首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The toxicity of sediments in the Gulf of Gdansk is analyzed in relation to the chemical composition of interstitial and near‐bottom waters, and sediment properties. The toxicity of sediments, pore waters and saline elutriates is determined by using the Microtox® test based on changes in light production of the luminescent bacteria Vibrio fischeri. The results indicate considerable toxicity in the majority of examined sediments. Since the sediment elutriates and pore waters are toxic in some cases, the total toxicity of the sediments is likely to be due to both sediment‐bound and water soluble substances. The sediment toxicity is related to the percentage contribution of the fine fraction of sediments. A significant correlation between the toxicity of the sediments and the black carbon content implies anthropogenic contamination. The toxicity of the sediments is seen to increase with the increase of hydrogen sulfide concentration in pore waters. The ammonia in pore waters was found not to be responsible for the toxicity of the sediments.  相似文献   

2.
Naturally occurring gas hydrates contain significant amounts of natural gas that might be produced as an energy resource in the foreseeable future. Thus, it is necessary to understand the pore‐space characteristics of hydrate reservoirs, particularly the pore‐scale distribution of the hydrate and its interaction with the sediment. Four end‐member models for hydrate distribution in the pore space are pore filling, sediment‐frame component, envelope cementing, and contact cementing. The goal of this study is to compare the models with pore‐scale hydrate distributions obtained in laboratory‐formed hydrates. Our results verify hydrate pore‐scale distributions by direct, visual observations that were previously implied by indirect, elastic property measurements. Laboratory measurements were conducted using tetrahydrofuran as a guest molecule since tetrahydrofuran hydrate can be used as a proxy for naturally occurring hydrates. We performed micro X‐ray computed tomography to obtain information about the distribution of hydrate in the pore space of synthetic sediment (glass beads). We also made ultrasonic velocity measurements on the same samples. Micro X‐ray computed tomography images and ultrasonic velocity measurements both indicate that the tetrahydrofuran hydrate forms in the pore space with a part of the hydrate bridging the grains without touching the grain surfaces. These hydrate‐bearing sediments appear to follow a pore‐filling model with a portion of the hydrate becoming a load‐bearing part of the sediment frame.  相似文献   

3.
Lake sediments may serve as archives on paleoclimatic fluctuations, geomagnetic field variations and volcanic activities. Lake Holzmaar in Eifel/Germany is a maar lake and its lacustrine sediments provide paleoclimatic proxy data. Therefore, knowledge about the geometry and, especially, about the thickness of the sediments is very important for determining an optimum drilling location for paleoclimatic studies. We have developed a floating in‐loop transient electromagnetic method field set up (Float‐transient electromagnetic method) with a transmitter and receiver size of 18 × 18 m2 and 6 × 6 m2 respectively. This special set up enables in‐loop transient electromagnetic method measurements on the surface of freshwater lakes that define the geometry and the thickness of sediments beneath such lakes thus helping to determine optimum drilling locations. Due to the modular design of the new Float‐transient electromagnetic method field set up, this system can be handled by two operators and can easily be transported. Sixteen in‐loop soundings were carried out on the surface of Lake Holzmaar. The transient electromagnetic method data could not be interpreted by conventional 1D inversions because of the 3D distribution of subsurface conductivity caused by the lake's geometry. Three‐dimensional finite element modelling was applied to explain the observed transients and the 3D conductivity distribution beneath the lake was recovered by taking its geometry into account. The 3D interpretation revealed approximately 55 m thick sediments beneath 20 m deep water in the central part of the lake.  相似文献   

4.
A pore‐scale model based on measured particle size distributions has been used to quantify the changes in pore space geometry of packed soil columns resulting from a dilution in electrolyte concentration from 500 to 1 mmol l?1 NaCl during leaching. This was applied to examine the effects of particle release and re‐deposition on pore structure and hydraulic properties. Two different soils, an agricultural soil and a mining residue, were investigated with respect to the change in hydraulic properties. The mining residue was much more affected by this process with the water saturated hydraulic conductivity decreasing to 0·4% of the initial value and the air‐entry value changing from 20 to 50 cm. For agricultural soil, there was little detectable shift in the water retention curve but the saturated hydraulic conductivity decreased to 8·5% of the initial value. This was attributed to localized pore clogging (similar to a surface seal) affecting hydraulic conductivity, but not the microscopically measured pore‐size distribution or water retention. We modelled the soil structure at the pore scale to explain the different responses of the two soils to the experimental conditions. The size of the pores was determined as a function of deposited clay particles. The modal pore size of the agricultural soil as indicated by the constant water retention curve was 45 µm and was not affected by the leaching process. In the case of the mining residue, the mode changed from 75 to 45 µm. This reduction of pore size corresponds to an increase of capillary forces that is related to the measured shift of the water retention curve. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Although there is no assumption of pore geometry in derivation of Gassmann's equation, the pore geometry is in close relation with hygroscopic water content and pore fluid communication between the micropores and the macropores. The hygroscopic water content in common reservoir rocks is small, and its effect on elastic properties is ignored in the Gassmann theory. However, the volume of hygroscopic water can be significant in shaly rocks or rocks made of fine particles; therefore, its effect on the elastic properties may be important. If the pore fluids in microspores cannot reach pressure equilibrium with the macropore system, assumption of the Gassmann theory is violated. Therefore, due to pore structure complexity, there may be a significant part of the pore fluids that do not satisfy the assumption of the Gassmann theory. We recommend that this part of pore fluids be accounted for within the solid rock frame and effective porosity be used in Gassmann's equation for fluid substitution. Integrated study of ultrasonic laboratory measurement data, petrographic data, mercury injection capillary pressure data, and nuclear magnetic resonance T2 data confirms rationality of using effective porosity for Gassmann fluid substitution. The effective porosity for Gassmann's equation should be frequency dependent. Knowing the pore geometry, if an empirical correlation between frequency and the threshold pore‐throat radius or nuclear magnetic resonance T2 could be set up, Gassmann's equation can be applicable to data measured at different frequencies. Without information of the pore geometry, the irreducible water saturation can be used to estimate the effective porosity.  相似文献   

6.
Depth profiles of solute chemistry and sulfate isotopic compositions are presented for groundwater and pore water in a sequence of Quaternary glacial outwash sediments. Sand units show evidence for hydraulic connection to the surface and thus modern sources of solutes. Finer‐grained sediments show a general pattern of increasing solute concentrations with depth, with sulfate derived from ancient rainwater and pyrite oxidation in the soil/drift. In these sediments sulfate has undergone bacterial sulfate reduction (BSR) to produce biogenic sulfide. In clay sediments, with d10 ≤ 1·6 µm, high concentrations of sulfate and acetate now co‐exist, implying that BSR is inhibited. The correlation with smaller sediment grain size indicates that this is due to pore size exclusion of the sulfate reducing bacteria. Mechanical restriction of microbial function thus provides a fundamental limitation on microbial respiration in buried clay‐rich sediments, which acts as a control on the chemical evolution of their pore waters. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
River restoration works often include measures to promote morphological diversity and enhance habitat suitability. One of these measures is the creation of macro‐roughness elements, such as lateral cavities and embayments, in the banks of channelized rivers. However, in flows that are heavily charged with fine sediments in suspension, such as glacier‐fed streams and very low‐gradient reaches of large catchment rivers, these lateral cavities may trap these sediments. Consequently, the morphological changes may be affected, and the functionality of the restoration interventions may be compromised. Herein, we analyse the influence of these macro‐roughness elements on the transport of fine sediments in the main channel. Laboratory tests with uniform flow charged with sediments in a channel with banks equipped with large‐scale rectangular roughness elements were carried out. The laboratory experiments covered a wide range of rectangular cavity geometrical configurations and shallowness ratios. The influence of key parameters such as flow shallowness, geometric ratios of the cavities and initial sediment concentration was tested. Surface particle image velocimetry, sediment samples and temporal turbidity records were collected during the experiments. The amount of sediments captured by the cavities, the temporal evolution of the concentration of sediments in suspension and the flow hydrodynamics are cross‐analysed and discussed. It is shown that the trapping efficiency of the macro‐roughness elements is a clear function of the channel geometry and the shallowness of the flow. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Characterization of hydraulic conductivity (K) in aquifers is critical for evaluation, management, and remediation of groundwater resources. While estimates of K have been traditionally obtained using hydraulic tests over discrete intervals in wells, geophysical measurements are emerging as an alternative way to estimate this parameter. Nuclear magnetic resonance (NMR) logging, a technology once largely applied to characterization of deep consolidated rock petroleum reservoirs, is beginning to see use in near‐surface unconsolidated aquifers. Using a well‐known rock physics relationship—the Schlumberger Doll Research (SDR) equation—K and porosity can be estimated from NMR water content and relaxation time. Calibration of SDR parameters is necessary for this transformation because NMR relaxation properties are, in part, a function of magnetic mineralization and pore space geometry, which are locally variable quantities. Here, we present a statistically based method for calibrating SDR parameters that establishes a range for the estimated parameters and simultaneously estimates the uncertainty of the resulting K values. We used co‐located logging NMR and direct K measurements in an unconsolidated fluvial aquifer in Lawrence, Kansas, USA to demonstrate that K can be estimated using logging NMR to a similar level of uncertainty as with traditional direct hydraulic measurements in unconsolidated sediments under field conditions. Results of this study provide a benchmark for future calibrations of NMR to obtain K in unconsolidated sediments and suggest a method for evaluating uncertainty in both K and SDR parameter values.  相似文献   

9.
Predicting the shear‐wave (S‐wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low‐frequency approximation, the classical Biot–Gassmann theory relates the Biot coefficient to the bulk modulus of water‐saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S‐wave velocity can be calculated. The Biot coefficient derived from the compressional‐wave (P‐wave) velocity of water‐saturated sediments often differs from and is less than that estimated from the S‐wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P‐wave velocities of water‐saturated sediments measured at various differential pressures, an accurate method of predicting S‐wave velocities is proposed. Numerical results indicate that the predicted S‐wave velocities for consolidated and unconsolidated sediments agree well with measured velocities.  相似文献   

10.
This paper discusses and addresses two questions in carbonate reservoir characterization: how to characterize pore‐type distribution quantitatively from well observations and seismic data based on geologic understanding of the reservoir and what geological implications stand behind the pore‐type distribution in carbonate reservoirs. To answer these questions, three geophysical pore types (reference pores, stiff pores and cracks) are defined to represent the average elastic effective properties of complex pore structures. The variability of elastic properties in carbonates can be quantified using a rock physics scheme associated with different volume fractions of geophysical pore types. We also explore the likely geological processes in carbonates based on the proposed rock physics template. The pore‐type inversion result from well log data fits well with the pore geometry revealed by a FMI log and core information. Furthermore, the S‐wave prediction based on the pore‐type inversion result also shows better agreement than the Greensberg‐Castagna relationship, suggesting the potential of this rock physics scheme to characterize the porosity heterogeneity in carbonate reservoirs. We also apply an inversion technique to quantitatively map the geophysical pore‐type distribution from a 2D seismic data set in a carbonate reservoir offshore Brazil. The spatial distributions of the geophysical pore type contain clues about the geological history that overprinted these rocks. Therefore, we analyse how the likely geological processes redistribute pore space of the reservoir rock from the initial depositional porosity and in turn how they impact the reservoir quality.  相似文献   

11.
The 1999 Chi‐Chi earthquake significantly altered the landscape of central Taiwan. Surface deformation produced by the earthquake along the trace of the Chelungpu thrust can be classified into two styles: (1) uplift without significant surface rupture, and (2) uplift accompanied by surface rupture. Here we examine areas that exhibited the first style of deformation (e.g. Wufeng). Seismic stress at the time of the main shock may have been relieved by high pore‐fluid pressure in a 300‐m‐thick sand and gravel aquifer. Along the thrust fault, frictional heating of these sediments resulted in thermal expansion and an increase in pore‐fluid pressure. High pore‐fluid pressure damped seismic‐wave energy and enhanced intergranular slips of unconsolidated sandy and gravel sediments, which were possibly assisted by sulphuric acid corrosion, leading to a high sulphate content in the groundwater (c. 70 mg L?1). These changes permitted surface folding and terrace‐style uplifting to occur without significant rupture. In contrast, other areas in which the second style of deformation is dominant (e.g. Fengyuen‐Shihkang) have thin (0–10 m) sand and gravel deposits and lower concentrations of sulphate (c. 30 mg L?1) in groundwater. In these areas, sediments were heated but not sufficiently to produce significant thermal expansion and increase in pore‐fluid pressure; accumulation of stress in these locations led to rupture at the ground surface, with the formation of steep fault scarps. The areas exhibiting the first deformation style are characterized by the presence of high pore‐fluid pressure, frictional heat conduction, and possibly chemical corrosion related to sulphuric acid attack and formation of sulphate, in contrast to those involving significant uplift and surface rupture. The areal distribution of these two surface deformation styles suggests that the aforementioned fluid‐related subsurface processes may have altered the characteristics of sediments and caused diverse responses to the quake. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The capacity for subsurface sediments to sequester radionuclide contaminants, such as uranium (U), and retain them after bioremediation efforts are completed is critical to the long‐term stewardship of re‐mediated sites. In U bioremediation strategies, carbon amendment stimulates bioreduction of U(VI) to U(IV), immobilizing it within the sediments. Sediments enriched in natural organic matter are naturally capable of sequestering significant U, but may serve as sources to the aquifer, contributing to plume persistence. Two types of organic‐rich sediments were compared to better understand U release mechanisms. Sediments that were artificially primed for U removal were retrieved from an area previously biostimulated while detrital‐rich sediments were collected from a location never subject to amendment. Batch incubations demonstrated that primed sediments rapidly removed uranium from the groundwater, whereas naturally reduced sediments released a sizeable portion of U before U(VI)‐reduction commenced. Column experiments confirmed that U release persisted for 65 pore volumes in naturally reduced sediments, demonstrating their sink‐source behavior. Acetate addition to primed sediments shifted the microbial community from sulfate‐reducing bacteria within Desulfobacteraceae to the iron‐reducing Geobacteraceae and Firmicutes, associated with efficient U(VI) removal and retention, respectively. In contrast, Geobacteraceae communities in naturally reduced sediments were replaced by sequences with similarity to Pseudomonas spp. during U release, while U(VI) removal only occurred with enrichment of Firmicutes. These investigations stress the importance of characterizing zones with heterogeneous carbon pools at U‐contaminated sites prior to the determination of a remedial strategy to identify areas, which may contribute to long‐term sourcing of the contaminants.  相似文献   

13.
14.
Based on the research into the physical-chemical properties and distribution of sediments and the characteristics of pore water in sediments of Miyun reservoir, the release flux of the total phosphorus (TP) from sediments is estimated by simulating deposit environment of reservoir bottom in laboratory. They are 0.018 mg·cm-2·d-1 and 0.821 mg·cm-2·d-1 at 2℃ and 8℃ respectively. The gross TP released in a year is 11.34t. As a contrast, the pore water diffusion simulation method is used to measure gross TP released and gains 11.56t. The two results are relatively close and prove that experiment simulation has some reliability. On the basis of experiments, some conclusions can be drawn: (1) Endogenous phosphorus from sediments accounts for 27.9 percent of the TP entering the reservoir, and it cannot be ignored; and (2) increasing temperature is helpful to TP releasing from sediments.  相似文献   

15.
The hyporheic zone of riverbed sediments has the potential to attenuate nitrate from upwelling, polluted groundwater. However, the coarse‐scale (5–10 cm) measurement of nitrogen biogeochemistry in the hyporheic zone can often mask fine‐scale (<1 cm) biogeochemical patterns, especially in near‐surface sediments, leading to incomplete or inaccurate representation of the capacity of the hyporheic zone to transform upwelling NO3?. In this study, we utilised diffusive equilibrium in thin‐films samplers to capture high resolution (cm‐scale) vertical concentration profiles of NO3?, SO42?, Fe and Mn in the upper 15 cm of armoured and permeable riverbed sediments. The goal was to test whether nitrate attenuation was occurring in a sub‐reach characterised by strong vertical (upwelling) water fluxes. The vertical concentration profiles obtained from diffusive equilibrium in thin‐films samplers indicate considerable cm‐scale variability in NO3? (4.4 ± 2.9 mg N/L), SO42? (9.9 ± 3.1 mg/l) and dissolved Fe (1.6 ± 2.1 mg/l) and Mn (0.2 ± 0.2 mg/l). However, the overall trend suggests the absence of substantial net chemical transformations and surface‐subsurface water mixing in the shallow sediments of our sub‐reach under baseflow conditions. The significance of this is that upwelling NO3?‐rich groundwater does not appear to be attenuated in the riverbed sediments at <15 cm depth as might occur where hyporheic exchange flows deliver organic matter to the sediments for metabolic processes. It would appear that the chemical patterns observed in the shallow sediments of our sub‐reach are not controlled exclusively by redox processes and/or hyporheic exchange flows. Deeper‐seated groundwater fluxes and hydro‐stratigraphy may be additional important drivers of chemical patterns in the shallow sediments of our study sub‐reach. © 2015 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

16.
As hypoxic conditions spread in our oceans, indices that quickly and efficiently assess oxygen content in sediment pore water, and habitat quality are increasingly becoming desirable. Depth to the appa...  相似文献   

17.
— Pressure-induced variations in pore geometry were studied on dry- and fluid- saturated samples by means of electrical impedance spectroscopy and permeability measurements. Hydrostatic pressures (up to 120 MPa) and uniaxial pressures (up to failure) were applied. Hydrostatic pressures reduce the aspect ratio of cracks and thus cause a decrease of permeability and electrical bulk conductivity. The opposite was observed in uniaxial pressure experiments where new cracks were formed and consequently permeability and electrical conductivity were increased. More specific informations of these generated observations were derived from the interpretation of the frequency dispersion of the complex electrical conductivity. This least-squares-refinement considers electrochemical interactions between the fluid pore electrolyte and the inner surface of the sample, thus providing informations on the pore geometry and pressure-induced variations. Consequently changes in aspect ratio, size and geometry of the pore system can be detected by means of impedance spectroscopy.  相似文献   

18.
During the last few decades, new imaging techniques like X-ray computed tomography have made available rich and detailed information of the spatial arrangement of soil constituents, usually referred to as soil structure. Mathematical morphology provides a plethora of mathematical techniques to analyze and parameterize the geometry of soil structure. They provide a guide to design the process from image analysis to the generation of synthetic models of soil structure in order to investigate key features of flow and transport phenomena in soil. In this work, we explore the ability of morphological functions built over Minkowski functionals with parallel sets of the pore space to characterize and quantify pore space geometry of columns of intact soil. These morphological functions seem to discriminate the effects on soil pore space geometry of contrasting management practices in a Mediterranean vineyard, and they provide the first step toward identifying the statistical significance of the observed differences.  相似文献   

19.
Antidunes and their sedimentary structures can be useful in reconstructing paleo‐hydraulic conditions, especially for large discharge events. However, three‐dimensional (3D) antidunes in sand‐sized sediments have not yet been studied extensively, as compared to either two‐dimensional (2D) antidunes or antidunes in gravel‐sized sediments. In this study, we estimated formative conditions of gravel step‐pool morphologies and applied them to the formation of 3D antidunes over a sand bed. Formative conditions are expressed in terms of a relationship between the water discharge per unit width and the bed slope. Flume experiments demonstrated that 3D mound‐like antidune configurations and their associated internal sedimentary structures could be preserved. Internal sedimentary structures were characterized by shallow lens‐like structures whose bases were erosional. Although gently‐dipping concave‐upward lamination was dominant, convex‐upward lamination was occasionally observed. The dimensions of lenticular lamina‐sets can be used to estimate antidune geometry. Thus if 3D antidunes can be interpreted in the stratigraphic record, it is possible to estimate the paleo‐hydraulic parameters such as water discharge and bed slope more precisely than previously. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The Manchester Ship Canal (MSC) has been the recipient of domestic and trade effluent since 1895, it continues to be grossly polluted. In 1985 the dock basins, now known as Salford Quays were isolated from the canal inorder to improve water quality and encourage redevelopment. Subsequent to isolation the dock basins received no effluent or drainage and Helixor pumps were installed to improve circulation, thereby preventing stratification and bottom water anoxia. Analysis of solid material, pore waters and phospholipid fatty acids (PLFA) in cores taken from Salford Quays and the MSC was carried out to assess changes in sediment characteristics that might affect water quality. Loss of carbon was apparent in the upper sediment of Salford Quays, as was a greater proportion of reducible Fe, Mn, Zn and Cd compared with the MSC. In Salford Quays a superficial peak in Fe and Zn concentration appeared to be attributable to migration of metals in the pore water and precipitation of Fe oxyhydroxide at the oxic sediment water interface. Despite these differences, NHSOconcentration pore water profiles were similar in both sediments if the MSC sediments were considered from a point below their top layers, which appeared to be composed of freshly deposited sewage. Bacterial biomass extrapolated from PLFA concentration also suggested that the upper sediment of the MSC was largely faecal. PLFA analyses to characterize changes in the microbial community, however, did not reveal any systematic changes. That this may have been because of an absence of vertical zonation was supported by pore water analyses. It was also apparent that the lack of systematic change might be due at least in part to an artefact of vestigial PLFA signatures, resulting from deposition and burial, and the need for finer vertical resolution in the sampling procedure. Despite incomplete and some contradictory findings it appears that although metal mobilization may result from the development of an oxic sediment water interface, the extremely high original organic content of the sediment ensures that even after 10 years it exerts a high oxygen demand. Consequently, sediment management is likely to be a long‐term commitment and as remediation proceeds the importance of continuity in management will increase. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号