首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The primary objective of this study is to further substantiate multistep climatic forcing of late‐glacial vegetation in southern South America. A secondary objective is to establish the age of deglaciation in Estrecho de Magallanes–Bahía Inútil. Pollen assemblages at 2‐cm intervals in a core of the mire at Puerto del Hambre (53°36′21″S, 70°55′53″W) provide the basis for reconstructing the vegetation and a detailed account of palaeoclimate in subantarctic Patagonia. Chronology over the 262‐cm length of core is regulated by 20 AMS radiocarbon dates between 14 455 and 10 089 14C yr BP. Of 13 pollen assemblage zones, the earliest representing the Oldest Dryas chronozone (14 455–13 000 14C yr BP) records impoverished steppe with decreasing frequencies and loss of southern beech (Nothofagus). Successive 100‐yr‐long episodes of grass/herbs and of heath (Empetrum/Ericaceae) before 14 000 14C yr BP infer deglacial successional communities under a climate of increased continentality prior to the establishment of grass‐dominated steppe. The Bølling–Allerød (13 000–11 000 14C yr BP) is characterised by mesic grassland under moderating climate that with abrupt change to heath dominance after 12 000 14C yr BP was warmer and not as humid. At the time of the Younger Dryas (11 000–10 000 14C yr BP), grass steppe expanded with a return of colder, more humid climate. Later, with gradual warming, communities were invaded by southern beech. The Puerto del Hambre record parallels multistep, deglacial palaeoclimatic sequences reported elsewhere in the Southern Andes and at Taylor Dome in Antarctica. Deglaciation of Estrecho de Magallanes–Bahía Inútil is dated close to 14 455 14C yr BP, invalidating earlier dates of between 15 800 and 16 590 14C yr BP. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Two sedimentary cores with pollen, charcoal and radiocarbon data are presented. These records document the Late‐glacial and Holocene dry forest vegetation, fire and environmental history of the southern Cauca Valley in Colombia (1020 m). Core Quilichao‐1 (640 cm; 3° 6′N, 76° 31′W) represents the periods of 13 150–7720 14C yr BP and, following a hiatus, from 2880 14C yr BP to modern. Core La Teta‐2 (250 cm; 3° 5′N, 76° 32′W) provides a continuous record from 8700 14C yr BP to modern. Around 13 150 14C yr BP core Quilichao‐1 shows an active Late‐glacial drainage system and presence of dry forest. From 11 465 to 10 520 14C yr BP dry forest consists mainly of Crotalaria, Moraceae/Urticaceae, Melastomataceae/Combretaceae, Piper and low stature trees, such as Acalypha, Alchornea, Cecropia and Celtis. At higher elevation Andean forest comprising Alnus, Hedyosmum, Quercus and Myrica was common. After 10 520 14C yr BP the floral composition of dry forest changed, with extensive open grass vegetation indicative of dry climatic conditions. This event may coincide with the change to cool and dry conditions in the second part of the El Abra stadial, an equivalent to the Younger Dryas. From 8850 14C yr BP the record from La Teta indicates dry climatic conditions relative to the present, these prevailing up to 2880 14C yr BP at Quilichao and to 2720 14C yr BP at La Teta. Severe dryness reached maxima at 7500 14C yr BP and 4300 14C yr BP, when dry forest reached maximum expansion. Dry forest was gradually replaced by grassy vegetation, reaching maximum expansion around 2300 14C yr BP. After 2300 14C yr BP grassy vegetation remains abundant. Presence of crop taxa (a.o. Zea mays), disturbance indicators (Cecropia) and an increase in charcoal point to the presence of pre‐Columbian people since 2300 14C yr BP. After 950 14C yr BP, expansion of secondary forest taxa may indicate depopulation and abandonment of previously cultivated land. After 400 14C yr BP, possibly related to the Spanish conquest, secondary forest expanded and charcoal concentrations increased, possibly indicating further reduction of cultivated land. During the past century, Heliotropium and Didymopanax became abundant in an increasingly degraded landscape. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
A pollen record from the Huelmo site (ca. 41°30′S) shows that vegetation and climate changed at millennial time‐scales during the last glacial to Holocene transition in the mid‐latitude region of western South America. The record shows that a Nothofagus parkland dominated the landscape between 16 400 and 14 600 14C yr BP, along with Magellanic Moorland and cupressaceous conifers. Evergreen North Patagonian rainforest taxa expanded in pulses at 14 200 and 13 000 14C yr BP, following a prominent rise in Nothofagus at 14 600 14C yr BP. Highly diverse, closed canopy rainforests dominated the lowlands between 13 000 and 12 500 14C yr BP, followed by the expansion of cold‐resistant podocarps and Nothofagus at ca. 12 500 and 11 500 14C yr BP. Local disturbance by fire favoured the expansion of shade‐intolerant opportunistic taxa between 10 900 and 10 200 14C yr BP. Subsequent warming pulses at 10 200 and 9100 14C yr BP led to the expansion of thermophilous, summer‐drought resistant Valdivian rainforest trees until 6900 14C yr BP. Our results suggest that cold and hyperhumid conditions characterised the final phase of the Last Glacial Maximum (LGM), between 16 400 and 14 600 14C yr BP. The last ice age Termination commenced with a prominent warming event that led to a rapid expansion of North Patagonian trees and the abrupt withdrawal of Andean ice lobes from their LGM positon at ca. 147 000 14C yr BP. Hyperhumid conditions prevailed between 16 400 and 13 000 14C yr BP, what we term the ‘extreme glacial mode’ of westerly activity. This condition was brought about by a northward shift and/or intensification of the southern westerlies. The warmest/driest conditions of the last glacial–interglacial transition occurred between 9100 and 6900 14C yr BP. During this period, the westerlies shifted to an ‘extreme interglacial mode’ of activity, via a poleward migration of stormtracks. Our results indicate that a highly variable climatic interval lasting 5500 14C years separate the opposite extremes of vegetation and climate during the last glacial‐interglacial cycle, i.e. the end of the LGM and the onset of the early Holocene warm and dry period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Six new radiocarbon ages and a pollen sequence are provided for Laguna Stibnite, a small lake on the Taitao Peninsula, Chile (latitude 46°25'S, longitude 74°24'W). The sediments record a late-glacial to present sequence, with a basal age of 14 335 ± 145 yr BP (Q-2840). The radiocarbon ages provide the basis for a sound chronology in a region of Chile where few palynological studies have been made and where previous radiocarbon ages are ambiguous. The chronology from Laguna Stibnite supports the acceptance of a radiocarbon chronology based on wood fragments (rather than bulk analysis) at a site near Puerto Edén further south in the Chilean Channels (49°08'S). These data from Laguna Stibnite provide evidence for an early deglaciation (before 14 000 yr BP) in this region of southern Chile. The sequence provides no evidence for a climatic reversal between 11 000 yr BP and 10 000 yr BP, the so-called Younger Dryas chron.  相似文献   

5.
A combined pollen, charcoal and climatic record is presented from Cranes Moor, southern England, covering the period c. 10 500–5850 cal a BP. It is shown that the occurrence of burning is closely related to natural processes, including prevailing climatic conditions and vegetation composition. These burning events are often linked to an increase in the summer moisture deficit, implying that the timing of burning events is linked to periods of warmer/drier climate during the Holocene Thermal Maximum (c. 11 000–5000 cal a BP). These events play an important role in the vegetation composition and succession around the site. The nature of the burning recorded at the site shows strong similarities with other records from northern Europe. This study throws caution on suggestions that fire in the Holocene record from areas such as the British Isles is linked only to human activity, and enhances the possibility that natural fire incidence played an important role in natural woodland structure dynamics.  相似文献   

6.
Full‐glacial pollen assemblages from four radiocarbon‐dated interstadial deposits in southwestern Ohio and southeastern Indiana imply the presence of herbaceous vegetation (tundra or muskeg with subarctic indicator Selaginella selaginoides) on the southern margin of the Miami lobe of the Laurentide Ice Sheet ca. 20 000 14C yr BP. Scattered Picea (spruce) and possibly Pinus (pine) may have developed regionally ca. 19 000 14C yr BP, and ca. 18 000 14C yr BP, respectively. Spruce stumps in growth position support a local source of pollen. Prior to the ca. 14 000 14C yr BP glacial advance, small amounts of Quercus (oak) and other deciduous pollen suggest development of regional boreal (conifer–hardwood) forests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Studies of lake sediments on Sejerø in southern Kattegat indicate a treeless arctic environment with the dwarf shrub Salix polaris, herbs and wetland mosses. The mean July temperature was around 8 to 10°C. An AMS radiocarbon age determination of a Salix twig yielded an age of around 36 000 14C yr BP, which is in accordance with previous conventional dating of bulk sediment samples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Zazo  C.  Dabrio  C.J.  Borja  F.  Goy  J.L.  Lezine  A.M.  Lario  J.  Polo  M.D.  Hoyos  M.  Boersma  J.R. 《Geologie en Mijnbouw》1998,77(3-4):209-224
The stratigraphic relationships, genesis and chronology, including radiocarbon dating, of the Quaternary sandy deposits forming the El Asperillo cliffs (Huelva) were studied with special emphasis on the influence of neotectonic activity, sea-level changes and climate upon the evolution of the coastal zone. The E-W trending normal fault of Torre del Loro separates two tectonic blocks. The oldest deposits occur in the upthrown block. They are Early to Middle Pleistocene fluviatile deposits, probably Late Pleistocene shallow-marine deposits along an E-W trending shoreline, and Late Pleistocene and Holocene aeolian sands deposited under prevailing southerly winds. Three Pleistocene and Holocene aeolian units accumulated in the downthrown block. Of these, Unit 1, is separated from the overlying Unit 2 by a supersurface that represents the end of the Last Interglacial. Accumulation of Unit 2 took place during the Last Glacial under more arid conditions than Unit 1. The supersurface separating Units 2 and 3 was formed between the Last Glacial maximum at 18 000 14C yr BP and ca. 14 000 14C yr BP, the latter age corresponding to an acceleration of the rise of sea level. Unit 3 records wet conditions. The supersurface separating Units 3 and 4 fossilised the fault and the two fault blocks. Units 4 (deposited before the 4th millennium BC), 5 (> 2700 14C yr BP to 16th century) and 6 (16th century to present) record relatively arid conditions. Prevailing wind directions changed with time from W (Units 2–4) to WSW (Unit 5) and SW (Unit 6).  相似文献   

9.
Biostratinomic analysis (processes acting between death and burial) of Lateglacial mammal bone assemblages from three caves in northern England demonstrates the value of re‐examining archived assemblages. With AMS radiocarbon dating of key specimens, these assemblages shed light on the ecology of a region at the northern limit of Lateglacial human activity in Britain. During the Lateglacial Interstadial bears, wolves and humans expanded into the region, bears by around 12 500 14C yr BP, and the earliest evidence for human presence is around 12 300 14C yr BP. At Victoria Cave, wolf activity included predation and scavenging of large ungulates and scavenging bear carcasses apparently resulting from hibernation deaths. The scavenging of bear carcasses is possibly confined to the first part of the Lateglacial Interstadial, whereas evidence for wolf scavenging large ungulates increases later in the Interstadial, after about 11 800 14C yr BP, perhaps reflecting changes in the productivity of the Lateglacial ecosystem, and in human subsistence patterns. The assemblage from Sewell's Cave is wolf den debris from the very end of the Lateglacial Interstadial around 10 800 14C yr BP, whilst that from Kinsey Cave is dominated by large‐bodied carnivores, and is argued to have a quite different taphonomic history. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
A paleoclimatic reconstruction for the past 35,000 years for northern Oman is based on an unusual approach using travertines and fracture calcites associated with hyperalkaline springs. High-pH groundwaters (pH up to 11.9) discharge from the mantle sequence of the Oman Ophiolite as the product of modern, low-temperature serpentinization. Under arid climatic conditions, hyperalkaline discharge occurs at the surface. Uptake of atmospheric CO2 precipitates characteristic laminated travertines, accompanied by strong kinetic depletion of 13C and 18O. Pluvial climates supporting a shallow bicarbonate-groundwater flow system and vegetation are recorded by fracture calcites with equilibrium stable isotope contents and calcite-replaced roots and stems. All such carbonates have modern initial 14C contents, allowing radiocarbon dating and paleoclimatic reconstruction for the late Pleistocene and Holocene. Our reconstruction shows a dominantly wet late Pleistocene up to 19,000 yr B.P., when a phase of climatic deterioration began, leading to a period of hyperaridity which dominated from ca. 16,300 to 13,000 yr B.P. The early Holocene pluvial occurred from 12,500 to ca. 6500 yr B.P. and was followed by renewed climatic deterioration and the current phase of hyperaridity. Comparison of this paleoclimatic reconstruction with that for lacustrine deposits from the A'Rub al Khali of central Saudi Arabia and the summer insolation-driven monsoon record of east Africa and the Arabian Sea is remarkably good.  相似文献   

11.
A stratigraphic succession of alternating peat and minerogenic sediments at the foot of a steep mountain slope provides the basis for the reconstruction of a preliminary colluvial history from the alpine zone of Jotunheimen, southern Norway. Layers of silty sand and sandy silt, typically 5–10 cm thick and interpreted as distal debris-flow facies, are separated by layers of peat that have been radiocarbon dated. Deposition from at least 7500 to about 3800 14C yr BP of predominantly minerogenic material suggests relatively infrequent but large-magnitude debris-flow events in an environment warmer and/or drier than today. Particularly low colluvial activity between about 6500 and 3900 14C yr BP was terminated by a succession of major debris-flow events between about 3800 and 3400 14C yr BP. Unhumified peats indicative of higher water tables, separate six debris-flows that occurred between about 3300 and 2300 14C yr BP and signify a continuing high frequency of colluvial activity. Uninterrupted peat accumulation between about 2400 and 1600 14C yr BP indicates reduced debris-flow activity; subsequent renewed activity appears to have culuminated in the ‘Little Ice Age’ after about 600 14C yr BP. This pattern of colluvial deposition demonstrates a long history of natural Holocene low-alpine landscape instability, suggests an increase first in the magnitude and then in the frequency of debris-flow activity coincident with late Holocene climatic deterioration, and points to the potential of debris-flow records as a unique source of palaeoclimatic information related to extreme rainfall events. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
This study presents a multiproxy record of Holocene environmental change in the region East of the Pechora Delta. A peat plateau profile (Ortino II) is analyzed for plant macrofossils, sediment type, loss on ignition, and radiocarbon dating. A paleosol profile (Ortino III) is described and radiocarbon dated. A previously published peat plateau profile (Ortino I) was analyzed for pollen and conifer stomata, loss on ignition, and radiocarbon dating. The interpretation of the latter site is reassessed in view of new evidence. Spruce immigrated to the study area at about 8900 14C yr B.P. Peatland development started at approximately the same time. During the Early Holocene Hypsithermal taiga forests occupied most of the present East-European tundra and peatlands were permafrost free. Cooling started after 5000 14C yr B.P., resulting in a retreat of forests and permafrost aggradation. Remaining forests disappeared from the study area around 3000 14C yr B.P., coinciding with more permafrost aggradation. The retreat of forests resulted in landscape instability and the redistribution of sand by eolian activity. The displacement of the Arctic forest line and permafrost zones indicates a warming of at least 2–3°C in mean July and annual temperatures during the Early Holocene. At least two cooling periods can be recognized for the second half of the Holocene, starting at about 4800 and 3000 14C yr B.P.  相似文献   

13.
Pollen analysis of continuous sediment cores from two lakes in the northern Chonos Archipelago (44°S) in southern Chile shows a complete postglacial record of vegetation change. The fossil records indicate that deglaciation was complete in the northern Chonos by at least 13,600 14C yr BP. Ericaceous heath and grassland persisted for more than 600 years after deglaciation under the influence of dry/cold climates and frequent burning. Nothofagus-Pilgerodendron-Podocarpus forest, with modern analogues in the southern Chonos Archipelago, was established across the northern islands by 12,400 14C yr BP under increasingly warm and wet climates. There is no evidence for a return to cooler climates during the Younger Dryas chronozone. The rise of Tepualia stipularis and Weinmannia trichosperma as important forest components between 10,600 and 6000 14C yr BP may be associated with climates that were warmer than present. The collapse of Pilgerodendron communities during this time may have been triggered by a combination of factors related to disturbance frequency including tephra deposition events, fire and climate change. After 6000 14C yr BP Pilgerodendron recovers and Nothofagus-Pilgerodendron-Tepualia forest persists until the present. European logging and burning activity may have increased the susceptibility of North Patagonian Rainforest to invasion by introduced species and to future collapse of the long-lived Pilgerodendron communities.  相似文献   

14.
The late‐glacial Bølling period was first identified by Johs. Iversen on the basis of pollen results from Lake Bølling Sø in Denmark. Because there were no radiocarbon dates from the sequence the Bølling Chronozone (12 000–13 000 14C yr BP) was later established on the basis of dates from other sites. A new project is reinvestigating the sediments from the Bølling Sø sequence with AMS radiocarbon dating and multiproxy analyses. Here we present results of AMS radiocarbon dating, macrofossil analyses, cladoceran analyses (Cladocera concentrations and chydorid ephippia) and Pediastrum analyses (concentrations). The AMS dates on land plant remains show that the lower part of the sequence is around 12 500 14C yr BP, and thus clearly pre‐dates the Allerød chronozone. However, construction of a chronology for the sequence was problematic, partly because of reworking of macroscopic plant remains. The climate ameliorated after glacial conditions to such an extent that growth of plants could begin at ca. 12 500 14C yr BP, but the results of multiproxy analyses show little evidence for a further warming period during the pre‐Allerød part of the sequence. Lake productivity was low, and tree birch rare or maybe absent. This may reflect widespread occurrence of dead ice, unstable soils, heavy in‐wash of minerogenic matter to the lake, resulting in turbid water and rapid sedimentation. The early pioneer vegetation was characterised by Salix polaris and Dryas octopetala, and by herbs. The Allerød Chronozone, and especially its initial part, appears to have been relatively warm but reduced cladoceran concentrations and increased proportion of chydorid ephippia suggest that climate cooled in the middle Allerød and that the late Allerød was colder than the early part. The early Younger Dryas was probably colder than the late Younger Dryas. Clear warming is apparent at the beginning of the Holocene, where the first macrofossil evidence of trees (Betula pubescens, Populus tremula) is found. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The end of the Pleistocene in North America was marked by a wave of extinctions of large mammals, with the last known appearances of many species falling between ca. 11,000–10,000 14C yr BP. Temporally, this period overlaps with the Clovis Paleoindian cultural complex (11,190–10,530 14C yr BP) and with sudden climatic changes that define the beginning of the Younger Dryas chronozone (ca. 11,000–10,000 14C yr BP), both of which have been considered as potential proximal causes of this extinction event. Radiocarbon dating of enamel and filtered bone collagen from an extinct American Mastodon (Mammut americanum) from northern Indiana, USA, by accelerator mass spectrometer yielded direct dates of 10,055 ± 40 14C yr BP and 10,032 ± 40 14C yr BP, indicating that the animal survived beyond the Clovis time period and into the late Younger Dryas. Although the late survival of this species in mid-continental North America does not remove either humans or climatic change as contributing causes for the late Pleistocene extinctions, neither Clovis hunters nor the climatic perturbations initiating the Younger Dryas chronozone were immediately responsible for driving mastodons to extinction.  相似文献   

16.
Several high-resolution continental records have been reported recently in sites in South America, but the extent to which climatic variations were synchronous between the northern and southern hemispheres during the Late-glacial–Holocene transition, and the causes of the climatic changes, remain open questions. Previous investigations indicated that, east of the Andes, the middle and high latitudes of South America warmed uniformly and rapidly from 13 000 14C yr BP, with no indication of subsequent climate fluctuations, equivalent, for example, to the Younger Dryas cooling. Here we present a multiproxy continuous record, radiocarbon dated by accelerated mass spectroscopy, from proglacial Lake Mascardi in Argentina. The results show that unstable climatic conditions, comparable to those described from records obtained in the Northern Hemisphere, dominated the Late-glacial–Holocene transition in Argentina at this latitude. Furthermore, a significant advance of the Tronador ice-cap, which feeds Lake Mascardi, occurred during the Younger Dryas Chronozone. This instability suggests a step-wise climatic history reflecting a global, rather than regional, forcing mechanism. The Lake Mascardi record, therefore, provides strong support for the hypothesis that ocean–atmosphere interaction, rather than global ocean circulation alone, governed interhemispheric climate teleconnections during the last deglaciation. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
Pollen recovered from core tops of deep‐sea cores from offshore northwestern Western Australia were used to build climatic transfer functions applied to sediment samples from major rivers bordering the ocean in the same region and a deep‐sea core offshore Northwest Cape. Results show for the last 100 000 years, with a gap in the record spanning the 64 000 to 46 000 years interval, that from about 100 000 to 82 000 yr BP, climatic conditions represented by rainfall, temperature and number of humid months, were significantly higher than today's values. For the entire record, the coldest period occurred about 43 000 to 39 000 yr BP but it was wetter than today, whereas the Last Glacial Maximum saw a significant reduction in summer rainfall, interpreted as a result of the absence of monsoonal activity in the region. The Holocene can be divided into two distinct phases: one peaking around 6000 cal. yr BP with highest rainfall and summer temperatures; the second one commencing at 5000 cal. yr BP and showing a progressive decrease in summer rainfall in contrast to an increase in winter rainfall, paralleled by a progressive decrease in temperatures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Marine erosion at Clettnadal, West Burra island off the west coast of Shetland, caused the drainage of a small water body at Clettnadal, exposing deposits of Late Devensian and Holocene age. Pollen, diatom and invertebrate analyses have provided variable records of environmental change during stratigraphical event GI‐1. Event GS‐1 is revealed by the non‐pollen evidence, especially by Coleoptera, by sediment stratigraphy, and by radiocarbon dating. In contrast, the pollen evidence indicates that an arctic tundra flora, in which dwarf shrubs were prominent, persisted throughout the Late‐glacial. The Holocene brought colonisation by tree birch, but by ca. 9000 14C yr BP the taxon had almost disappeared. This contrasts strongly with other Holocene pollen records for Shetland where both Betula and Corylus avellana‐type survived longer—at some sites, for example, until ca. 2900 yr BP. The extreme westerly and exposed coastal situation of Clettnadal appears to be responsible both for a muted Late‐glacial response in the pollen record of terrestrial vegetation and for the early replacement of woodland by a maritime grassland. The results provoke questions concerning biological stability at times of marked climatic change. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
A Holocene lake sediment record is presented from Lake N14 situated on Angissoq Island 15 km off the main coast of southern Greenland. The palaeoclimatic development has been interpreted on the basis of flux and percentage content of biogenic silica, clastic material, organic material and sulphur as well as sedimentation rate, moss content and magnetic susceptibility. A total of 43 radiocarbon dates has ensured a reliable chronology. It is argued that varying sediment composition mainly reflects changing precipitation. By analogy with the present meteorological conditions in southern Greenland, Holocene climate development is inferred. Between 11 550 and 9300 cal. yr BP temperature and precipitation increase markedly, but this period is climatically unstable. From 9300 yr BP conditions become more stable and a Holocene climatic optimum, characterised by warm and humid conditions, is observed from 8000 to 5000 cal. yr BP. From 4700 cal. yr BP the first signs of a climatic deterioration are observed, and from 3700 cal. yr BP the climate has become more dry and cold. Superimposed on the climatic long‐term trend is climate variability on a centennial time‐scale that increases in amplitude after 3700 cal. yr BP. A climatic scenario related to the strength and position of the Greenland high‐pressure cell and the Iceland low‐pressure cell is proposed to explain the Holocene centennial climate variability. A comparison of the Lake N14 record with a terrestrial as well as a marine record from the eastern North Atlantic Ocean suggests that the centennial climate variability was uniform over large areas at certain times. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
A sudden and sharp rise in the 14C content of the atmosphere, which occurred between ca. 850 and 760 calendar yr BC (ca. 2750–2450 BP on the radiocarbon time-scale), was contemporaneous with an abrupt climate change. In northwest Europe (as indicated by palaeoecological and geological evidence) climate changed from relatively warm and continental to oceanic. As a consequence, the ground-water table rose considerably in certain low-lying areas in The Netherlands. Archaeological and palaeoecological evidence for the abandonment of such areas in the northern Netherlands is interpreted as the effect of a rise of the water table and the extension of fens and bogs. Contraction of population and finally migration from these low-lying areas, which had become marginal for occupation, and the earliest colonisation by farming communities of the newly emerged salt marshes in the northern Netherlands around 2550 BP, is interpreted as the consequence of loss of cultivated land. Thermic contraction of ocean water and/or decreased velocity and pressure on the coast by the Gulf Stream may have caused a fall in relative sea-level rise and the emergence of these salt marshes. Evidence for a synchronous climatic change elsewhere in Europe and on other continents around 2650 BP is presented. Temporary aridity in tropical regions and a reduced transport of warmth to the temperate climate regions by atmospheric and/or oceanic circulation systems could explain the observed changes. As yet there is no clear explanation for this climate change and the contemporaneous increase of 14C in the atmosphere. The strategy of 14C wiggle-match dating can play an important role in the precise dating of organic deposits, and can be used to establish possible relationships between changing 14C production in the atmosphere, climate change, and the impact of such changes on hydrology, vegetation, and human communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号