首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of the formation of a major subglacial drainage channel on the behaviour of the subglacial drainage system of Haut Glacier d'Arolla, Switzerland, was investigated using measurements of borehole water level and the electrical conductivity and turbidity of basal meltwaters. Electrical conductivity profiles were also measured within borehole water columns to identify the water sources driving water level changes, and to determine patterns of water circulation in boreholes. Prior to channel formation, boreholes showed idiosyncratic and poorly coordinated behaviour. Diurnal water level fluctuations were small and driven by supraglacial/englacial water inputs, even when boreholes were connected to a subglacial drainage system. This system appeared to consist of hydraulically impermeable patches interspersed with storage spaces, and transmitted a very low water flux. Drainage reorganization, which occurred around 31 July, 1993, in response to rapidly rising meltwater and rainfall inputs, seems to have involved the creation of a connection between an incipient channel and a well-established channelized system located further down-glacier. Once a major channel existed within the area of the borehole array, borehole water level fluctuations were forced by discharge-related changes in channel water pressure, although a diversity of responses was observed. These included (i) synchronous, (ii) damped and lagged, (iii) inverse, and (iv) alternating inverse/lagged responses. Synchronous responses occurred in boreholes connected directly to the channel, while damped and lagged responses occurred in boreholes connected to it by a more resistive drainage system. Pressure variations within the channel resulted in diurnal transfer of mechanical support for the ice overburden between connected and unconnected areas of the bed, producing inverse and alternating patterns of water level response. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Continuous subglacial measurements of turbidity and electrical conductivity — two indicators of basal water quality — can be used to help characterize subglacial drainage systems. These indicators of water quality yield information that complements that provided by water pressure measurements. Quantitative attributes of subglacial drainage systems, such as water velocity and subglacial residence time, as well as qualitative behaviour — for example, spatial and temporal variations in system morphology — can be deduced using water quality measurements. Interpretation is complicated by the many potential influences on turbidity and electrical conductivity, but when these complications are appreciated a richer interpretation results. To demonstrate the utility of basal water quality measurements, observations from Trapridge Glacier, Yukon Territory, Canada were examined. The data reveal complex behaviour of the drainage system, but constraints imposed by basal water quality measurements help to clarify the nature of the subglacial flow system. The measurement and interpretation methods described and demonstrated are applicable to other glaciers. As such, they should prove useful for characterizing different subglacial drainage configurations and behaviours, thereby improving our general understanding of the hydrology and dynamics of wet-based glaciers.  相似文献   

3.
C. C. SMART 《水文研究》1996,10(4):599-613
Between 1988 and 1992 closely spaced arrays of boreholes were drilled at Small River Glacier, British Columbia. The borehole arrays have been used to investigate the interannual and spatial consistency of patterns of basal hydraulics beneath the glacier. A simple robust classification was devised identifying unconnected, high standing, low standing and dry base water levels in boreholes. Spatial and interannual comparisons were made using a simple nearest neighbour statistic, corrected for differences in frequency of different borehole types and evaluated using Monte Carlo confidence intervals to compensate for array form. Arrays in the lower ablation zone showed spatial and interannual coherence, with three distinct areas characterized by low water pressure, till-associated non-connection and high pressure. There was no indication of a dominant conduit. Slightly higher up-glacier borehole patterns were less coherent, and varied from year to year, probably a result of subglacial karst capturing basal waters at a number of low pressure points at the bed. Therefore both the upper and lower arrays at Small River Glacier appear to encompass unusual drainage conditions. The nearest neighbour analysis provides valuable constraints on more specific interpretation.  相似文献   

4.
Bulk runoff and meteorological data suggest the occurrence of two meltwater outburst events at Finsterwalderbreen, Svalbard, during the 1995 and 1999 melt seasons. Increased bulk meltwater concentrations of Cl? during the outbursts indicate the release of snowmelt from storage. Bulk meltwater hydrochemical data and suspended sediment concentrations suggest that this snowmelt accessed a chemical weathering environment characterized by high rock:water ratios and long rock–water contact times. This is consistent with a subglacial origin. The trigger for both the 1995 and 1999 outbursts is believed to be high rates of surface meltwater production and the oversupply of meltwater to areas of the glacier bed that were at the pressure melting point, but which were unconnected to the main subglacial drainage network. An increase in subglacial water pressure to above the overburden pressure lead to the forcing of a hydrological connection between the expanding subglacial reservoir and the ice‐marginal channelized system. The purging of ice blocks from the glacier during the outbursts may indicate the breach of an ice dam during connection. Although subglacial meltwater issued continually from the glacier terminus via a subglacial upwelling during both melt seasons, field observations showed outburst meltwaters were released solely via an ice‐marginal channel. It is possible that outburst events are a seasonal phenomenon at this glacier and reflect the periodic drainage of meltwaters from the same subglacial reservoir from year to year. However, the location of this reservoir is uncertain. A 100 m high bedrock ridge traverses the glacier 6·5 km from its terminus. The overdeepened area up‐glacier from this is the most probable site for subglacial meltwater accumulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A global positioning system and ground penetrating radar surveys is used to produce digital elevation models of the surface and bed of Brewster Glacier. These are used to derive maps of subglacial hydraulic potential and drainage system structure using three different assumptions about the subglacial water pressure (Pw): (i) Pw = ice overburden; (ii) Pw = half ice overburden; (iii) Pw = atmospheric. Additionally, 16 dye‐tracing experiments at 12 locations were performed through a summer melt season. Dye return curve shape, together with calculations of transit velocity, dispersivity and storage, are used to infer the likely morphology of the subglacial drainage system. Taken together, the data indicate that the glacier is underlain by a channelised but hydraulically inefficient drainage system in the early summer in which water pressures are close to ice overburden. By mid‐summer, water pressures are closer to half‐ice overburden and the channelised drainage system is more hydraulically efficient. Surface streams that enter the glacier close to the location of major subglacial drainage pathways are routed quickly to the channels and then to the glacier snout. Streams that enter the glacier further away from the drainage pathways are routed slowly to the channels and then to the snout because they first flow through a distributed drainage system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This paper describes the development and testing of a distributed, physically based model of glacier hydrology. The model is used to investigate the behaviour of the hydrological system of Haut Glacier d'Arolla, Valais, Switzerland. The model has an hourly time-step and three main components: a surface energy balance submodel, a surface flow routing submodel and a subglacial hydrology submodel. The energy balance submodel is used to calculate meltwater production over the entire glacier surface. The surface routing submodel routes meltwater over the glacier surface from where it is produced to where it either enters the subglacial hydrological system via moulins or runs off the glacier surface. The subglacial hydrology submodel calculates water flow in a network of conduits, which can evolve over the course of a melt season simulation in response to changing meltwater inputs. The main model inputs are a digital elevation model of the glacier surface and its surrounding topography, start-of-season snow depth distribution data and meteorological data. Model performance is evaluated by comparing predictions with field measurements of proglacial stream discharge, subglacial water pressure (measured in a borehole drilled to the glacier bed) and water velocities inferred from dye tracer tests. The model performs best in comparison with the measured proglacial stream discharges, but some of the substantial features of the other two records are also reproduced. In particular, the model results show the high amplitude water pressure cycles observed in the borehole in the mid-melt season and the complex velocity/discharge hysteresis cycles observed in dye tracer tests. The results show that to model outflow hydrographs from glacierized catchments effectively, it is necessary to simulate spatial and temporal variations in surface melt rates, the delaying effect of the surface snowpack and the configuration of the subglacial drainage system itself. The model's ability to predict detailed spatial and temporal patterns of subglacial water pressures and velocities should make it a valuable tool for aiding the understanding of glacier dynamics and hydrochemistry. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
A GeoVision Micro™ colour video camera was used to investigate the internal structure of 11 boreholes at Haut Glacier d'Arolla, Switzerland. The boreholes were distributed across a half-section of the glacier, with closest spacing towards the glacier margin. The boreholes were used to investigate the hydrology of the glacier through automatic monitoring of borehole water level and electrical conductivity (EC) at the glacier bed. EC profiling was undertaken in several boreholes to determine the existence of water quality stratification. Temporal variations in EC stratification were used to infer borehole water sources and patterns of water circulation. Borehole video was used to confirm the conclusions made from these indirect sources of evidence, and to provide an independent source of information on the structure and hydrology of this temperate valley glacier. The video showed variations in water turbidity, englacial channels and voids, conditions at the glacier bed and down-borehole changes in ice structure. Based on the video observations, englacial channels accounted for approximately 0·1% of the vertical ice thickness, and englacial voids for approximately 0·4%. Overall, the video images provided useful qualitative and semi-quantitative data that reinforce interpretations of a range of physical and chemical parameters measured in boreholes. © 1997 by John Wiley & Sons Ltd.  相似文献   

8.
Digital elevation models of the surface and bed of Midtdalsbreen, Norway are used to calculate subglacial hydraulic potential and infer drainage system structure for a series of subglacial water pressure assumptions ranging from atmospheric to ice overburden. A distributed degree‐day model is used to calculate the spatial distribution of melt on the glacier surface throughout a typical summer, which is accumulated along the various drainage system structures to calculate water fluxes beneath the glacier and exiting the portals for the different water pressure assumptions. In addition, 78 dye‐tracing tests were performed from 33 injection sites and numerous measurements of water discharge were made on the main proglacial streams over several summer melt seasons. Comparison of the calculated drainage system structures and water fluxes with dye tracing results and measured proglacial stream discharges suggests that the temporally and spatially averaged steady‐state water pressures beneath the glacier are ~70% of ice overburden. Analysis of the dye return curves, together with the calculated subglacial water fluxes shows that the main drainage network on the eastern half of the glacier consists of a hydraulically efficient system of broad, low channels (average width/height ratio ≈ 75). The smaller drainage network on the west consists of a hydraulically inefficient distributed system, dominated by channels that are exceptionally broad and very low (average width/height ratio ≈ 350). The even smaller central drainage network also consists of a hydraulically inefficient distributed system, dominated by channels that are very broad and exceptionally low (average width/height ratio ≈ 450). The channels beneath the western and central glacier must be so broad and low that they can essentially be thought of as a linked cavity system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We reconstruct englacial and subglacial drainage at Skálafellsjökull, Iceland, using ground penetrating radar (GPR) common offset surveys, borehole studies and Glacsweb probe data. We find that englacial water is not stored within the glacier (water content ~0–0.3%). Instead, the glacier is mostly impermeable and meltwater is able to pass quickly through the main body of the glacier via crevasses and moulins. Once at the glacier bed, water is stored within a thin (1 m) layer of debris‐rich basal ice (2% water content) and the till. The hydraulic potential mapped across the survey area indicates that when water pressures are high (most of the year), water flows parallel to the margin, and emerges 3 km down glacier at an outlet tongue. GPR data indicates that these flow pathways may have formed a series of braided channels. We show that this glacier has a very low water‐storage capacity, but an efficient englacial drainage network for transferring water to the glacier bed and, therefore, it has the potential to respond rapidly to changes in melt‐water inputs. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

10.
Hydrological characteristics of englacial and subglacial drainage systems in Gulkana Glacier, Alaska, were examined by analysing temporal variations of discharge and sediment load in the proglacial Phelan Creek in 2001. From data plots on semi‐log paper, it appeared appropriate to separate both discharge and sediment load into fast and slow components. The two components were possibly produced by two different drainage systems: an englacial and subglacial, ‘channellized’ system in the ablation zone, and a subglacial, ‘distributed’ system in the accumulation zone. The data indicate the occurrence of an event during which part of the ‘distributed’ drainage system changed into the ‘channellized’ drainage system. The daily time‐series of discharge and sediment load were represented using a tank model. In the model, the drainage from an additional tank was added, supposing that a subglacial reservoir full of water and sediment collapsed slowly when the subglacial drainage system changed from distributed to channellized. The simulation with the collapsed tank gave much more reasonable results than those with no collapsed tank. The contribution of the collapsed tank to total sediment load is 24%, which is much larger than 9% to total discharge. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next‐generation, high‐resolution groundwater flow simulations. Digital, optical, borehole‐wall image data from three closely spaced boreholes in the karst‐carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two‐dimensional models of vuggy megaporosity and matrix‐porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple‐point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes.  相似文献   

12.
Meltwaters collected from boreholes drilled to the base of the Haut Glacier d'Arolla, Switzerland have chemical compositions that can be classified into three main groups. The first group is dilute, whereas the second group is similar to, though generally less concentrated in major ions, than contemporaneous bulk glacial runoff. The third group is more concentrated than any observed bulk runoff, including periods of flow recession. Waters of the first group are believed to represent supraglacial meltwater and ice melted during drilling. Limited solutes may be derived from interactions with debris in the borehole. The spatial pattern of borehole water levels and borehole water column stratification, combined with the chemical composition of the different groups, suggest that the second group represent samples of subglacial waters that exchange with channel water on a diurnal basis, and that the third group represent samples of water draining through a ‘distributed’ subglacial hydraulic system. High NO3 concentrations in the third group suggest that snowmelt may provide a significant proportion of the waters and that the residence time of the waters at the bed in this particular section of the distributed system is of the order of a few months. The high NO3 concentrations also suggest that some snowmelt is routed along different subglacial flowpaths to those used by icemelt. The average SO2−4: (HCO3 + SO2−4) ratio of the third group of meltwaters is 0.3, suggesting that sulphide oxidation and carbonate dissolution (which gives rise to a ratio of 0.5) cannot provide all the HCO3 to solution. Hence, carbonate hydrolysis may be occurring before sulphide oxidation, or there may be subglacial sources of CO2, perhaps arising from microbial oxidation of organic C in bedrock, air bubbles in glacier ice or pockets of air trapped in subglacial cavities. The channel marginal zone is identified as an area that may influence the composition of bulk meltwater during periods of recession flow and low diurnal discharge regimes. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
On the retrieval of moment tensors from borehole data   总被引:5,自引:0,他引:5  
The complete moment tensors of seismic sources in homogeneous or vertically inhomogeneous isotropic structures cannot be retrieved using receivers deployed in one vertical borehole. The complete moment tensors can be retrieved from amplitudes of P‐waves, provided that receivers are deployed in at least three boreholes. Using amplitudes of P‐ and S‐waves, two boreholes are, in principle, sufficient. Similar rules also apply to transversely isotropic media with a vertical axis of symmetry. In the case of limited observations, the inversion can be stabilized by imposing the zero‐trace constraint on the moment tensors. However, this constraint is valid only if applied to observations of shear faulting on planar faults in isotropic media, which produces double‐couple mechanisms. For shear faulting on non‐planar faults, for tensile faulting, and for shear faulting in anisotropic media, the zero‐trace constraint is no longer valid and can distort the retrieved moment tensor and bias the fault‐plane solution. Numerical modelling simulating the inversion of the double‐couple mechanism from real data reveals that the errors in the double‐couple and non‐double‐couple percentages of the moment tensors rapidly decrease with increase in the number of boreholes used. For noisy P‐ and S‐wave amplitudes with noise of 15% of the top amplitude at each channel and for a velocity model biased by 10%, the errors in the double‐couple percentage attain 25, 13 and 6% when inverting for the double‐couple mechanism from one, two and three boreholes.  相似文献   

14.
Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.  相似文献   

15.
Identifying flows into, out of, and across boreholes is important for characterizing aquifers, determining the depth at which water enters boreholes, and determining the locations and rates of outflow. This study demonstrates how Single Borehole Dilution Tests (SBDTs) carried out under natural head conditions provide a simple and cheap method of identifying vertical flow within boreholes and determining the location of in‐flowing, out‐flowing, and cross‐flowing fractures. Computer simulations were used to investigate the patterns in tracer profiles that arise from different combinations of flows. Field tracer tests were carried out using emplacements of a saline tracer throughout the saturated length of boreholes and also point emplacements at specific horizons. Results demonstrated that SBDTs can be used to identify flowing fractures at the top and bottom of sections of vertical flow, where there is a change in vertical flow rate within a borehole, and also where there are consistent decreases in tracer concentration at a particular depth. The technique enables identification of fractures that might be undetected by temperature and electrical conductance logging, and is a simple field test that can be carried out without pumping the borehole.  相似文献   

16.
To improve our understanding of the interactions between hydrology and dynamics in mostly cold glaciers (in which water flow is limited by thermal regime), we analyse short‐term (every two days) variations in glacier flow in the ablation zone of polythermal John Evans Glacier, High Arctic Canada. We monitor the spatial and temporal propagation of high‐velocity events, and examine their impacts upon supraglacial drainage processes and evolving subglacial drainage system structure. Each year, in response to the rapid establishment of supraglacial–subglacial drainage connections in the mid‐ablation zone, a ‘spring event’ of high horizontal surface velocities and high residual vertical motion propagates downglacier over two to four days from the mid‐ablation zone to the terminus. Subsequently, horizontal velocities fall relative to the spring event but remain higher than over winter, reflecting channelization of subglacial drainage but continued supraglacial meltwater forcing. Further transient high‐velocity events occur later in each melt season in response to melt‐induced rising supraglacial meltwater inputs to the glacier bed, but the dynamic response of the glacier contrasts with that recorded during the spring event, with the degree of spatial propagation a function of the degree to which the subglacial drainage system has become channelized. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three‐dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high‐resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time‐lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.  相似文献   

18.
Numerical experiments suggest that the last glaciation severely affected the upper lithosphere groundwater system in NW Poland: primarily its flow pattern, velocities and fluxes. We have simulated subglacial groundwater flow in two and three spatial dimensions using finite difference codes for steady‐state and transient conditions. The results show how profoundly the ice sheet modifies groundwater pressure heads beneath and some distance beyond the ice margin. All model runs show water discharge at the ice forefield driven by ice‐sheet‐thickness‐modulated, down‐ice‐decreasing hydraulic heads. In relation to non‐glacial times, the transient 3D model shows significant changes in the groundwater flow directions in a regionally extensive aquifer ca. 90 m below the ice–bed interface and up to 40 km in front of the glacier. Comparison with empirical data suggests that, depending on the model run, only between 5 and 24% of the meltwater formed at the ice sole drained through the bed as groundwater. This is consistent with field observations documenting abundant occurrence of tunnel valleys, indicating that the remaining portion of basal meltwater was evacuated through a channelized subglacial drainage system. Groundwater flow simulation suggests that in areas of very low hydraulic conductivity and adverse subglacial slopes water ponding at the ice sole was likely. In these areas the relief shows distinct palaeo‐ice lobes, indicating fast ice flow, possibly triggered by the undrained water at the ice–bed interface. Owing to the abundance of low‐permeability strata in the bed, the simulated groundwater flow depth is less than ca. 200 m. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This study deals with the reliability of monitoring the transition zone between fresh and saline waters in coastal aquifers, considering the effect of tides in long‐perforated boreholes. Electric conductivity (EC) fluctuations in the coastal aquifer of Israel, as measured in long‐perforated borehole, were found to have the same periodicities as the sea tide, though some orders of magnitude larger than sea‐level or groundwater level fluctuations. Direct measurements in the aquifer through buried EC sensors demonstrate that EC measurements within the long‐perforated boreholes might be distorted due to vertical flow in the boreholes, whereas actual fluctuations of the transition zone within the aquifer are some orders of magnitude smaller. Considering these field data, we suggest that monitoring of the transition zone between fresh and saline water adjacent to the sea through long‐perforated boreholes is unreliable. EC fluctuations in short‐perforated boreholes (1 m perforation at the upper part of the transition zone) were somewhat larger than in the aquifer, but much smaller than those in the long‐perforated borehole. The short‐perforation diminishes the vertical flow and the distortion and therefore is more reliable for monitoring the transition zone in the shoreline vicinity.  相似文献   

20.
Proglacial suspended sediment transport was monitored at Haut Glacier d'Arolla, Switzerland, during the 1998 melt season to investigate the mechanisms of basal sediment evacuation by subglacial meltwater. Sub‐seasonal changes in relationships between suspended sediment transport and discharge demonstrate that the structure and hydraulics of the subglacial drainage system critically influenced how basal sediment was accessed and entrained. Under hydraulically inefficient subglacial drainage at the start of the melt season, sediment availability was generally high but sediment transport increased relatively slowly with discharge. Later in the melt season, sediment transport increased more rapidly with discharge as subglacial meltwater became confined to a spatially limited network of channels following removal of the seasonal snowpack from the ablation area. Flow capacity is inferred to have increased more rapidly with discharge within subglacial channels because rapid changes in discharge during highly peaked diurnal runoff cycles are likely to have been accommodated largely by changes in flow velocity. Basal sediment availability declined during channelization but increased throughout the remainder of the monitored period, resulting in very efficient basal sediment evacuation over the peak of the melt season. Increased basal sediment availability during the summer appears to have been linked to high diurnal water pressure variation within subglacial channels inferred from the strong increase in flow velocity with discharge. Basal sediment availability therefore appears likely to have been increased by (1) enhanced local ice‐bed separation leading to extra‐channel flow excursions and[sol ]or (2) the deformation of basal sediment towards low‐pressure channels due to a strong diurnally reversing hydraulic gradient between channels and areas of hydraulically less‐efficient drainage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号