首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The important effects of bottom sediments on the seismic response of arch dams are studied in this paper. To do so, a three‐dimensional boundary element model is used. It includes the water reservoir as a compressible fluid, the dam and unbounded foundation rock as viscoelastic solids, and the bottom sediment as a two‐phase poroelastic domain with dynamic behaviour described by Biot's equations. Dynamic interaction among all those regions, local topography and travelling wave effects are taken into account. The results obtained show the important influence of sediment compressibility and permeability on the seismic response. The former is associated with a general change of the system response whereas the permeability has a significant influence on damping at resonance peaks. The analysis is carried out in the frequency domain considering time harmonic excitation due to P and S plane waves. The time‐domain results obtained by using the Fourier transform for a given earthquake accelerogram are also shown. The possibility of using simplified models to represent the bottom sediment effects is discussed in the paper. Two alternative models for porous sediment are tested. Simplified models are shown to be able to reproduce the effects of porous sediments except for very high permeability values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
基于接触非线性有限元模型,以锦屏一级拱坝为例,库水分别采用附加质量模型、可压缩流体有限元模型、不可压缩流体有限元模型计算了正常蓄水位及运行低水位时坝体的动力响应,结果表明:库水模型对拱坝动力响应有较大影响,随库水深度的增大,各模型计算结果差异增大;相比于流体可压缩模型,采用不可压缩流体模型所得动力响应普遍偏大;运行低水位工况,由于静水压力减小导致拱效应减弱,从而降低了拱坝的整体性,因此运行低水位工况各缝开度普遍高于正常蓄水位工况,且其拉应力范围较大,因此,运行低水位工况将对抗震设计起控制作用。  相似文献   

3.
This paper focuses on analyzing the nonlinear seismic response of high‐arch dams with cantilever reinforcement strengthening. A modified embedded‐steel model is presented to evaluate the effects of the strengthening measure on alleviating the extension and opening of cracks under strong earthquakes. By stiffening reinforced steel, this model can easily consider the steel–concrete interaction for lightly reinforced concrete (RC) members without the need of dividing them into RC and plain concrete zones. The new tensile constitutive relations of reinforced steel are derived from the load–deformation relationship of RC members in direct tension. This model has been implemented in the finite element code and its applicability is verified by two numerical simulations for RC tests. Subsequently, numerical analyses for a 210‐m high‐arch dam (Dagangshan arch dam) are conducted with and without the presence of cantilever reinforcement. Numerical results show that reinforcement strengthening can reduce the nonlinear response of the arch dam, e.g. joint opening and crest displacement, and limit the extension and opening width of concrete cracks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The absorption of hydrodynamic pressure waves at the reservoir bottom has dominant effects on the structural response of the dam when subjected to ground motion. In the present study, a model is proposed for the absorption effects of the reservoir bottom in the earthquake analysis of dams. The model utilizes the wave reflection coefficient approach and is based on the solution of the wave equation in a sediment layer of viscoelastic material with a constant thickness overlying an elastic, semi-infinite foundation. Numerical studies were conducted to evaluate the effect of the sediment layer thickness and material properties as well as the effect of reflection of waves from the underlying rock. It is shown that the current approach of assuming the wave reflection coefficient at the reservoir bottom based on the characteristics of the sediment material and excluding the effect of the reflected waves from the underlying rock, may significantly underestimate the seismic response of the dam.  相似文献   

5.
Conventional seismic analysis of gravity dams assumes that the behaviour of the dam–water–soil system can be represented using a 2‐D model since dam vertical contraction joints between blocks allow them to vibrate independently from each other. The 2‐D model assumes the reservoir to be infinite and of constant width, which is not true for certain types of reservoirs. In this paper, a boundary element method (BEM) model in the frequency domain is used to investigate the influence of the reservoir geometry on the hydrodynamic dam response. Important conceptual conclusions about the dam–reservoir system behaviour are obtained using this model. The results show that the reservoir shape influences the seismic response of the dam, making it necessary to account for 3‐D effects in order to obtain accurate results. In particular, the 3‐D pressure and displacement responses can be substantially larger than those computed with the 2‐D model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The effects of incoherency and wave-passage on the nonlinear responses of concrete arch dams are investigated in this study. A double curvature arch dam is selected as a numerical example. The reservoir is modeled as a compressible material and the foundation is modeled as a massless medium. Ground motion time-histories are artificially generated using the Monte Carlo simulation approach. Four different finite element models (FEM) are considered: uniform excitation; incoherence effect; wave passage effect; and both incoherence and wave passage effects. It was revealed that modeling multiple-supports excitation could have a significant impact on the structural response of the dam by inducing a pseudo-static effect. Also, it was concluded that the coherency effect overshadows the wave passage effect and the results obtained from non-uniform excitation of FEM, including the wave passage effect, is close to the results of the FEM when it is uniformly excited.  相似文献   

7.
Effects of two important factors on earthquake response of high arch dams are considered and combined into one program. These factors are: effects of radiation damping of the infinite canyon and local non-linearity of the contraction joint opening between the dam monoliths. For modeling of rock canyon, the discrete parameters are obtained based on a curve fitting, thus allowing the nonlinear dam system to be solved in the time domain. The earthquake uniform free-field input at the dam-canyon interface is used. An engineering example is given to demonstrate the significant effects of the radiation damping on the structure response.  相似文献   

8.
Extensive land use changes have occurred in many areas of SE Spain as a result of reforestation and the abandonment of agricultural activities. Parallel to this the Spanish Administration spends large funds on hydrological control works to reduce erosion and sediment transport. However, it remains untested how these large land use changes affect the erosion processes at the catchment scale and if the hydrological control works efficiently reduce sediment export. A combination of field work, mapping and modelling was used to test the influence of land use scenarios with and without sediment control structures (check‐dams) on sediment yield at the catchment scale. The study catchment is located in SE Spain and suffered important land use changes, increasing the forest cover 3‐fold and decreasing the agricultural land 2·5‐fold from 1956 to 1997. In addition 58 check‐dams were constructed in the catchment in the 1970s accompanying reforestation works. The erosion model WATEM‐SEDEM was applied using six land use scenarios: land use in 1956, 1981 and 1997, each with and without check‐dams. Calibration of the model provided a model efficiency of 0·84 for absolute sediment yield. Model application showed that in a scenario without check dams, the land use changes between 1956 and 1997 caused a progressive decrease in sediment yield of 54%. In a scenario without land use changes but with check‐dams, about 77% of the sediment yield was retained behind the dams. Check‐dams can be efficient sediment control measures, but with a short‐lived effect. They have important side‐effects, such as inducing channel erosion downstream. While also having side‐effects, land use changes can have important long‐term effects on sediment yield. The application of either land use changes (i.e. reforestation) or check‐dams to control sediment yield depends on the objective of the management and the specific environmental conditions of each area. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a method for coupled arch dam–foundation–reservoir seismic behaviour analysis. The dam is discretized by finite elements (FE) and the foundation and reservoir are discretized by boundary elements (BE). The opening of contraction joints and the spatial variability of the seismic action is taken into account. The study of Pacoima dam by this method is also presented. The computed results show that no cracks were to be expected due to the vibrations induced during the Feb. 9, 1971 San Fernando earthquake. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
A comprehensive study of non‐linear seismic response of arch dams with contraction joint opening and joint reinforcements has been conducted. A numerical model of contraction joint reinforcements is presented for optimization control of the joint opening. The objective of this control is to reduce the joint opening and expectantly to balance the sustained loads between the horizontal and the vertical components of the dam, thus avoiding an overstress in the cantilever while retaining the release of arch tensile stresses to some extent. Several parameter studies such as critical element size and required number of joints to be simulated for convergence are also performed. As an engineering application, a 292‐m high arch dam (the Xiaowan arch dam) and the Big Tujunga dam are analysed in detail. The results demonstrate that the joint opening and the corresponding load transfer from the arch to cantilever components of the dam during strong earthquakes are substantial. It is also evident that by providing sufficient strength and reinforcement flexibility, the joint opening can be controlled to some extent. However, the stress redistribution due to reinforcement control is not sufficient to avoid the overstress in the cantilever for the Xiaowan arch dam. Thus, alternative measures are discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
This article deals with the following two questions. Are acoustic measurements in running waters appropriate for a highly resolved investigation of the bedload transport? Which characterizations of the bedload regarding mass and shape are possible via the acoustic signals? The signals were recorded by means of data recorders (Tascam Inc. DAP1 Portable Data Recorder) and hydrophones (International Transducer Corp. ITC‐4001 A). The ITC‐4001 is a shallow water omnidirectional transducer containing a flexural disc transducer utilizing Channelite‐5400 ceramics mounted in a rugged corrosion‐resistant housing. These hydrophones were screwed onto the bottom side of stainless steel plates, serving as a contact surface for the bedload in motion above them. After more than 100 series of tests in the laboratory, which indicated the basic relations between the dimension, shape and weight of the bedload and the resulting signal, field tests of the measuring system were conducted. By artificially produced flood waves in the small brooks Riverisbach, Olewiger Bach and by a winter flood wave in the River Moselle, it is possible to elaborate similar structures of the signal course of the bedload movement. The highest transport rates can be observed at the beginning of the increasing limbs and behind the peaks of the waves. At the beginning of the waves, the increasing transport power of the water and the loose material can be considered as the cause for this result. The high stream velocity behind the wave peaks explains the increase in the bedload transport so that material from the channel beds is unfastened and will be mobilized. The characterization of the bedload regarding the shape and mass is still limited regarding the field measurements and could be solved only for homogeneous grain sizes and single stones under laboratory conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The need for full‐scale dynamic tests, which are recognized as the most reliable method to evaluate a structure's vibration properties, is increasing as new analysis techniques are developed that take into account the complex interaction phenomenons that occur in dam–reservoir–foundation systems. They are extremely useful to obtain reliable data for the calibration of newly developed numerical methods. The Earthquake Engineering and Structural Dynamics Research Center (CRGP) at the University of Sherbrooke has been developing and applying dynamic testing methods for large structures in the past 10 years. This paper presents the experimental evaluation of the effects of the varying water level on the dynamic response of the 180 m Emosson arch dam in Switzerland. Repeated forced‐vibration tests were carried out on the dam during four different periods of the reservoir's filling cycle during a one‐year span. Acceleration and hydrodynamic pressure frequency responses were obtained at several locations while the dam was subjected to horizontal harmonic loading. The variation of the resonant frequencies as a function of the reservoir level is investigated. A summary of the ongoing numerical correlation phase with a three‐dimensional finite element model for the dam–reservoir–foundation system is also presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
An analysis of the influence that reservoir levels and bottom sediment properties (especially on the degree of saturation) have on the dynamic response of arch dams is carried out. For this purpose, a Boundary Element Model developed by the authors that allows the direct dynamic study of problems that incorporate scalar (dammed up water), viscoelastic (dam and soil site) and poroelastic media (bottom sediments in the reservoir) is used. All of the regions are discretized using boundary elements, later formulating equations of compatibility and equilibrium that allow their interaction to be rigorously established. The seismic excitation consists in plane longitudinal waves (P waves) and shear waves (S waves) impinging the dam site with an angle of vertical incidence. The analysis is carried out in the frequency domain, and the time response is obtained, for synthesized artificial accelerograms defined in terms of the elastic response spectrum taken from Eurocode 8, using a FFT algorithm. The variables used to characterize the response are: Amplitude of the complex-valued frequency-response function, acceleration response spectra and the integral of velocity of points located at the structure. These variables clearly indicate the importance that the factors analyzed have on the dynamic response.  相似文献   

14.
There are several alternatives to evaluate seismic damage‐cracking behavior of concrete arch dams, among which damage theory is the most popular. A more recent option introduced for this purpose is plastic–damage (PD) approach. In this study, a special finite element program coded in 3‐D space is developed on the basis of a well‐established PD model successfully applied to gravity dams in 2‐D plane stress state. The model originally proposed by Lee and Fenves in 1998 relies on isotropic damaged elasticity in combination with isotropic tensile and compressive plasticity to capture inelastic behaviors of concrete in cyclic or dynamic loadings. The present implementation is based on the rate‐dependent version of the model, including large crack opening/closing possibilities. Moreover, with utilizing the Hilber–Hughes–Taylor time integration scheme, an incremental–iterative solution strategy is detailed for the coupled dam–reservoir equations while the damage–dependent damping stress is included. The program is initially validated, and then, it is employed for the main analyses of the Koyna gravity dam in a 3‐D modeling as well as a typical concrete arch dam. The former is a major verification for the further examination on the arch dam. The application of the PD model to an arch dam is more challenging because the governing stress condition is multiaxial, causing shear damage to become more important than uniaxial states dominated in gravity dams. In fact, the softening and strength loss in compression for the damaged regions under multiaxial cyclic loadings affect its seismic safety. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
拱坝横缝影响及有效抗震措施的研究   总被引:6,自引:0,他引:6  
大量研究结果和某些拱坝的地震震害表明,横缝对拱坝的地震响应有很大的影响。通过采用非光滑方程组方法以及考虑碰撞时刻动量、动能守恒来模拟横缝所引起的动接触问题,同时为了提高计算效率,采用隐-显式积分方法对坝-基系统的动力平衡方程进行求解。针对在拱坝中上部配筋这一抗震措施,也作了探讨。通过对小湾拱坝的分析,为高拱坝工程抗震措施的选择提供技术依据。  相似文献   

16.
In this paper, a systematic investigation into the effect of both the type of impervious members and the reservoir bottom sediment on the dynamic response of embankment dams has been carried out using the finite and infinite element coupled method. It has been demonstrated from the numerical results that: (1) the resonant frequencies of an embankment dam—foundation system with an upstream inclined concrete apron are different from those with a central clay core; (2) the type of impervious members has a significant influence on the amplification factors of the system in the low frequency range of excitation, but has little effect in the high frequency range of excitation; (3) the foundation material of an embankment dam affects the dynamic response of the dam drastically; (4) the inclusion of the reservoir bottom sediment has a considerable effect on amplification factors of embankment dams in the case of P-wave incidences, but has little influence in the case of SV-wave vertical incidences; and (5) the reservoir bottom sediment also has a profound effect on the deformed shape of the embankment dam for both P-wave and SV-wave incidences.  相似文献   

17.
The purpose of this study is to investigate the effect of retrofitting dynamic characteristics of a damaged laboratory arch dam model, subsequently repaired with high-strength structural mortar and strengthened with composite carbon fiber reinforced polymer. This study constructed in laboratory conditions is a prototype arch dam–reservoir–foundation model. Five test cases of ambient vibration on the arch dam model illustrate the changes in dynamic characteristics: natural frequency, mode shape, and damping ratio, before and after retrofitting. The ambient vibration tests collected data from the dam body during vibrations by natural excitations which provided small impacts and response signals from sensitivity accelerometers placed at crest points. Enhanced Frequency Domain Decomposition Method in the frequency domain extracts the experimental dynamic characteristics. At the end of the study, experimentally identified dynamic characteristics obtained from all test cases have been compared with each other. Apparently, after the retrofitting, the natural frequencies of the dam body increased considerably, demonstrating that the retrofitting, including repairing and strengthening is very effective on the flashback of initial dynamic characteristics.  相似文献   

18.
This paper presents the experimental programme and results of a continuous ambient vibrations recording programme carried out on the 250 m arch dam of Mauvoisin. This project follows a series of previous measurements completed for seven different water levels. An automated system was set up on the dam and the ambient vibrations were recorded twice daily for a period of 6 months. Frequency shifts were tracked throughout the testing period and the effects of the varying water level were identified. The results confirmed the behaviour observed in previous ambient‐ and forced‐vibration tests. The added‐mass effects are overcome by the stiffening of the dam due to increasing hydrostatic pressure for lower reservoir levels. This trend is then reversed for higher water levels. Any temperature‐related effects were not identified. The experimental techniques are briefly described and the frequency identification process and its limitations are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
几何缺陷对拱结构动力稳定性的影响   总被引:1,自引:0,他引:1  
分析了外激励下几何缺陷对拱结构动力稳定性的影响。推导了拱结构边界确定而结构本身节点坐标偏差随机且指数相关时的条件相关矩阵,分解得到几何缺陷的分布方式和大小。从非线性运动方程出发,分别得出了周期荷载作用下非线性刚度矩阵可线性化,非周期荷载作用下同时考虑几何、材料非线性的Lyapunov指数计算方法。最后以一圆弧拱为例分别对周期荷载、阶跃荷载、脉冲荷载及地震荷载作用下几何缺陷的影响进行了数值分析。结果表明周期激励作用下拱结构存在动力失稳频域;在不同分布方式几何缺陷中动力稳定性对与屈曲模态相似的缺陷最为敏感。  相似文献   

20.
An extensive forced‐vibration testing programme has been carried out on an 84‐m concrete gravity dam located in northeastern Québec, Canada. The dam was subjected to a harmonic load on the crest in summer and severe winter conditions with temperatures ranging from ?10°C to ?15°C and a 1.0–1.5m ice cover. Acceleration and hydrodynamic frequency responses were obtained in different locations on the dam and in the reservoir. The main objective of the repeated tests was to investigate the effects of the ice cover on the dynamic behaviour of the dam–reservoir–foundation system, by comparing summer and winter results. Modifications in damping and resonance frequencies were observed, as well as an additional resonance that was attributed to an interaction of the dam with the ice cover. These findings provided a reliable and unique database for the investigations of dam–reservoir–foundation interaction and, in particular, the ice‐cover effects for dams located in northern regions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号