首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new floor connecting system developed for low‐damage seismic‐resistant building structures is described herein. The system, termed Inertial Force‐Limiting Floor Anchorage System (IFAS), is intended to limit the lateral forces in buildings during an earthquake. This objective is accomplished by providing limited‐strength deformable connections between the floor system and the primary elements of the lateral force‐resisting system. The connections transform the seismic demands from inertial forces into relative displacements between the floors and lateral force‐resisting system. This paper presents the IFAS performance in a shake‐table testing program that provides a direct comparison with an equivalent conventional rigidly anchored‐floor structure. The test structure is a half‐scale, 4‐story reinforced concrete flat‐plate shear wall structure. Precast hybrid rocking walls and special precast columns were used for test repeatability in a 22‐input strong ground‐motion sequence. The structure was purposely designed with an eccentric wall layout to examine the performance of the system in coupled translational‐torsional response. The test results indicated a seismic demand reduction in the lateral force‐resisting system of the IFAS structure relative to the conventional structure, including reduced shear wall base rotation, shear wall and column inter‐story drift, and, in some cases, floor accelerations. These results indicate the potential for the IFAS to minimize damage to the primary structural and non‐structural components during earthquakes.  相似文献   

2.
This paper presents experimental and numerical studies of a full‐scale deformable connection used to connect the floor system of the flexible gravity load resisting system to the stiff lateral force resisting system (LFRS) of an earthquake‐resistant building. The purpose of the deformable connection is to limit the earthquake‐induced horizontal inertia force transferred from the floor system to the LFRS and, thereby, to reduce the horizontal floor accelerations and the forces in the LFRS. The deformable connection that was studied consists of a buckling‐restrained brace (BRB) and steel‐reinforced laminated low‐damping rubber bearings (RB). The test results show that the force–deformation responses of the connection are stable, and the dynamic force responses are larger than the quasi‐static force responses. The BRB+RB force–deformation response depends mainly on the BRB response. A detailed discussion of the BRB experimental force–deformation response is presented. The experimental results show that the maximum plastic deformation range controls the isotropic hardening of the BRB. The hardened BRB force–deformation responses are used to calculate the overstrength adjustment factors. Details and limitations of a validated, accurate model for the connection force–deformation response are presented. Numerical simulation results for a 12‐story reinforced concrete wall building with deformable connections show the effects of including the RB in the deformable connection and the effect of modeling the BRB isotropic hardening on the building seismic response. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents the results of an analytical work addressed to understand the effects of in-plane floor flexibility on torsionally unbalanced (TU) systems subjected to bidirectional firm-soil earthquake records. The study uses a structural system consisting of a linear-elastic diaphragm supported by non-linear frames oriented along two orthogonal directions. The diaphragm is modelled with plane-stress finite elements and frames with stiffness-degrading flexural elements. Results indicate that an increase of in-plane diaphragm flexibility leads to a reduction of frame displacements for systems with initial lateral period of vibration T>0·4 s. For systems with T⩽0·4 s, in-plane floor flexibility can lead to significant frame displacement increments (50 per cent higher). Results show that these variations on displacements decrease for increasing values of both the seismic-force reduction factor and the system initial lateral period. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

4.
Unstiffened steel plate shear walls (SPSWs) are used as lateral load‐resisting systems in building structures. The energy dissipation mechanism of SPSWs consists of the tension yielding of web plates and the formation of plastic hinges at the ends of horizontal boundary elements. However, vertical boundary elements (VBEs) of high‐rise SPSWs may experience high axial forces under lateral loading. This study explores the effectiveness of staggering of web plates on the reduction of VBE forces and drift response of SPSWs during an earthquake event. An analytical study has been conducted to determine the base shear reduction factor so as to match the overstrength of staggered systems with conventional SPSWs. A design methodology has been proposed for staggered SPSWs. Six‐, 9‐, and 20‐storey staggered and conventional SPSWs with varying aspect ratios are considered in this study to compare their seismic response. These study frames are modelled and analysed in OpenSEES platform. Nonlinear static and dynamic analyses are performed to compare the drift response, hinge mechanisms, and steel tonnage. Staggered SPSWs showed uniform drift distribution and reduction in interstorey drift and axial force demand on the VBEs.  相似文献   

5.
This paper presents experimental and numerical studies of a full‐scale deformable connection used to connect the floor system of the flexible gravity load resisting system to the stiff lateral force resisting system (LFRS) of an earthquake‐resistant building. The purpose of the deformable connection is to limit the earthquake‐induced horizontal inertia force transferred from the floor system to the LFRS and thereby to reduce the horizontal floor accelerations and the forces in the LFRS. The deformable connection that was studied consists of a friction device (FD) and carbon fiber‐reinforced laminated low‐damping rubber bearings (RB), denoted as the FD + RB connection. The test results show that the force‐deformation responses of the FD + RB connection are stable under quasi‐static sinusoidal and earthquake loading histories and dynamic sinusoidal loading histories. The FD + RB connection force‐deformation response is approximated with a bilinear elastic‐plastic force‐deformation response with kinematic hardening. The FD is axially stiff, compact, easy‐to‐assemble, and able to accommodate the FD + RB connection kinematic requirements. The FD elastic stiffness controls the FD + RB connection elastic stiffness. The FD friction force controls the force when the FD + RB connection force‐deformation response transitions from elastic to post elastic. The RB provide predictable and reliable post‐elastic stiffness to the FD + RB connection. The machining tolerances for the FD components, the “break‐in” effect, the sliding history, and the dwell time affect the FD friction force. Numerical simulation results for a 12‐story reinforced concrete wall building with FD + RB connections under seismic loading show that a reduction of the FD friction force increases the FD + RB connection deformation demand.  相似文献   

6.
This paper investigates the seismic behaviour of moment‐resisting timber frames with beam‐column joints fastened with expanded tubes and reinforced with densified veneer wood. Laboratory experiments are carried out on single joints to investigate the cyclic behaviour and, more specifically, the impairment of strength, the ductility ratio and the equivalent viscous damping ratio. A phenomenological numerical model is proposed, where the beams and columns are schematized using linear‐elastic beam elements, and the joints with non‐linear hysteretic spring calibrated on the results of the experimental tests. The model is used to analyse some representative moment‐transmitting structures characterised by different number of bays and storeys. After an estimation of the lateral load‐carrying capacity using a pushover analysis, the numerical model is used to estimate the behaviour factor. An incremental dynamic analysis is performed using a set of accelerograms spectrum consistent with a chosen design spectrum. The analyses lead to an estimation of the behaviour factor of 3 and 6 for a portal frame and a five‐storey, three‐bay frame, respectively, which confirms the highly dissipative behaviour of this kind of moment connection. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
A rate‐dependent modeling technique is developed for moment resisting steel connections that utilize non‐linear viscous dampers. First, a model of the Maxwell‐type is developed that considers the non‐linear viscous damper and connection flexibility for translational motion. This model is compared with experimental results at several input motion frequencies to validate the results. The model is then extended to represent an exterior steel beam‐to‐column connection using damage‐avoidance design and non‐linear viscous dampers. By including terms to represent structural member and connection flexibility, using appropriate geometric transformations the model can be formulated to give the overall lateral load‐drift structural performance. Validation analysis shows good agreement between experimental observations and the model predictions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents the development of a deformable connection that is used to connect each floor system of the flexible gravity load resisting system (GLRS) with the stiff lateral force resisting system (LFRS) of an earthquake‐resistant building. It is shown that the deformable connection acts as a seismic response modification device, which limits the lateral forces transferred from each floor to the LFRS and allows relative motion between the GLRS and LFRS. In addition, the floor accelerations and the LFRS story shears related to the higher‐mode responses are reduced. The dispersion of peak responses is also significantly reduced. Numerical simulations of the earthquake response of a 12‐story reinforced concrete shear wall example building with deformable connections are used to define an approximate feasible design space for the deformable connection. The responses of the example building model with deformable connections and the example building model with rigid‐elastic connections are compared. Two configurations of the deformable connection are studied. In one configuration, a buckling restrained brace is used as the limited‐strength load‐carrying hysteretic component of the deformable connection, and in the other configuration, a friction device is used. Low damping laminated rubber bearings are used in both configurations to ensure the out‐of‐plane stability of the LFRS and to provide post‐elastic stiffness to the deformable connection. Important experimental results from full‐scale tests of the deformable connections are presented and used to calibrate numerical models of the connections. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper describes an analytical investigation on a reinforced concrete lateral load resisting structural system comprising a pin‐supported (base‐rocking) shear wall coupled with a moment frame on 1 or both sides of the wall. Yielding dampers are used to provide supplemental energy dissipation through the relative displacements at the vertical connections between the wall and the frames. The study extends a previous linear‐elastic model for pin‐supported wall‐frame structures by including the effects of the dampers. A closed‐form solution of the lateral load behavior of the structure is derived by approximating the discrete wall‐frame‐damper interactions with distributed (ie, continuous) properties. The validity of the model is verified by comparing the closed‐form results with computational models using OpenSees program. Then, a parametric analysis is conducted to investigate the effects of the wall, frame, and damper stiffness on the behavior of the structure. It is found that the damper stiffness significantly affects the distribution of shear forces and bending moments over the wall height. Finally, the performance‐based plastic design approach extended to the wall‐frame‐damper system is proposed. Case studies are carried out to design 2 damped pin‐supported wall‐frame structures using the proposed approach. Nonlinear dynamic time‐history analyses are conducted to verify the effectiveness of this method. Results indicate that the designed structures can achieve the performance level with the story drift ratios less than target values, and weak‐story failure mechanism is not observed. The approach can be used in engineering applications.  相似文献   

10.
Results from real‐time dynamic substructuring (RTDS) tests are compared with results from shake table tests performed on a two‐storey steel building structure model. At each storey, the structural system consists of a cantilevered steel column resisting lateral loads in bending. In two tests, a slender diagonal tension‐only steel bracing member was added at the first floor to obtain an unsymmetrical system with highly variable stiffness. Only the first‐storey structural components were included in the RTDS test program and a Rosenbrock‐W linearly implicit integration scheme was adopted for the numerical solution. The tests were performed under seismic ground motions exhibiting various amplitude levels and frequency contents to develop first and second mode‐dominated responses as well as elastic and inelastic responses. A chirp signal was also used. Coherent results were obtained between the shake table and the RTDS testing techniques, indicating that RTDS testing methods can be used to successfully reproduce both the linear and nonlinear seismic responses of ductile structural steel seismic force resisting systems. The time delay introduced by actuator‐control systems was also studied and a novel adaptive compensation scheme is proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Steel plate shear walls (SPSWs) are used as lateral force‐resisting systems in new and retrofitted structures in high‐seismic regions. Various international codes recommend the design of SPSWs assuming the entire lateral load to be resisted by the infill plates. Such a design procedure results in significant overstrength leading to uneconomical and inefficient use of materials. This study is focused on the estimation of contribution of boundary elements in resisting the lateral force considering their interaction with the web plates of SPSW systems. Initially, the relative contribution of web plates and boundary frames is computed for a single‐bay single‐story frame with varying rigidity and end connections of boundary elements. Nonlinear static analyses are carried out for the analytical models in OpenSees platform to quantify this contribution. Later, this study is extended to the code‐based designed three‐story, six‐story, and nine‐story SPSWs of varying aspect ratios. Based on the results obtained, a new design procedure is proposed taking the lateral strengths of the boundary frames into account. Nonlinear time‐history analyses are conducted for 40 recorded ground motions representing the design basis earthquake and maximum considered earthquake hazard levels to compare the interstory and residual drift response and yield mechanisms of SPSWs designed as per current practice and the proposed methodology. Finally, an expression has been proposed to predict the lateral force contribution of the infill plate and the boundary frame of SPSWs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Performance‐based engineering (PBE) methodologies allow for the design of more reliable earthquake‐resistant structures. Nonetheless, to implement PBE techniques, accurate finite element models of critical components are needed. With these objectives in mind, initially, we describe an experimental study on the seismic behaviour of both beam‐to‐column (BTC) and column‐base (CB) joints made of high‐strength steel S590 circular columns filled with concrete. These joints belonged to moment‐resisting frames (MRFs) that constituted the lateral‐force‐resisting system of an office building. BTC joints were conceived as rigid and of partial strength, whereas CB joints were designed as rigid and of full strength. Tests on a BTC joint composed of an S275 steel composite beam and high‐strength steel concrete‐filled tubes were carried out. Moreover, two seismic CB joints were tested with stiffeners welded to the base plate and anchor bolts embedded in the concrete foundation as well as where part of a column was embedded in the foundation with no stiffeners. A test programme was carried out with the aim of characterising these joints under monotonic, cyclic and random loads. Experimental results are presented by means of both force–interstory drift ratio and moment–rotation relationships. The outcomes demonstrated the adequacy of these joints to be used for MRFs of medium ductility class located in zones of moderate seismic hazard. Then, a numerical calibration of the whole joint subassemblies was successfully accomplished. Finally, non‐linear time‐history analyses performed on 2D MRFs provided useful information on the seismic behaviour of relevant MRFs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The seismic response of single‐degree‐of‐freedom (SDOF) systems incorporating flag‐shaped hysteretic structural behaviour, with self‐centring capability, is investigated numerically. For a SDOF system with a given initial period and strength level, the flag‐shaped hysteretic behaviour is fully defined by a post‐yielding stiffness parameter and an energy‐dissipation parameter. A comprehensive parametric study was conducted to determine the influence of these parameters on SDOF structural response, in terms of displacement ductility, absolute acceleration and absorbed energy. This parametric study was conducted using an ensemble of 20 historical earthquake records corresponding to ordinary ground motions having a probability of exceedence of 10% in 50 years, in California. The responses of the flag‐shaped hysteretic SDOF systems are compared against the responses of similar bilinear elasto‐plastic hysteretic SDOF systems. In this study the elasto‐plastic hysteretic SDOF systems are assigned parameters representative of steel moment resisting frames (MRFs) with post‐Northridge welded beam‐to‐column connections. In turn, the flag‐shaped hysteretic SDOF systems are representative of steel MRFs with newly proposed post‐tensioned energy‐dissipating connections. Building structures with initial periods ranging from 0.1 to 2.0s and having various strength levels are considered. It is shown that a flag‐shaped hysteretic SDOF system of equal or lesser strength can always be found to match or better the response of an elasto‐plastic hysteretic SDOF system in terms of displacement ductility and without incurring any residual drift from the seismic event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
规范对高层剪力墙结构层间位移进行限制时,没有考虑结构体系侧移模式不同的影响,这对以弯曲变形为主的结构会造成很大的误差,甚至得出一些与实际情况完全不相符的结论。针对这一问题,本文根据剪力墙结构的受力特点,将楼层位移分为有害位移和无害位移,将层间位移分为名义层间位移Δui和有害层间位移Δui~,用倒三角形分布水平荷载的等截面悬臂杆件的弯曲变形曲线作为剪力墙结构的近似侧移曲线,从理论上分析了剪力墙结构的名义层间位移、有害层间位移、层间相对转角以及截面的弯曲曲率之间的关系,给出有害层间位移的实用计算公式。最后,对比分析了控制剪力墙层间变形的几种不同方法,并通过算例分析验证了本文方法实用可行,与实际情况符合较好。  相似文献   

15.
An aluminium beam shear-link is developed for earthquake-resistant structures. The aluminium beam is designed to yield in shear mode to limit the maximum lateral force which is transmitted to primary structural members and to provide significant energy dissipation potential. Aluminium was chosen because of its low yield strength, which enables the use of thicker webs, reducing the problems of web buckling. Cyclic load tests on medium scale (1:4) models were conducted to study the hysteretic behaviour and energy dissipation potential of shear-links made of two alloys of aluminium (3003-O and 6061-O). The links were also tested at faster rates (cycling frequencies of 5, 10 and 17 Hz) to determine the effect of strain rate. The links exhibited very ductile shear yielding and excellent energy dissipation capacity. Unpinched and full hysteresis loops were observed until 10 per cent shear strain, and a relatively small influence of strain rates was observed on the link's performance. Simple design equations are developed to proportion these shear-links, using data from the cyclic load tests. In chevron-type braced systems, the shear-link is sandwiched between the tops of diagonal braces and a girder from the floor above, resulting in yielding at a lateral force less than that required to buckle the compression brace. A Shear-Link Braced Frame (SLBF) system was designed and its seismic performance was compared to that of an Ordinary Concentric Braced Frame (OCBF) with chevron braces. The SLBF system demonstrated more uniform distribution of storey drifts, reduced base shear, and a larger energy dissipation capacity per unit drift. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
地铁车站多采用基于地下连续墙(简称:地连墙)的明挖施工方法,施工后地连墙作为永久结构与车站共同受力。在车站结构抗震分析中,考虑到地连墙可能对结构抗震的有利作用,出于安全储备考虑通常忽略地连墙的存在,但地连墙对车站结构地震响应的影响规律和机理仍有待深入研究。以某典型两层三跨地铁车站结构为对象,基于近场波动有限元方法并结合黏弹性人工边界条件,开展有无地连墙情况车站结构地震响应特性对比研究,揭示不同场地条件下地连墙对车站结构地震响应的影响规律,阐明地连墙的影响机理。研究结果表明:地连墙具有减小车站结构总体层间位移效应,有利于侧墙和底层中柱抗震,但同时放大了顶底板与侧墙连接处的弯矩和正应力;地连墙对结构顶层中柱端部及中跨中板板端的内力和正应力的影响与场地条件相关,坚硬和中硬场地条件下具有减小效应,软弱场地下略有增大作用。上述结构响应规律的原因可归结为地连墙增加了结构侧墙刚度,降低了结构整体侧向变形,但限制了侧墙的弯曲变形,导致结构顶底板与侧墙交接处的弯曲变形和内力增大。  相似文献   

17.
The concept of the hybrid passive control system is studied analytically by investigating the seismic response of steel frame structures. Hybrid control systems consist of two different passive elements combined into a single device or system. The hybrid systems investigated in this research consist of a rate‐dependent damping device paired with a rate‐independent energy dissipation element. The innovative configurations exploit individual element strengths and offset their weaknesses through multiphased behavior. A nine‐story, five‐bay steel moment‐frame was used for the analysis. Six different seismic resisting systems were analyzed and compared. The conventional systems included a special moment‐resisting frame (SMRF) and a dual SMRF–buckling‐restrained brace (BRB) system. The final four configurations are hybrid passive systems. The different hybrid configurations utilize a BRB and either a high‐damping rubber damper or viscous fluid damper. The analyses were run in the form of an incremental dynamic analysis. Several damage measures were calculated, including maximum roof drift, base shear, and total roof acceleration. The results demonstrate the capability of hybrid passive control systems to improve structural response compared with conventional lateral systems and to be effective for performance‐based seismic design. Each hybrid configuration improved some aspect of structural response with some providing benefits for multiple damage measures. The multiphased nature provides improved response for frequent and severe seismic events. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The effects of Rayleigh damping model on the engineering demand parameters of two steel moment‐resisting frame buildings were evaluated. Two‐dimensional models of the buildings were created and response history analysis were conducted for three different hazard levels. The response history analysis results indicate that mass‐proportional damping leads to high damping forces compared with restoring forces and may lead to overestimation of floor acceleration demands for both buildings. Stiffness‐proportional damping, on the other hand, is observed to suppress the higher‐mode effects in the nine‐story building resulting in lower story drift demands in the upper floors compared with other damping models. Rayleigh damping models, which combine mass‐proportional and stiffness‐proportional components, that are anchored at reduced modal frequencies lead to reasonable damping forces and floor acceleration demands for both buildings and does not suppress higher‐mode effects in the nine‐story building. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Post‐tensioned (PT) self‐centering moment‐resisting frames (MRFs) have recently been developed as an alternative to welded moment frames. The first generation of these systems incorporated yielding energy dissipation mechanisms, whereas more recently, PT self‐centering friction damped (SCFR) moment‐resistant connections have been proposed and experimentally validated. Although all of these systems exhibited good stiffness, strength and ductility properties and stable dissipation of energy under cyclic loading, questions concerning their ultimate response still remained and a complete design methodology to allow engineers to conceive structures using these systems was also needed. In this paper, the mechanics of SCFR frames are first described and a comprehensive design procedure that accounts for the frame behavior and the nonlinear dynamics of self‐centering frames is then elaborated. A strategy for the response of these systems at ultimate deformation stages is then proposed and detailing requirements on the beams in order to achieve this response are outlined. The proposed procedure aims to achieve designs where the interstory drifts for SCFR frames are similar to those of special steel welded moment‐resisting frames (WMRFs). Furthermore, this procedure is adapted from current seismic design practices and can be extended to any other PT self‐centering steel frame system. A six‐story building incorporating WMRFs was designed and a similar building incorporating SCFR frames were re‐designed by the proposed seismic design procedure. Time‐history analyses showed that the maximum interstory drifts and maximum floor accelerations of the SCFR frame were similar to those of the WMRF but that almost zero residual drifts were observed for the SCFR frame. The results obtained from the analyses confirmed the validity of the proposed seismic design procedure, since the peak drift values were similar to those prescribed by the seismic design codes and the SCFR frames achieved the intended performance level under both design and maximum considerable levels of seismic loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper discusses the sensitivity of softening reinforced concrete frame structures to the changes in input ground motion and investigates the possibility of localizations for this type of structure in static and dynamic analysis. A finite element model is used in which the sections resisting force are calculated using a proposed differential hysteretic model. This model is especially developed for modelling softening behaviour under cyclic loading. To obtain parameters of the differential model the moment–curvature of each section is evaluated using a microplane constitutive law for concrete and bi‐linear elasto‐plastic law for reinforcements. The capability of the procedure is verified by comparing results with available experimental data at element level, which shows good accuracy of the procedure. The effect of possible changes in ground motion is assessed using a non‐stationary Kanai–Tajimi process. This process is used to generate ground motions with approximately the same amplitude and frequency content evolution as those of base ground motion. The possibility of localization in static and dynamic loading is investigated using two structures. A measure for the possibility of localization in code‐designed structures is obtained. This study indicates that localization may occur in ordinary moment‐resisting structures located in high seismic zones. Localization may result in substantial drift in global response and instability due to Pδ effect. Also, it is shown that the structure becomes very sensitive to the input ground motion. It is concluded that allowance by some design codes of the use of ordinary moment‐resisting frames in regions with high seismicity should be revised or improvements should be made in the detailing requirements at critical sections of these structures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号