首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We reconstruct palaeoclimate and palaeoceanography of the Ísafjarðardjúp fjord system from two cores – one from the inner fjord and one near the fjord mouth – while separating the potential overprinting of relative sea‐level (RSL) and local fjord hydrographic changes on these records. The inner fjord core (B997‐339) reflects local fjord hydrography; the outer fjord core (MD99‐2266) reflects the regional oceanic signal. Glacial marine conditions ended at ca. 10 200 cal. a BP, indicated by both ice‐rafted debris records. The other proxy records show spatial and temporal variability within the fjord system. At the inner fjord site (B997‐339) foraminiferal assemblages and the δ18O record indicate lowered RSL between ca. 10 600 and 8900 cal. a BP and document the onset of fjord water overturning at ca. 8900 cal. a BP, which obscured the climate record. At the fjord mouth (MD99‐2266) mass accumulation rates suggest lowered RSL between ca. 10 200 and 5500 cal. a BP and local freshwater and/or reduced salinities of the Irminger Current water masses affected the δ18O signal between ca. 10 200 and 7900 cal. a BP. At MD99‐2266, foraminiferal fauna record the Holocene Thermal Maximum between ca. 8000 and 5700 cal. a BP and the onset of modern oceanic circulation at ca. 7000 cal. a BP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
High‐resolution gravity cores and box cores from the North Icelandic shelf have been studied for palaeoceanographic history based on lithological and biostratigraphical foraminiferal data. Results from two outer shelf cores covering the last 13.6 k 14C yr BP are presented in this paper. The sediments accumulated in north–south trending basins on each side of the Kolbeinsey Ridge at water depths of ca. 400 m. Sedimentation rates up to 1.5 m kyr−1 are observed during the Late‐glacial and Holocene. The Vedde and Saksunarvatn tephras are present in the cores as well as the Hekla 1104. A new tephra, KOL‐GS‐2, has been identified and dated to 13.4 k 14C yr BP, and another tephra, geochemically identical to the Borrobol Tephra, has been found at the same level. At present, the oceanographic Polar Front is located on the North Icelandic shelf, which experiences sharp oceanographic surface boundaries between the cold East Icelandic Current and the warmer Irminger Current. Past changes in sedimentological and biological processes in the study area are assumed to be related to fluctuations of the Polar Front. The area was deglaciated before ca. 14 kyr BP, but there is evidence of ice rafting up to the end of the GS‐1 (Greenland Stadial 1, Younger Dryas) period, increasing again towards the end of the Holocene. Foraminiferal studies show a relatively strong GS‐2 (pre‐13 kyr BP) palaeo‐Irminger Current, followed by severe cooling and then by unstable conditions during the remainder of the GI‐1 (Greenland Interstadial 1, Bølling–Allerød) and GS‐1 (Younger Dryas). Another cooling event occurred during the Preboreal before the Holocene current system was established at about 9 kyr BP. After a climatic optimum between 9 and 6 kyr BP the climate began to deteriorate and fluctuate. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
At the western continental margin of the Barents Sea, 75°N, hemipelagic sediments provide a record of Holocene climate change with a time resolution of 10-70 years. Planktic foraminifera counts reveal a very early Holocene thermal optimum 10.7-7.7 kyr BP, with summer sea surface temperatures (SST) of 8°C and a much enhanced West Spitsbergen Current. There was a short cooling between 8.8 and 8.2 kyr BP. In the middle and late Holocene summer, SST dropped to 2.5°-5.0°C, indicative of reduced Atlantic heat advection, except for two short warmings near 2.2 and 1.6 kyr BP. Distinct quasi-periodic spikes of coarse sediment fraction (with large portions of lithic grains, benthic and planktic foraminifera) record cascades of cold, dense winter water down the continental slope as a result of enhanced seasonal sea ice formation and storminess on the Barents shelf over the entire Holocene. The spikes primarily cluster near recurrence intervals of 400-650 and 1000-1350 years, when traced over the entire Holocene, but follow significant 885-/840- and 505-/605-year periodicities in the early Holocene. These non-stationary periodicities mimic the Greenland-[Formula: See Text]Be variability, which is a tracer of solar forcing. Further significant Holocene periodicities of 230, (145) and 93 years come close to the deVries and Gleissberg solar cycles.  相似文献   

4.
This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake‐level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial–early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north‐central Italy). On the basis of an age–depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas–Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700–11 650 cal. yr BP. Four sub‐millennial scale cooling phases were recognised from pollen data at ca. 14 300–14 200, 13 900–13 700, 13 400–13 100 and 11 350–11 150 cal. yr BP. The last three may be Mediterranean equivalents to the Older Dryas (GI‐1d), Intra‐Allerød (GI‐1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice‐core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra‐Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake‐level record shows that the sub‐millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2 ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Twelve palaeogeographical reconstructions illustrate environmental changes at the southwest rim of the Scandinavian Ice Sheet 40–15 kyr BP. Synchronised land, sea and glacier configurations are based on the lithostratigraphy of tills and intertill sediments. Dating is provided by optically stimulated luminescence and calibrated accelerator mass spectrometry radiocarbon. An interstadial sequence ca. 40–30 kyr BP with boreo‐arctic proglacial fjords and subarctic flora and occasional glaciation in the Baltic was succeeded by a Last Glacial Maximum sequence ca. 30–20 kyr BP, with the closure of fjords and subsequent ice streams in glacial lake basins in Kattegat and the Baltic. Steadily flowing ice from Sweden bordered the Norwegian Channel Ice Stream. A deglaciation sequence ca. 20–15 kyr BP indicates the transgression of arctic waters, retreat of the Swedish ice and advance of Baltic ice streams succeeded by a return to interstadial conditions. When ameliorated ice‐free conditions prevailed in maritime regions, glaciers advanced through the Baltic and when interstadial regimes dominated the Baltic, glaciers expanded off the Norwegian coast. The largest glacier extent was reached in the North Sea around 29 kyr BP, about 22 kyr BP in Denmark and ca. 18 kyr BP in the Baltic. Our model provides new data for future numerical and qualitative landform‐based models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Abundant dinocysts in a high-resolution core from Voldafjorden, western Norway, reflect changes in sea surface-water conditions during the last c. 11 300 BP. The period from c. 11 300 to 10 800 BP (Late Allerφd) was characterized by cool temperate surface-waters, high annual temperature variation and relatively strong stratification of the water column, which is characteristic of fjord environments. Due to the stratification of the surface waters, the uppermost layer may have warmed considerably. This generated a principal difference in temperature conditions between land and sea, with slightly higher temperatures in the marine environments. The period from c. 10 800 to 10 000 BP is characterized by very harsh conditions, with sea surface-water temperatures close to freezing and long lasting seasonal sea-ice cover. Similar temperature changes at the beginning and end of the Younger Dryas are characteristic for NW Europe, but those in Voldafjorden differ from those in the open sea and in the Norwegian Channel by being significantly larger. The stratification of the water column during the Late Allerφd was probably broken down because of incipient inflow of temperate normal saline waters, which caused a marked sea surface-water warming, at c. 10 000 BP. Surface-water conditions close to those of today were gradually established between c. 10000 and 9500 BP. However, these interglacial conditions were abruptly interrupted by a significant drop in winter sea surface-water temperature and salinity occurring around 9700 BP. From c. 9500 to 7000 BP the influence of temperate normal saline water masses increased stepwise until full interglacial conditions were established around c. 7000 BP. The change in the dinocyst assemblage around 7000 BP in Voldafjorden was probably related to the onset of the modern Norwegian Coastal Current, previously documented in cores from the Skagerrak and the Mid-Norwegian Continental Shelf. The last c. 7000 BP is characterized by relatively stable surface-water conditions, possibly interrupted by periods of cooling or decreased inflow of temperate normal saline water. Like several other dinoflagellate cyst records from the Norwegian-Greenland Sea, O. centrocarpum peak values are between 4000 and 5000 BP, suggesting a regional-scale oceanographic change.  相似文献   

7.
This paper provides the first radiometrically dated evidence of Holocene alluvial landform development in Upper Wharfedale, Yorkshire Dales. Four river terraces are identified. Terraces 1 and 2 are closely linked to Late Devensian and early Holocene environmental change, with gravel reworked from local glacial and periglacial sources prior to cementation by carbonate‐rich waters. U‐series dating of cement provides age estimates for cementation of between ca. 5.1–7.4 kyr BP for Terrace 1 and ca. 3.6–>8.0 kyr BP for Terrace 2. U‐series dating of tufas overlying Terraces 1 and 2 produced ages of ca. 4.2–4.5 kyr BP and ca. 2.1–2.2 kyr BP respectively, and provide upper age limits for terrace formation. Terrace 3 marks a change in sediment calibre, supply and sedimentation style, and 14C dating suggests that the principal source of fine‐grained material may be agricultural expansion in the Yorkshire Dales from ca. ad 600 (1350 cal. yr BP). Radiocarbon dates indicate that Terrace 4 was deposited from the eleventh century, with initiation of the contemporary floodplain between the fifteenth and seventeenth centuries ad. Both these lowest units contain sediments contaminated with heavy metals as a result of mining activities within the catchment. The evidence presented in this study is comparable to that of research undertaken in upland environments elsewhere in northern and western Britain, thereby adding to the corpus of information currently available for evaluating the fluvial geomorphological response to climate and vegetation change during the Holocene. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Paleoenvironmental records from a number of permafrost sections and lacustrine cores from the Laptev Sea region dated by several methods (14C-AMS, TL, IRSL, OSL and 230Th/U) were analyzed for pollen and palynomorphs. The records reveal the environmental history for the last ca 200 kyr. For interglacial pollen spectra, quantitative temperature values were estimated using the best modern analogue method. Sparse grass-sedge vegetation indicating arctic desert environmental conditions existed prior to 200 kyr ago. Dense, wet grass-sedge tundra habitats dominated during an interstadial ca 200–190 kyr ago, reflecting warmer and wetter summers than before. Sparser vegetation communities point to much more severe stadial conditions ca 190–130 kyr ago. Open grass and Artemisia communities with shrub stands (Alnus fruticosa, Salix, Betula nana) in more protected and moister places characterized the beginning of the Last Interglacial indicate climate conditions similar to present. Shrub tundra (Alnus fruticosa and Betula nana) dominated during the middle Eemian climatic optimum, when summer temperatures were 4–5 °C higher than today. Early-Weichselian sparse grass-sedge dominated vegetation indicates climate conditions colder and dryer than in the previous interval. Middle Weichselian Interstadial records indicate moister and warmer climate conditions, for example, in the interval 40–32 kyr BP Salix was present within dense, grass-sedge dominated vegetation. Sedge-grass-Artemisia-communities indicate that climate became cooler and drier after 30 kyr BP, and cold, dry conditions characterized the Late Weichselian, ca 26–16 kyr BP, when grass-dominated communities with Caryophyllaceae, Asteraceae, Cichoriaceae, Selaginella rupestris were present. From 16 to 12 kyr BP, grass-sedge communities with Caryophyllaceae, Asteraceae, and Cichoriaceae indicate climate was significantly warmer and moister than during the previous interval. The presence of Salix and Betula reflect temperatures about 4 °C higher than present at about 12–11 kyr BP, during the Allerød interval, but shrubs were absent in the Younger Dryas interval, pointing to a deterioration of climate conditions. Alnus fruticosa, Betula nana, Poaceae, and Cyperaceae dominate early Holocene spectra. Reconstructed absolute temperature values were substantially warmer than present (up to 12 °C). Shrubs gradually disappeared from coastal areas after 7.6 kyr BP when vegetation cover became similar to modern. A comparison of proxy-based paleoenvironmental reconstructions with the simulations performed by an Earth system model of intermediate complexity (CLIMBER-2) show good accordance between the regional paleodata and model simulations, especially for the warmer intervals.  相似文献   

9.
A high-resolution Younger Dryas–late Holocene record of climate and environment from the Malangen fjord has been established on the basis of two marine sediment cores. Five pollen-spore assemblage zones have been defined covering the period c . 11 500 cal. yr BP (10 200 14C yr BP) to c . 1600 cal. yr BP (1600 14C yr BP) with a hiatus of c . 2000 cal. years between c . 10 200 and 8100 cal. yr BP (9000 and 7300 14C yr BP). The Holocene vegetation development from pioneer vegetation to forest development, identified in the marine pollen record, correlates well with pollen records from terrestrial sections of northern Norway. The marine pollen record was also correlated directly with marine proxy records of the bottom water temperature investigated in the same sediment cores. Correlation between the marine and terrestrial proxies suggests that changes in the influx of warm Atlantic Water to the fjord led to an instant change in the vegetation of the surrounding land area. The results thus support a strong link between marine and atmospheric mean climatic states in the North Atlantic region throughout the Holocene.  相似文献   

10.
Lago Roca-Lapataia valley (54°50′S, 68°34′W) is a paleofjord that was occupied by a valley-glacier system during the glacial maximum of the late Pleistocene (estimated ca. 18–20 ka BP). Deglaciation began before 10,080 ± 270 BP. The marine fauna in several marine terraces found in the area shows that early-middle Holocene climatic conditions were basically the same as at present. Species found are characteristic of cold and shallow waters, although minor temperature fluctuations cannot be ruled out for this period. A recent radiocarbon date of 7518 ± 58 BP on Chlamys patagonica (NZ # 7730) confirms that Lago Roca was transformed into a fjord ca. 7500–8000 BP. The sea reached its maximum level of 8–10 m a.s.l. around 6000 BP and at 4000–4500 BP was at least above 6 ± 1 m a.s.l. Later, when sea level fell, Lago Roca was occupied by fresh water and was no longer tidal. The relative land-sea positions during this period are a consequence of combined eustatic and neotectonic processes.  相似文献   

11.
There has been limited previous research about Holocene climate variability in the Indian Sector of the Southern Ocean. Here we examine centennial‐scale changes in diatom assemblages and stable isotopic ratios since 10 000 cal a BP in a high‐accumulation‐rate sediment core from the Conrad Rise. Although abundances of dominant diatom taxa (Fragilariopsis kerguelensis and Thalassiothrix antarctica) are comparatively constant, relative abundances of secondary taxa fluctuate. Before c. 9900 cal a BP, winter sea‐ice and cold water covered the Conrad Rise. Following deglaciation the sea‐ice retreated from the Conrad Rise, lagging that of the Atlantic and eastern Indian Sectors by about 1500 a. The Polar Front moved southward during the early Holocene optimum and north Antarctic Zone waters covered the Conrad Rise for about 650 a. After 9300 cal a BP, solar insolation strongly influenced sea surface temperature and primary productivity in the Southern Ocean. In the high‐latitude Indian Sector, productivity increased 1500 a after the onset of late Holocene neoglaciation. Periodic δ18O and cold‐water diatom taxa spikes (at intervals of 200 and 300–500 a, respectively) occurred after 9300 cal a BP, probably associated with solar activity. Fluctuations in short‐term sea surface temperature and cold‐water taxa are synchronous with changes in δD observed in an east Antarctic ice core. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The sediment core NP05‐71GC, retrieved from 360 m water depth south of Kvitøya, northwestern Barents Sea, was investigated for the distribution of benthic and planktic foraminifera, stable isotopes and sedimentological parameters to reconstruct palaeoceanographic changes and the growth and retreat of the Svalbard–Barents Sea Ice Sheet during the last ~16 000 years. The purpose is to gain better insight into the timing and variability of ocean circulation, climatic changes and ice‐sheet behaviour during the deglaciation and the Holocene. The results show that glaciomarine sedimentation commenced c. 16 000 a BP, indicating that the ice sheet had retreated from its maximum position at the shelf edge around Svalbard before that time. A strong subsurface influx of Atlantic‐derived bottom water occurred from 14 600 a BP during the Bølling and Allerød interstadials and lasted until the onset of the Younger Dryas cooling. In the Younger Dryas cold interval, the sea surface was covered by near‐permanent sea ice. The early Holocene, 11 700–11 000 a BP, was influenced by meltwater, followed by a strong inflow of highly saline and chilled Atlantic Water until c. 8600 a BP. From 8600 to 7600 a BP, faunal and isotopic evidence indicates cooling and a weaker flow of the Atlantic Water followed by a stronger influence of Atlantic Water until c. 6000 a BP. Thereafter, the environment generally deteriorated. Our results imply that (i) the deglaciation occurred earlier in this area than previously thought, and (ii) the Younger Dryas ice sheet was smaller than indicated by previous reconstructions.  相似文献   

13.
High-arctic fan delta recording deglaciation and environment disequilibrium   总被引:1,自引:0,他引:1  
Study of a Holocene fan delta in Adventfjorden, Spitsbergen, provides new insight into the nature of high‐arctic coastal sedimentation and deglaciation dynamics. The fjord‐side, gravelly Gilbert‐type fan delta began to form at the local marine limit c. 10 ka BP, supplied seasonally with sediment by meltwater from a cirque glacier left behind by the retreating Late Weichselian ice sheet. Relative sea level had fallen by 63 m, and the fan delta reached a radius of c. 1 km by 6 ka BP, when the relic glacier eventually melted down and fluvial activity declined. A strong influence of marine processes is recorded by the fan‐delta foreset facies, overlain by alluvium. Supplied with sediment by longshore drift, the fan‐delta front continued to advance at a lower rate, while relative sea level fell further by 5 m and ceased to fall around 5·4 ka BP. The following transgression was countered by longshore sediment supply until 4·7 ka BP, when the delta‐front beach aggraded and a spit platform began to climb onto the delta plain, recording a relative sea‐level rise of 4 m. The subsequent regression was initially non‐depositional, with the relative sea level falling by > 4 m in 200 years, outpacing fluvial supply, and the re‐emerging fan delta being swept by longshore currents. A regressive beach began to form c. 4·3 ka BP, while relative sea level gradually reached its present‐day position. The feeder braided stream was wandering across the delta plain during this time, but incised once the fan‐delta shoreline began to retreat by wave erosion and turned into a receding modern escarpment. The stream has since been adjusting its profile by gradually eroding the pre‐existing alluvium and distributing the coarse sediment supplied from catchment slopes by debrisflows and snow avalanches. Modern snowflows have also spread debris onto the abandoned fan surface. The erosional retreat of the fan delta has been accompanied by lateral shoreline accretion on both its sides. The study has important regional implications and demonstrates that Holocene fan deltas can provide a valuable record of the deglaciation history in high‐arctic terrains, where glacial deposits are scarcely preserved on land.  相似文献   

14.
Nioghalvfjerdsfjorden in North-East Greenland is at present covered by a floating glacier. Raised marine deposits in the surrounding area contain shells of marine molluscs, bones of marine mammals and pieces of driftwood. A fairly systematic sampling of such material has been conducted, followed by extensive radiocarbon dating. We suggest that the Greenland ice sheet extended onto the shelf offshore North-East Greenland during isotope stage 2, perhaps even reaching the shelf break. During the subsequent recession of the ice sheet, the entrance of Nioghalvfjerdsfjorden had become ice-free by 9.7 cal. ka BP. The recession culminated between 7.7 and 4.5 cal. ka BP, during which time the fjord was glacier-free along its entire 80 km length. No dates younger than 4.5 cal. ka BP are available on marine material from the fjord, and it seems probable that the fjord has been continuously covered by the floating glacier since this time. The maximum glaciation was attained around AD 1900, after which thinning and recession took place. The marine limit increases from c. 40 m above sea level near the present margin of the Inland Ice to c. 65 m above sea level at the outer coast. These figures fit into the regional pattern of the marine limit for areas both to the south and north. The marine fauna comprise two bivalves, Macoma calcarea and Serripes groenlandicus, that may represent a southern element present during the Holocene temperature optimum. Remains of three taxa of southern extralimital terrestrial and limnic plants were dated to 5.1 cal. ka BP, and remains of another extralimital plant were dated to 8.8 and 8.5 cal. ka BP. The known Holocene time ranges of the willow Salix arctica and the lemming Dicrostonyx torquatus have been extended back to 8.8 and 6.4 cal. ka BP, respectively, providing minimum dates for their immigration to Greenland.  相似文献   

15.
Lyså, A., Hjelstuen, B. O. & Larsen, E. 2009: Fjord infill in a high‐relief area: Rapid deposition influenced by deglaciation dynamics, glacio‐isostatic rebound and gravitational activity. Boreas, 10.1111/j.1502‐3885.2009.00117.x. ISSN 0300‐9483. Seismic profiles and gravity cores have been collected from the previously glaciated Nordfjord system on the west coast of Norway. The results give new information about the deglaciation history of the area and contribute to our understanding of fjord fill in high relief areas. During the last deglaciation, up to 360 m of sediments was deposited in the 135 km long fjord system. Shortly after the coastal area became ice‐free, ~12 300 14C years BP, the first ice‐marginal deposits were formed, probably due to a minor glacier re‐advance. The greatest volume of sediments in the fjord was deposited during the Allerød ice recession period, the Younger Dryas re‐advance and the succeeding ice retreat period until the ice disappeared from the fjord in early Preboreal. During the Allerød, the fjord was ice‐free and glaciomarine stratified sediments were deposited. The ice margin is suggested to have been located just west of Lake Strynevatnet before the advance during the Younger Dryas. In the late phase of the Younger Dryas, and within the succeeding ~1000 years, the glacio‐isostatic rebound was rapid, and extensive re‐sedimentation took place. Slide activities continued into mid‐Holocene, albeit with less intensity and were followed by normal and calm marine conditions that prevailed until the present. One huge rock avalanche into the fjord took place between 2200 and 1800 14C yr BP, probably triggering a tsunami and several slides in the fjord. Even though glacigenic sediments totally dominate in terms of sediment volume, the present study underlines the importance of re‐sedimentation and other gravitational processes in such fjord settings.  相似文献   

16.
Here we provide three new Holocene (11–0 cal ka BP) alkenone-derived sea surface temperature (SST) records from the southernmost Chilean fjord region (50–53°S). SST estimates may be biased towards summer temperature in this region, as revealed by a large set of surface sediments. The Holocene records show consistently warmer than present-day SSTs except for the past ~ 0.6 cal ka BP. However, they do not exhibit an early Holocene temperature optimum as registered further north off Chile and in Antarctica. This may have resulted from a combination of factors including decreased inflow of warmer open marine waters due to lower sea-level stands, enhanced advection of colder and fresher inner fjord waters, and stronger westerly winds. During the mid-Holocene, pronounced short-term variations of up to 2.5°C and a cooling centered at ~ 5 cal ka BP, which coincides with the first Neoglacial glacier advance in the Southern Andes, are recorded. The latest Holocene is characterized by two pronounced cold events centered at ~ 0.6 and 0.25 cal ka BP, i.e., during the Little Ice Age. These cold events have lower amplitudes in the offshore records, suggesting an amplification of the SST signal in the inner fjords.  相似文献   

17.
High‐resolution marine palynological data have been obtained from two very long sediment cores (MD952009 and MD952010) retrieved from the southern Norwegian Sea. The dinoflagellate cyst assemblages show pronounced fluctuations in composition, which correlate strongly with magnetic susceptibility records and also mimic the δ18O signal of the GISP2 Greenland ice‐core. If focusing on the period from 48 to 30 cal. kyr BP, this correlation suggests a paradoxical response of the sea‐surface environments to the atmospheric conditions over Greenland: when the Greenland δ18O signal reflects warm interstadial conditions, the Norwegian Sea depicts cold sea‐surface temperatures with quasi‐perennial sea‐ice cover (based on dinoflagellate cysts). In contrast, when the Greenland δ18O records cold stadial periods, the Norwegian Sea‐surface temperatures are warm (based on dinoflagellate cysts), probably linked to inflow of the North Atlantic Drift. These results, similar in both cores, are contrary to those of previous studies and shed light on a possible decoupling of Norwegian sea surface‐water conditions and atmospheric conditions over Greenland. This decoupling could be linked to an atmosphere–ocean system behaving similar to that which the Northern Hemisphere is experiencing at present, i.e. strongly variable owing to the North Atlantic Oscillation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Holocene lacustrine sediments from two isolated lakes in north China are investigated. Based on palaeoclimatic significance of independent proxies in lake sediments, Holocene chemical weathering, and hence climate change, has been reconstructed for dated sediment cores from Daihai Lake and Aibi Lake. During early to mid-Holocene, higher weathering intensity occurred in the Daihai catchment under warm and humid climate conditions, and this reached a maximum at ∼5 kyr BP. However, synchronous proxy shifts from the two widely separated, isolated lake sediments indicate that there was a cool climate event during the early to mid-Holocene transition. This is characterized by reduced weathering in each catchment, low δ 13 C and δ 18 O of authigenic carbonate, and by lake level fluctuations. These might correspond to a global cooling signal identified in lakes, oceans, mollusc sequences, and polar ice cores, typically centred between ∼8.0 and 8.5 kyr BP. Dry conditions were experienced in Greenland, the North Atlantic and surrounding regions, and in broad monsoonal regions including Daihai at this time. However, recent extensive evidences as well as our data from the Aibi Lake sediments show that cool but wet conditions occurred in the central Eurasian continent at this time. After ∼2.5 kyr BP, a significant shift of independent sediment proxies indicates the beginning of the Neoglaciation with a higher frequency of fluctuations, including both the Medieval Warm Period (MWP) and the Little Ice Age (LIA). Our continental records provide new evidence of the Holocene climate variability with global significance and highlight the different spatial nature of the response to oscillations associated with different climate patterns.  相似文献   

19.
Until recently, little was known about the Quaternary marine sedimentary record in East Greenland. Geophysical and geological investigations in Scoresby Sund were undertaken to characterize the nature and chronology of this record. Seismic records show that almost 70% of the outer fjord system is covered by about 10 m of unlithified sediments, making direct correlation with the Quaternary records on land and the adjacent continental margin difficult. These acoustically unstratified sediments are scoured by icebergs above 550 m water depth. Almost 90% of core material is massive diamicton of Holocene age, deposited mainly from iceberg rafting and turbid meltwater. Sedimentation rates are 0.1 -0.3 m 1000 yr-1. Thicker accumulations of unlithified Quaternary sediments in Scoresby Sund occur as sediment ridges and in two other major depocentres. A low sediment ridge runs across the mouth of Scoresby Sund, and is interpreted as an end moraine of Late Weichselian Flakkerhuk stadial age. The very restricted sediment thickness suggests that grounded ice filled the fjord during the Flakkerhuk and an ice shelf was not present. High inputs of ice rafted debris to the continental margin at about 18 000 BP indicate this as a probable age for the moraine. During the Allerød Interstadial, ice probably retreated from the outer fjord system, since massive diamictons similar to those of Holocene age are present at the base of most cores. A major depocentre of acoustically stratified sediments at the head of Hall Bredning is interpreted to represent ice proximal deposits from a glacier margin extending across the fjord. It is adjacent to dated moraines on land and is inferred to be of Milne Land stadial age (about 10 000 BP). A similar age is interpreted for acoustically laminated sediments and a moraine at the entrance of Vikingebugt, on the south side of Scoresby Sund. Dated kame terraces in the inner fjord system indicate that ice retreated to its present position 6–7000 years ago.  相似文献   

20.
A high‐resolution record, covering 9.3–0.2 ka BP, from the sub‐arctic Stjernsund (70°N) was studied for benthic foraminiferal faunas and stable isotopes, revealing three informally named main phases during the Holocene. The Early‐ to Mid‐Holocene (9.3–5.0 ka BP) was characterized by the strong influence of the North Atlantic Current (NAC), which prevented the reflection of the Holocene Climatic Optimum (HCO) in the bottom‐water temperature. During the Mid‐Holocene Transition (5.0–2.5 ka BP), a turnover of benthic foraminiferal faunas occurred, Atlantic Water species decreased while Arctic‐Polar species increased, and the oxygen isotope record showed larger fluctuations. Those variations correspond to a period of global climate change, to spatially more heterogeneous benthic foraminiferal faunas in the Nordic Seas region, and to regionally diverging terrestrial temperatures. The Cool Late Holocene (2.5–0.2 ka BP) was characterized by increased abundances of Arctic‐Polar species and a steady cooling trend reflected in the oxygen isotopes. In this period, our record differs considerably from those on the SW Barents Sea shelf and locations farther south. Therefore, we argue that regional atmospheric cooling triggered the late Holocene cooling trend. Several cold episodes centred at 8.3, 7.8, 6.5, 4.9, 3.9 and 3.3 ka BP were identified from the benthic foraminiferal faunas and the δ18O record, which correlated with marine and atmospherically driven proxy records. This suggests that short‐term cold events may result from reduced heat advection via the NAC or from colder air temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号