical prediction model for damping ratio of high-rise buildings with heights over 200 m is proposed based on the field measured damping results of several buildings with consideration of the modal directions. The objective of this study is to improve the accuracy of damping estimation of high-rise buildings and therefore provide useful information for the structural design of future skyscrapers.  相似文献   

12.
This investigation is concerned with the seismic response of one‐story, one‐way asymmetric linear and non‐linear systems with non‐linear fluid viscous dampers. The seismic responses are computed for a suite of 20 ground motions developed for the SAC studies and the median values examined. Reviewed first is the behaviour of single‐degree‐of‐freedom systems to harmonic and earthquake loading. The presented results for harmonic loading are used to explain a few peculiar trends—such as reduction in deformation and increase in damper force of short‐period systems with increasing damper non‐linearity—for earthquake loading. Subsequently, the seismic responses of linear and non‐linear asymmetric‐plan systems with non‐linear dampers are compared with those having equivalent linear dampers. The presented results are used to investigate the effects of damper non‐linearity and its influence on the effects of plan asymmetry. Finally, the design implications of the presented results are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
This article describes a design procedure for elastic buildings equipped with linear and nonlinear energy dissipating devices. The objective is to achieve a design that responds to a target building performance following a simple and robust step-by-step algorithm. The proposed procedure identifies first the modal significance of key design performance indicators and controls the modal properties by solving a singular two-parameter eigenvalue problem. For that purpose, a new modal significance metric is proposed, and a target frequency shift and damping ratio for the complete structure are obtained from the so-called iso-performance design curves. The design algorithm employs linear-equivalent stiffness and damping properties, which are then transformed into parameters characterizing inelastic force-deformation constitutive models corresponding to physical devices. The design algorithm leads to an optimal damper distribution corresponding to the minimum global amount of supplemental equivalent damping needed to achieve a maximum modal perturbation. The design procedure is first demonstrated using a five-story building example and then a real and complex 22-story free-plan building with two towers of rhomboid-shape plan with a very singular dynamic behavior.  相似文献   

14.
The optimum parameters of tuned mass dampers (TMD) that result in considerable reduction in the response of structures to seismic loading are presented. The criterion used to obtain the optimum parameters is to select, for a given mass ratio, the frequency (tuning) and damping ratios that would result in equal and large modal damping in the first two modes of vibration. The parameters are used to compute the response of several single and multi-degree-of-freedom structures with TMDs to different earthquake excitations. The results indicate that the use of the proposed parameters reduces the displacement and acceleration responses significantly. The method can also be used in vibration control of tall buildings using the so-called ‘mega-substructure configuration’, where substructures serve as vibration absorbers for the main structure. It is shown that by selecting the optimum TMD parameters as proposed in this paper, significant reduction in the response of tall buildings can be achieved. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
Four real buildings with three to six stories, strong irregularities in plan and little engineered earthquake resistance are subjected to inelastic response‐history analyses under 56 bidirectional EC8‐spectra‐compatible motions. The average chord rotation demand at each member end over the 56 response‐history analyses is compared to the chord rotation from elastic static analysis with inverted triangular lateral forces or modal response spectrum analysis. The storey‐average inelastic‐to‐elastic‐chord‐rotation‐ratio was found fairly constant in all stories, except when static elastic analysis is applied to buildings with large higher mode effects. Except for such buildings, static elastic analysis gives more uniform ratios of inelastic chord rotations to elastic ones within and among stories than modal response spectrum analysis, but generally lower than 1.0. With increasing EPA the building‐average inelastic‐to‐elastic‐chord‐rotation‐ratio decreases but scatter in the results increases. Static elastic analysis tends to overestimate the inelastic torsional effects at the flexible or central part of the torsionally flexible buildings and underestimate them at their stiff side. Modal response spectrum analysis tends to overestimate the inelastic torsional effects at the stiff or central part of the torsionally stiff buildings and underestimate them at the flexible side. Overall, for multistorey RC buildings that typically have fundamental periods in the velocity‐sensitive part of the spectrum, elastic modal response spectrum analysis with 5% damping gives on average unbiased and fairly accurate estimates of member inelastic chord rotations. If higher modes are not significant, elastic static analysis in general overestimates inelastic chord rotations of such buildings, even when torsional effects are present. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Coupling adjacent buildings using discrete viscoelastic dampers for control of response to low and moderate seismic events is investigated in this paper. The complex modal superposition method is first used to determine dynamic characteristics, mainly modal damping ratio and modal frequency, of damper-linked linear adjacent buildings for practical use. Random seismic response of linear adjacent buildings linked by dampers is then determined by a combination of the complex modal superposition method and the pseudo-excitation method. This combined method can effectively and accurately determine random seismic response of non-classically damped systems in the frequency domain. Parametric studies are finally performed to identify optimal parameters of viscoelastic dampers for achieving the maximum modal damping ratio or the maximum response reduction of adjacent buildings. It is demonstrated that using discrete viscoelastic dampers of proper parameters to link adjacent buildings can reduce random seismic responses significantly. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

17.
A method for parametric system identification of classically damped linear system in frequency domain is adopted and extended for non‐classically damped linear systems subjected up to six components of earthquake ground motions. This method is able to work in multi‐input/multi‐output (MIMO) case. The response of a two‐degree‐of‐freedom model with non‐classical damping, excited by one‐component earthquake ground motion, is simulated and used to verify the proposed system identification method in the single‐input/multi‐output case. Also, the records of a 10 storey real building during the Northridge earthquake is used to verify the proposed system identification method in the MIMO case. In this case, at first, a single‐input/multi‐output assumption is considered for the system and modal parameters are identified, then other components of earthquake ground motions are added, respectively, and the modal parameters are identified again. This procedure is repeated until all four components of earthquake ground motions which are measured at the base level of the building are included in the identification process. The results of identification of real building show that consideration of non‐classical damping and inclusion of the multi‐components effect of earthquake ground motions can improve the least‐squares match between the finite Fourier transforms of recorded and calculated acceleration responses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
An Erratum has been published for this article in Earthquake Engng. Struct. Dyn. 2004; 33:1429. Based on structural dynamics theory, the modal pushover analysis (MPA) procedure retains the conceptual simplicity of current procedures with invariant force distribution, now common in structural engineering practice. The MPA procedure for estimating seismic demands is extended to unsymmetric‐plan buildings. In the MPA procedure, the seismic demand due to individual terms in the modal expansion of the effective earthquake forces is determined by non‐linear static analysis using the inertia force distribution for each mode, which for unsymmetric buildings includes two lateral forces and torque at each floor level. These ‘modal’ demands due to the first few terms of the modal expansion are then combined by the CQC rule to obtain an estimate of the total seismic demand for inelastic systems. When applied to elastic systems, the MPA procedure is equivalent to standard response spectrum analysis (RSA). The MPA estimates of seismic demand for torsionally‐stiff and torsionally‐flexible unsymmetric systems are shown to be similarly accurate as they are for the symmetric building; however, the results deteriorate for a torsionally‐similarly‐stiff unsymmetric‐plan system and the ground motion considered because (a) elastic modes are strongly coupled, and (b) roof displacement is underestimated by the CQC modal combination rule (which would also limit accuracy of RSA for linearly elastic systems). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The Rayleigh damping model, which is pervasive in nonlinear response history analysis (RHA) of buildings, is shown to develop ‘spurious’ damping forces and lead to inaccurate response results. We prove that a viscous damping matrix constructed by superposition of modal damping matrices—irrespective of the number of modes included or values assigned to modal damping ratios—completely eliminates the ‘spurious’ damping forces. This is the damping model recommended for nonlinear RHA. Replacing the stiffness‐proportional part of Rayleigh damping by the tangent stiffness matrix is shown to improve response results. However, this model is not recommended because it lacks a physical basis and has conceptual implications that are troubling: hysteresis in damping force–velocity relationship and negative damping at large displacements. Furthermore, the model conflicts with the constant‐damping model that has been the basis for fundamental concepts and accumulated experience about the inelastic response of structures. With a distributed plasticity model, the structural response is not sensitive to the damping model; even the Rayleigh damping model leads to acceptable results. This perspective on damping provides yet another reason to employ the superior distributed plasticity models in nonlinear RHA. OpenSees software has been extended to include a damping matrix defined as the superposition of modal damping matrices. Although this model leads to a full populated damping matrix, the additional computational demands are demonstrated to be minimal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Coupling between lateral and torsional motions may lead to much larger edge deformations in asymmetric-plan systems compared to systems with a symmetric plan. Supplemental viscous damping has been found to be effective in reducing deformations in the symmetric-plan system. This investigation examined how supplemental damping affects the edge deformations in asymmetric-plan systems. First, the parameters that characterize supplemental viscous damping and its plan-wise distribution were identified, and then the effects of these parameters on edge deformations were investigated. It was found that supplemental damping reduces edge deformations and that reductions by a factor of up three are feasible with proper selection of system parameters. Furthermore, viscous damping may be used to reduce edge deformations in asymmetric-plan systems to levels equal to or smaller than those in the corresponding symmetric-plan system. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号