首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of stacked Permo‐Pennsylvanian palaeosols from north‐central Texas documents the influence of palaeolandscape position on pedogenesis in aggradational depositional settings. Palaeosols of the Eastern shelf of the Midland basin exhibit stratigraphic trends in the distribution of soil horizons, structure, rooting density, clay mineralogy and colour that record long‐term changes in soil‐forming conditions driven by both local processes and regional climate. Palaeosols similar to modern histosols, ultisols, vertisols, inceptisols and entisols, all bearing morphological, mineralogical and chemical characteristics consistent with a tropical, humid climate, represent the Late Pennsylvanian suite of palaeosol orders. Palaeosols similar to modern alfisols, vertisols, inceptisols, aridisols and entisols preserve characteristics indicative of a drier and seasonal tropical climate throughout the Lower Permian strata. The changes in palaeosol morphology are interpreted as being a result of an overall climatic trend from relatively humid and tropical, moist conditions characterized by high rainfall in the Late Pennsylvanian to progressively drier, semi‐arid to arid tropical climate characterized by seasonal rainfall in Early Permian time. Based on known Late Palaeozoic palaeogeography and current hypotheses for atmospheric circulation over western equatorial Pangea, the Pennsylvanian palaeosols in this study may be recording a climate that is the result of an orographic control over regional‐scale atmospheric circulation. The trend towards a drier climate interpreted from the Permian palaeosols may be recording the breakdown of this pre‐existing orographic effect and the onset of a monsoonal atmospheric circulation system over this region.  相似文献   

2.
The MGS2 segment of the Milanggouwan stratigraphical section in China’s Salawusu River Valley records 5.5 sedimentary cycles consisting of dune sands alternating with fluviolacustrine facies or/and palaeosols. The high Rb and Sr contents and low Rb/Sr ratios in the fluviolacustrine facies indicate the presence of a warm and humid climate, and vice versa for a dry and cold climate. Rb and Sr appeared to have 5.5 element cycles that are consistent with the sedimentation changes, and each cycle lasts about 2 ka on average. This study suggests that the observed cycles mainly resulted from variations in the strength of the East Asian winter and summer monsoons, and the MGS2 segment experienced six cold-dry winter monsoons and five warm-humid summer monsoons during the OIS2. In addition, the millennial-scale monsoonal climate fluctuations revealed by the element cycles corresponded well with the Dansgaard–Oeschger cycles recorded in the Greenland ice cores and Heinrich events in the North Atlantic marine sediments. Therefore, the monsoonal climate fluctuations revealed by the Rb and Sr in the MGS2 segment were likely triggered by global climate change.  相似文献   

3.
A multi‐disciplinary approach was followed to investigate two thick palaeosol strata that alternate with wind‐blown dominated deposits developed along the Alghero coast (North‐west Sardinia, Italy). Optically stimulated luminescence ages reveal that both palaeosols were developed during cooler drier periods: the first one at around 70 ka Marine Isotope Stage 4 and the latter around 50 ka (Marine Isotope Stage 3). In contrast, the pedological features indicate that the palaeosols underwent heavy weathering processes under warm humid to sub‐humid conditions, characteristic of the Sardinian climate during the last interglacial stage (Marine Isotope Stage 5e). To reconcile this apparent data discrepancy, a range of sedimentological and pedological analyses were conducted. These analyses reveal that the palaeosols possess a complex history, with accumulation and weathering occurring during Marine Isotope Stage 5e, and erosion, colluviation and final deposition taking place during the following cold stages. Thus, even if these reddish palaeosols were last formed during the glacial period, the sediments building up these strata probably record the climate of the last interglacial stage (Marine Isotope Stage 5e). Trace element and X‐ray diffraction analyses, together with scanning electron microscope images, reveal the presence of Saharan dust in the parent material of the palaeosols. However, no evidence of any far‐travelled African dust has been observed in the Marine Isotope Stage 4–3 aeolian deposits. It is possible to conclude that in the West Mediterranean islands, Saharan dust input, even if of modest magnitude, is preserved preferentially in soils accumulated and weathered during interglacial stages.  相似文献   

4.
To date, discussion of changes in alluvial style and in the character of palaeosols in relation to changes in accommodation and sediment supply on floodplains has primarily been from a conceptual standpoint: few case studies are available against which to test ideas. One hundred and thirty metres of non-marine strata of the Dunvegan Formation were examined in 14 closely spaced sections in the canyon of the Kiskatinaw River, NE British Columbia, Canada. This site was located about 120 km inland from the transgressive limit of the contemporary marine shoreline and represents almost exclusively freshwater environments. Fluvial channels in the Kiskatinaw River section are of two types. Small, single-storey, very fine- to fine-grained sandstone ribbons with W/T ratios <30, encased in fine-grained floodplain sediments are interpreted as anastomosed channels. Fine- to medium-grained, laterally accreted point-bar deposits forming multistorey sand bodies with individual W/T ratios >30 are interpreted as the deposits of meandering rivers filling incised valleys. Interchannel facies include the deposits of crevasse channels and splays, lakes, floodplains and palaeosols. Floodplain palaeosols consist of laterally heterogeneous, simple palaeosol profiles and pedocomplexes similar to modern Entisols, Inceptisols and hydromorphic soils. Interfluve, sequence-bounding palaeosols adjacent to incised valleys are laterally continuous, up to 3 m thick and can be reliably identified using a combination of (1) stratigraphic position; (2) field observations, such as thickness, structure, colour, degree of rooting; and (3) micromorphological features, such as evidence of bioturbation, clay coatings, ferruginous features and sphaerosiderite. Interfluve palaeosols are similar to modern Alfisols and Ultisols. Correlation of the local stratigraphic succession with the regional sequence stratigraphic framework, based on 2340 well logs and 60 outcrop sections, shows that the vertical changes in coastal plain character (more coals and lakes vs. more pedogenesis) can be related to relatively high-frequency base level cycles (eustatic?) that are expressed as transgressive–regressive marine cycles in downdip areas. Regional isopach maps show that these cycles were progressively overprinted and modified by an increasing rate of tectonic subsidence in the north and west. The character of palaeosols developed on aggrading floodplains primarily reflects local sediment supply and drainage. In contrast, well-developed interfluve palaeosols record pedogenesis during periods of reduced or negative accommodation (base level fall). Vertical changes in floodplain palaeoenvironments and palaeosol types reflect changes in accommodation rate. The detailed micromorphological analysis of interfluve palaeosols represents a powerful application of an under-used technique for the recognition of key surfaces in the geological record. This has broad implications for non-marine sequence stratigraphy.  相似文献   

5.
A detailed study of the Duvanny Yar section in the Kolyma Lowland (Yakutia) provides the most extensive knowledge to date about late-Pleistocene soil formation processes and environments in the North–East Siberian Arctic. Late-Quaternary palaeoenvironmental changes were reconstructed using paleopedological data and a range of palaeoecological bio-indicators (palynomorphs, plant macrofossils and insects). The frozen sediments representing marine isotope stage 3 (MIS-3), which encompasses the Karginsky interstadial, include profiles of four palaeosols of different ages. The oldest palaeosol is early Karginskian, and three overlying soil horizons represent a late-Karginskian pedocomplex. Palaeopedological data indicate a change of from synlithogenic soil formation processes to epigenic ones during these intervals. The intervening periods of synlithogenic pedogenesis were accompanied by active accumulation of eolian deposits. The Earlier Karginskian period of pedogenesis occurred in the absence of eolian sedimentation and when summer conditions were warm. The wide spectrum of peaty and peaty-gley soils observed in the late-Karginskian deposits developed under conditions of progressive cooling. The structure and content of fossil rodent burrows dated to approximately 30 000 yr BP from frozen late-Pleistocene deposits at Duvanny Yar indicate an arid and severe climate, a depth of active layer of 60–80 cm, and a wide distribution of disturbed habitats with pioneer and steppe vegetation.  相似文献   

6.
Although pedogenic barite has been documented in many modern soils and palaeosols, no actualistic studies on its formation have been reported. Because barite is stable over the entire range of pressure and temperature of the Earth's crust, it preserves reliable data about the original environment in which it formed. Pedogenic barite and barite‐bearing soils have been used as indicators of landscape stability, environmental conditions, climate and microbial acti‐vity. This study compares field data, micromorphology and stable isotope geochemistry of a barite‐bearing palaeosol from the Morrison Formation (Jurassic) and a modern analogue soil in south‐central Texas, USA. Morrison barite‐bearing palaeosols are over‐thickened cumulic palaeosols that developed in subaerially exposed lacustrine sediments during an extended lake contraction event. Lateral facies relationships document changes in hydrology and duration of episaturated conditions (perched water table above the Btg horizons) that correspond to differences in barite nodule morphology and abundance. Barite precipitation occurred at a redox boundary higher on the landscape after organic matter was completely oxidized. Sulphur isotope data indicate that the initial source of sulphur was soil organic matter. Meteoric water is the likely source of oxygen for the sulphate. Barium sourced from weathering feldspars and clays. The modern analogue displays similar catenary relationships, redox features and micromorphological characteristics compared to the Morrison palaeosols, suggesting that similar pedogenic processes led to barite precipitation. Synthesized data suggest that conditions favourable to barite‐bearing soil formation are low‐gradient basins that have received feldspar‐rich sediments (i.e. volcanically influenced basins), soils that developed near salt domes, soils that developed in exposed wetland or lacustrine sediments and coastal plain deposits. When studied in a well‐documented palaeogeographic context, barite‐bearing soils are valuable to palaeoclimate, palaeoenvironmental and palaeohydrological studies. Combined with regional interfluve palaeosols, barite‐bearing palaeosols may document temporal changes in drainage, surface stability, and accommodation consistent with sequence boundaries/maximum flooding surfaces and climate changes.  相似文献   

7.
The Eocene–Oligocene transition (EOT, ~34 Ma) is the largest global cooling of the Cenozoic Era and led the Earth's climatic system to change from a greenhouse to an icehouse mode. Although it is well documented in marine settings, the few studies focusing on continental environments have demonstrated regional heterogeneities. The study core CDB1, located in the Rennes Basin (Western France), is a unique terrestrial (lacustrine–palustrine) record comprising well‐preserved and terrestrial‐derived organic‐rich sediments encompassing the EOT. Clay minerals and the first organic nitrogen isotope record (δ15Norg) of terrestrial origin for this period are used to reconstruct palaeoclimate changes across this key interval. As suggested in worldwide marine and a few continental records, a stepwise transition from warm/humid conditions in the Late Eocene to cooler/drier conditions in the Early Oligocene is confirmed in the area. In addition, an episode of drier conditions in the Late Eocene and humid/dry cycles in the Early Oligocene are suggested.  相似文献   

8.
Five lateral sand–loess–palaeosol continua occur within the last glacial sediments of the central Loess Plateau of China along a 500 km north to south climatic gradient. The continua shift southward or northward in concert with desert expansion or contraction, respectively. Lateral lithofacies (desert sand to loess) variations are evident at the north end of the gradient and follow Walther's Law of the correlation of facies. Lateral pedofacies (loess to palaeosol) variations are present near the south end of the gradient, where the climate was warmer and wetter. The lateral stratigraphic changes from sand to loess or loess to soil are driven by variations in the rate of sedimentation along a climatic gradient.Vertical stratigraphic profiles at the north end of the gradient reveal alternating sand and loess beds. In contrast, alternating loess and palaeosols occur within the same stratigraphic interval in the southern Loess Plateau, where dust accretion rates were lower. However, in high resolution studies of climate change vertical profiles of alternating loess and palaeosols (especially weak palaeosols) may not reflect regional or global climate change. Alternating loess and weak palaeosols may reflect local variations in the balance between the rates of dust accretion and pedogenesis. Local fluctuations in either of these rates could result in the presence of time equivalent loess and palaeosols at high resolutions. Thus, some of the high resolution loess-palaeosol alternations may reflect local climatic variation rather than global or hemispherical climate change.  相似文献   

9.
Loess-paleosol sequences of the last interglacial-glacial cycle are correlated from European Russia to central Siberia and the Chinese Loess Plateau. During cold periods represented by marine oxygen isotope stages (OIS) 2 and 4, loess deposition dominated in the Russian Plain and the Loess Plateau. In central Siberia, loess deposition took place also, but five to seven thin, weakly developed paleosols are identified in both stages. OIS 3, in the Chinese Loess Plateau near Yangchang, consists of a loess bed that is flanked by two weakly developed paleosols. At Kurtak, Siberia, OIS 3 is represented by two distinct, stacked paleosols with no loess bed separating the paleosols. In the Russian Plain, OIS 3 consists of a single, possibly welded paleosol, representing upper and lower stage-3 climates. Brunisols and Chernozems dominate the profiles in China and Siberia, whereas Regosols, Luvisols, and Chernozems are evident in the northern and southern Russian Plain, respectively. OIS 5 is represented in China and the Russian Plain by pedo complexes in a series of welded soils, whereas in contrast, the Kurtak site consists of six paleosols with interbedded loess. The paleosols consist largely of Brunisols and Chernozems. Although the three areas examined have different climates, geographical settings, and loess source areas, they all had similar climate changes during the last interglacial-glacial cycle.  相似文献   

10.
Columnar structured horizons have been recognized in ancient coastal palaeosols of several Lower Permian (Asselian) stratigraphic units of north-central Kansas. These strongly developed columnar, polygonal-shaped peds are characteristic of sodium-influenced (natric) argillic horizons, and are commonly indicative of semi-arid to arid environments. Evaporite features above and below these palaeosols support the conclusion for a dry palaeoclimate. The columnar peds are typically 3–15 cm in diameter and exhibit domed tops. Fine clay fills the cracks between the columnar peds, and is generally of a darker colour than the peds. Each natric horizon has a low value and chroma colour, apparently the result of carbonate accumulation. The natric horizons in these Permian palaeosols appear to have been partially influenced by sodium-rich groundwaters. Root traces and root moulds are found between peds in all natric horizons, indicating plant succession after columnar ped formation. These sodium-influenced palaeosol profiles occur as part of a spectrum of palaeosol types that indicate cyclical climate change associated with glacioeustatic sea-level fluctuations.  相似文献   

11.
Modelling palaeoglaciers in mountainous terrain is challenging due to the need for detailed ice flow computations in relatively narrow and steep valleys, high-resolution climate estimations, knowledge of pre-ice topography, and proxy-based palaeoclimate forcing. The Parallel Ice Sheet Model (PISM), a numerical model that approximates glacier sliding and deformation to simulate large ice sheets such as Greenland and Antarctica, was recently adapted to alpine environments. In an attempt to reconstruct the climate conditions during the Last Glacial Maximum (LGM) on Mount Dedegöl in SW Turkey, we used PISM and explored palaeoglacier dynamics at high spatial resolution (100 m) in a relatively small domain (225 km2). Palaeoice-flow fields were modelled as a function of present temperature and precipitation. Nine different palaeoclimate simulations were run to reach the steady-state glacier extents and the modelled glacial areas were compared with the field-based and chronologically well-established ice extents. Although our results provide a non-unique solution, best-fit scenarios indicate that the LGM climate on Mount Dedegöl was between 9.2 and 10.6 °C colder than today, while precipitation levels were the same as today. More humid (20% wetter) or arid (20% drier) conditions than today bring the palaeotemperature estimates to 7.7–8.8 or 11.5–13.2 °C lower than present, respectively.  相似文献   

12.
羌塘盆地查郎拉地区中新生代古气候演化初探   总被引:6,自引:2,他引:6  
通过野外遥感调研和收集整理大量剖面及路线地质资料,讨论了羌塘盆地查郎拉地区气候常量元素、变价元素及微量元素特征;气候沉积物及其分布特征,结合已有的气候指示性古生物化石及岩相古地理资料,首次系统地演绎了本区中新生代古气候特征及其变迁演化史。划分出8个气候旋回,指出晚三叠世为热带亚热带温热半潮湿-潮湿气候,组成第I气候旋回;中株罗世呈热带亚热带半干旱→半潮湿气候的周期性变化,组成第Ⅱ、Ⅲ气候旋回;晚株罗纪经历了热带炎热半干燥→温暖半潮湿和潮湿→炎热半干燥气候的演化,组成第Ⅳ、Ⅴ气候旋回;白垩纪气候早期呈温暖半潮湿,晚期转为半干燥-干燥热带、亚热带气候,组成第既Ⅵ、Ⅶ气候旋回;第三纪为内陆亚热带的干燥、半干燥→高原温凉气候;第四纪曾出现过6次冰期和5次间冰期,新生代总体经历了剧烈而频繁的冷暖波动,气候日益干燥和寒冷。最后简单分析了气候旋回与沉积旋回、构造运动和青藏高原隆升的叠加耦合关系,以及古气候变迁的主因。  相似文献   

13.
Were Ediacaran siliciclastics of South Australia coastal or deep marine?   总被引:1,自引:0,他引:1  
The Late Neoproterozoic Ediacara Member of the Rawnsley Quartzite in South Australia has been considered aeolian, fluvial, intertidal and deep marine by various authors. Palaeosols would not be expected for the deep marine interpretation, but some palaeosols should be evident for the aeolian–fluvial–intertidal interpretations, and this is the first study to examine the Ediacara Member at a petrographic and geochemical scale appropriate to recognize potential palaeosols. Recognition of palaeosols and floodplain facies in Neoproterozoic rocks is a challenge because such rocks are too ancient for diagnostic non‐marine fossils such as root traces. The varied thickness of Ediacara Member red siltstones and white sandstones is distinct from laterally persistent overlying and underlying grey shales and limestones with acritarchs, stromatolites and other marine fossils. The sandstones are trough cross‐bedded and fill palaeovalleys. The red siltstones have poorly sorted, highly angular, silt‐size grains characteristic of loess. Particular sandy and silty beds were sampled for detailed petrographic and geochemical studies, because they include desiccation cracks, sand crystals, ice cracks, carbonate nodules and soft‐sediment deformation like those of palaeosols. Chemical and grain‐size variations within these beds reveal surficial clay formation and oxidation from feldspar as in soils. Petrographic studies also revealed surficial disruption of these palaeosols by filamentous structures comparable with microbial ropes of biological soil crusts. This array of palaeosol features may be of use for recognizing palaeosols in other Neoproterozoic siliciclastic sequences.  相似文献   

14.
The investigation of soil-sedimentary sequences formed in different erosional and depositional environments in the central part of the Selenga Midland (western Transbaikalia region) during Late Glacial and Holocene made it possible to reveal nine periods of activation of exogenic processes and sedimentation and eight stages of intense pedogenesis, to define the specific features of these pedogenesis and sedimentation epochs, and to assess their duration. The data on the intensity of sedimentation and its influence on pedogenesis is demonstrated. Asynchronous development of exogenic processes and pedogenesis related to the landscapeâ “climate heterogeneity of the Selenga Midland have been revealed. The latter is reflected in more distinct epochs of intense exogenic processes in more arid southern areas of the midland and more durable periods of pedogenesis in humid climatic environments of its central part.  相似文献   

15.
The Middle–Upper Siwalik Groups (Plio–Pleistocene) are exposed at Haripur-Kolar, Himachal Pradesh, India. The succession is 2800-m thick and has been subdivided into Unit M1 of the Middle Siwalik and four units U1–U4 of the Upper Siwalik Group, on the basis of facies associations, and type and degree of development of palaeosols. The available magnetostratigraphic ages for bases of Units U1, U3 and U4 are 5.5, 2.6 and 1.77 Ma, respectively. The top of the section has been dated as 19 ka.

Lithofacies association and palaeocurrent analysis indicates that the Middle and Upper Siwalik Groups were formed mainly by a basin transverse fluvial system. Two types of river systems, which differ in their size, can be documented in Unit-M1, Unit U1 and Unit-U2: one trunk river system similar to the modern Kosi and the other smaller river system, which formed tributaries to the former. The large rivers were mainly braided in nature. The Unit U3 and lower part of Unit U4 were deposited in the piedmont depositional system mainly by small braided streams and the upper part of the Unit U4 was deposited during a period of arid climate by sediment gravity-flows.

Integration of fluvial lithofacies and pedofacies helps to identify two fluvial depositional systems from the modern Indo-Gangetic Plains. The Lowland System involved deposition on alluvial megafans and interfan areas, which resulted in sand-rich and mud-rich sequences with weekly developed soils. The Upland System allowed large tracts to act as high ground for thousands of years, thereby giving rise to sandstone poor intervals with moderately to strongly developed soils. Occurrence of moderately to strongly developed soils was controlled by uplifting and tilting of large tectonic blocks, without any relation to distance from the main channels. Rate of subsidence apparently controlled the occurrence of Lowland and Upland systems. Deposition of the Unit M1, Unit U1 and Unit U2 took place under Upland and Lowland systems, very similar to those identified from the modern Indo-Gangetic Plains. The warm and humid climate between 5.3 and 2.6 Ma led to the formation of red Alfisols with calcrete nodules at places. Slightly cooler and drier climate starting at about 2.6 Ma and approximately coinciding with the onset of global-scale glaciation, produced poorly developed yellow soil with common development of nodular calcretic horizon and calcitc material disseminated in the groundmass. At ca. 0.9 Ma, a probable significant change to still drier and cooler climate produced typical sediment gravity-flows in the piedmont system, that continued until at least up to 19 ka.  相似文献   


16.
Smectitic parent material from the weathering Deccan basalt has been deposited in the lower piedmont plains, valleys and microdepressions during a previous wetter climate. The cracking clay soils (Vertisols) were developed in such alluvium during drier climate of the Holocene period. In India they occur in humid tropical (HT), sub-humid moist (SHM), sub-humid dry (SHD), semi-arid moist (SAM), semi-arid dry (SAD) and arid dry (AD) climatic environments and thus indicate an array of soils in a climosequence.The soils show a change in their morphological, physical, chemical and micromorphological properties in the climosequence. Soils of HT climate are dominated by Ca++ ions in their exchange complex throughout depth. However, in the sub-humid climates Mg++ ions tend to dominate in the lower horizons. The sub-humid moist to aridic climatic environments caused a progressive formation of pedogenic calcium carbonates (PC) with the concomitant increase in Na+ ions in soil solution. This facilitated the translocation of Na-clay in the soil profile. This is responsible for the increase in pH, decrease in Ca/Mg ratio of exchange sites with depth and finally in the development of subsoil sodicity. The reduction in mean annual rainfall (MAR) from sub-humid moist to arid climates accelerated the formation of PC and thus the soils of semi-arid and arid climates (SAM, SAD and AD) are more calcareous and sodic than soils of other climates (SHM and SHD).Formation of PC, illuviation of clay and the development of subsoil sodicity are concurrent, contemporary and active pedogenetic processes operating during the climate change of the Holocene period. These processes impaired the hydraulic properties of soils in general, and in soils of drier climates in particular. As a result, cracking pattern, chemical composition and plasmic fabric were more modified in soils of the drier climates. Such modifications in soil properties have a place in the rationale of Vertisol order of the US Soil Taxonomy. The soils of wetter climates (HT, SHM and SHD) are grouped in Typic Haplusterts whereas the soils of drier climates (SAM, SAD and AD) are classified as Aridic Haplusterts, Sodic Haplusterts and Sodic Calciusterts. The present study demonstrates how the intrinsic soil properties of the cracking clay soils in a climosequence may help in inferring the change in climate in a geologic period.  相似文献   

17.
综合钱塘江下切河谷SE4孔岩心观察和描述及粒度、孢粉、测年等分析数据,探讨了钱塘江下切河谷晚第四纪沉积环境和古气候演化,揭示了其气候变化机制下沉积响应的具体过程。研究表明SE4孔晚第四纪沉积物自下而上包括河床亚相、河漫滩亚相、古河口湾相、浅海亚相和现代河口湾相5套沉积。研究区晚第四纪以来古植被和古气候演化分为6个阶段:第一阶段植被类型为阔叶树为主的针阔混交林—草原,气候温和偏湿,沉积了河床和河漫滩亚相;第二阶段为落叶栎稍多的针阔混交林,气候温和湿润,沉积了古河口湾相和浅海亚相;第三阶段为针阔混交林,气候温暖湿润,浅海亚相沉积发育;第四至第六阶段植被类型经历了针阔混交林—草原、针阔混交林、针阔混交林—草原的交替,气候经历了温和偏干、温和偏湿、温和偏干的变化,现代河口湾相沉积发育。  相似文献   

18.
综合钱塘江下切河谷SE4孔岩心观察和描述及粒度、孢粉、测年等分析数据,探讨了钱塘江下切河谷晚第四纪沉积环境和古气候演化,揭示了其气候变化机制下沉积响应的具体过程。研究表明SE4孔晚第四纪沉积物自下而上包括河床亚相、河漫滩亚相、古河口湾相、浅海亚相和现代河口湾相5套沉积。研究区晚第四纪以来古植被和古气候演化分为6个阶段:第一阶段植被类型为阔叶树为主的针阔混交林—草原,气候温和偏湿,沉积了河床和河漫滩亚相;第二阶段为落叶栎稍多的针阔混交林,气候温和湿润,沉积了古河口湾相和浅海亚相;第三阶段为针阔混交林,气候温暖湿润,浅海亚相沉积发育;第四至第六阶段植被类型经历了针阔混交林—草原、针阔混交林、针阔混交林—草原的交替,气候经历了温和偏干、温和偏湿、温和偏干的变化,现代河口湾相沉积发育。  相似文献   

19.
Quaternary loess sequences of Argentina, with interbedded loess and buried soils (palaeosols), provide terrestrial records of past climates and environmental conditions. Study of rock magnetic parameters measured over a large area of the Pampean loess seems to indicate that the existing magnetoclimatological models cannot adequately account for the complexities of the Pampean loess.The Chinese loess has been considered as typical, where magnetic properties are largely controlled by pedogenesis. On the other hand, the Siberian loess is an alternative magnetoclimatological model in which palaeosols appear as magnetic lows and the intercalated loess as magnetic highs. Argentine loess is apparently closer to the Siberian model. However, considering the data obtained in Argentina, the situation seems to be more complicated. The higest magnetic values (SIRM and susceptibiliy values) in silty and sandy loess indicate a more efficient entrainment of dense iron oxides particles during stormy dry (glacial) intervals.The parent material shows the highest susceptibility values (>100 × 10−8 m3/kg) while the waterlogged horizons show the lowest ones (below 20 × 10−8 m3/kg). Pedogenesis resulting in the development of BC and B soil horizons of palaeosols in the parent loess produced decreases in susceptibility values and increases in the F factor. This phenomenon occurs at some degree of humidity in which the process of gleying caused the total depletion of both susceptibility and frequency factor. The magnentic data allows consideration of the relevance of major cycles (arid/humid) separated by discontinuities as the main factor favoring one particular behavior of the magnetic parameters. The B horizons of palaeosols developed during an arid cycle will not show a notable difference in the magnetic records from the parent material. In contrast, during humid climate condition the pristine loess can be progresively obliterated by pedogensis through to the extreme situation of gleying.  相似文献   

20.
High-Resolution Climate Simulations of Oxygen Isotope Stage 3 in Europe   总被引:1,自引:0,他引:1  
Oxygen isotope stage 3 (OIS 3) climate and its variations are the focus of the Stage 3 Project. The objective of the OIS 3 modeling effort is twofold: (1) to explore the importance of different boundary conditions on the climate of Europe and (2) to develop climate simulations that best reproduce the wealth of OIS 3 observations. Given the complexity of the topography and coastlines, the modeling effort is based on a “nested” General Circulation Model (GCM) and mesoscale model (RegCM2) with climate simulations for Europe on a 60-km grid spacing. The key conclusions are as follows: (1) The mesoscale model, driven by GCM output, does a reasonable job of reproducing the modern European climate. (2) OIS 3 variations in orbit, CO2, and ice-sheet size are of little significance in explaining the observed climate variability. (3) The model results focus attention on North Atlantic sea-surface temperatures (SST) as a major factor in explaining OIS 3 climates. (4) Experiments for different SST values capture a number of systematic changes in sea-level pressure and precipitation. (5) Climate models simulate substantial European cooling and significant changes in precipitation, but they do not explain large differences between OIS 3 warm and cold episodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号