首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potential evapotranspiration (PET) is a key input to hydrological models. Its estimation has often been via the Penman–Monteith (P–M) equation, most recently in the form of an estimate of reference evapotranspiration (RET) as recommended by FAO‐56. In this paper the Shuttleworth–Wallace (S–W) model is implemented to estimate PET directly in a form that recognizes vegetation diversity and temporal change without reference to experimental measurements and without calibration. The threshold values of vegetation parameters are drawn from the literature based on the International Geosphere–Biosphere Programme land cover classification. The spatial and temporal variation of the LAI of vegetation is derived from the composite NOAA‐AVHRR normalized difference vegetation index (NDVI) using a method based on the SiB2 model, and the Climate Research Unit database is used to provide the required meteorological data. All these data inputs are publicly and globally available. Consequently, the implementation of the S–W model developed in this study is applicable at the global scale, an essential requirement if it is to be applied in data‐poor or ungauged large basins. A comparison is made between the FAO‐56 method and the S–W model when applied to the Yellow River basin for the whole of the last century. The resulting estimates of RET and PET and their association with vegetation types and leaf area index (LAI) are examined over the whole basin both annual and monthly and at six specific points. The effect of NDVI on the PET estimate is further evaluated by replacing the monthly NDVI product with the 10‐day product. Multiple regression relationships between monthly PET, RET, LAI, and climatic variables are explored for categories of vegetation types. The estimated RET is a good climatic index that adequately reflects the temporal change and spatial distribution of climate over the basin, but the PET estimated using the S–W model not only reflects the changes in climate, but also the vegetation distribution and the development of vegetation in response to climate. Although good statistical relationships can be established between PET, RET and/or climatic variables, applying these relationships likely will result in large errors because of the strong non‐linearity and scatter between the PET and the LAI of vegetation. It is concluded that use of the implementation of the S–W model described in this study results in a physically sound estimate of PET that accounts for changing land surface conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Non‐point source (NPS) pollution from agricultural land is increasing exponentially in many countries of the world, including India. A modified approach based on the conservation of mass and reaction kinetics has been derived to estimate the inflow of non‐point source pollutants from a river reach. Two water quality variables, namely, nitrate (NO3) and ortho‐phosphate (o‐PO4), which are main contributors as non‐point source pollution, were monitored at four locations of River Kali, western Uttar Pradesh, India, and used for calibration and validation of the model. Extensive water quality sampling was done with a total of 576 field data sets collected during the period from March 1999 to February 2000. Remote sensing and geographical information system (GIS) techniques were used to obtain land use/land cover of the region, digital elevation model (DEM), delineation of basin area contributing to non‐point source pollution at each sampling location and drainage map. The results obtained from a modified approach were compared with the existing mass‐balance equations and distributed modelling, and the performances of different equations were evaluated using error estimation viz. standard error, normal mean error, mean multiplicative error and correlation statistics. The developed model for the River Kali minimizes error estimates and improves correlation between observed and computed NPS loads. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Evaporation from the forest floor (EFF) in a deciduous broadleaf forest was measured using microlysimeter and closed‐chamber systems. The microlysimeter was used at six points in the experimental basin, and measurements gave different EFF values at different points. This could be attributed to the local photoenvironment of each sampling point, rather than to litter conditions, if the spatial variation in air temperature (Ta) or vapour pressure deficit (VPD) at the forest floor was small within this basin. A detachable microlysimeter measured condensation in the litter layer during the night, indicating that the litter layer, as well as the mulch layer, played a role in preventing evaporation from the soil layer. The closed‐chamber system made it possible to continuously measure long‐term EFF. EFF was closely related to VPD; even during the night, when solar radiation was zero, EFF amounted to 14·0% of the daily EFF. The daily EFF was 0·20 ± 0·13 mm day?1 during the study period, with two seasonal peaks: in late spring (0·31 mm day?1 in April) and early fall (0·22 mm day?1 in September). The former peak has been reported from two deciduous forests in Japan and is strongly related to the solar radiation reaching the forest floor when the trees are dormant. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A two‐and‐half dimensional model‐based inversion algorithm for the reconstruction of geometry and conductivity of unknown regions using marine controlled‐source electromagnetic (CSEM) data is presented. In the model‐based inversion, the inversion domain is described by the so‐called regional conductivity model and both geometry and material parameters associated with this model are reconstructed in the inversion process. This method has the advantage of using a priori information such as the background conductivity distribution, structural information extracted from seismic and/or gravity measurements, and/or inversion results a priori derived from a pixel‐based inversion method. By incorporating this a priori information, the number of unknown parameters to be retrieved becomes significantly reduced. The inversion method is the regularized Gauss‐Newton minimization scheme. The robustness of the inversion is enhanced by adopting nonlinear constraints and applying a quadratic line search algorithm to the optimization process. We also introduce the adjoint formulation to calculate the Jacobian matrix with respect to the geometrical parameters. The model‐based inversion method is validated by using several numerical examples including the inversion of the Troll field data. These results show that the model‐based inversion method can quantitatively reconstruct the shapes and conductivities of reservoirs.  相似文献   

6.
Surface waves in seismic data are often dominant in a land or shallow‐water environment. Separating them from primaries is of great importance either for removing them as noise for reservoir imaging and characterization or for extracting them as signal for near‐surface characterization. However, their complex properties make the surface‐wave separation significantly challenging in seismic processing. To address the challenges, we propose a method of three‐dimensional surface‐wave estimation and separation using an iterative closed‐loop approach. The closed loop contains a relatively simple forward model of surface waves and adaptive subtraction of the forward‐modelled surface waves from the observed surface waves, making it possible to evaluate the residual between them. In this approach, the surface‐wave model is parameterized by the frequency‐dependent slowness and source properties for each surface‐wave mode. The optimal parameters are estimated in such a way that the residual is minimized and, consequently, this approach solves the inverse problem. Through real data examples, we demonstrate that the proposed method successfully estimates the surface waves and separates them out from the seismic data. In addition, it is demonstrated that our method can also be applied to undersampled, irregularly sampled, and blended seismic data.  相似文献   

7.
Evaporation estimation is an important issue in water resources management. In this article, a four‐season model with optimal input combination is proposed to estimate the daily evaporation. First, the model based on support vector machine (SVM) coupled with an input determination process is used to determine the optimal combination of input variables. Second, a comparison of the SVM‐based model with the model based on back‐propagation network (BPN) is made to demonstrate the superiority of the SVM‐based model. In addition, season data are used to construct the SVM‐based four‐season model to further improve the daily evaporation estimation. An application is conducted to demonstrate the performance of the proposed model. Results show that the SVM‐based model can select the optimal input combination with physical mechanism. The SVM‐based model is more appropriate than the BPN‐based model because of its higher accuracy, robustness and efficiency. Moreover, the improvement due to the use of the four‐season model increases from 3.22% to 15.30% for RMSE and from 4.84% to 91.16% for CE, respectively. In conclusion, the SVM‐based model coupled with the proposed input determination process should be used to select input variables. The proposed four‐season SVM‐based model with optimal input combination is recommended as an alternative to the existing models. The proposed modelling technique is expected to be useful to improve the daily evaporation estimation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
9.
We present a novel application of the Kinect?, an input device designed for the Microsoft® Xbox 360® video game system. The device can be used by Earth scientists as a low‐cost, high‐resolution, short‐range 3D/4D camera imaging system producing data similar to a terrestrial light detection and ranging (LiDAR) sensor. The Kinect contains a structured light emitter, an infrared camera (the combination of these two produce a distance image), a visual wavelength camera, a three‐axis accelerometer, and four microphones. The cost is ~ US $100, frame rate is 30 Hz, spatial and depth resolutions are mm to cm depending on range, and the optimal operating range is 0.5 to ~5 m. The resolution of the distance measurements decreases with distance and is ≤1 mm at 0.5 m and ~75 mm at 5 m. We illustrate data collection and basic data analysis routines in three experiments designed to demonstrate the breadth and utility of this new sensor in domains of glaciology, stream bathymetry, and geomorphology, although the device is applicable to a number of other Earth science fields. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A remote sensing technique for assessing beach surface moisture was used to provide insight into beach‐surface evolution during an aeolian event. An experiment was carried out on 21 October 2007 at Greenwich Dunes, Prince Edward Island National Park, Canada, during which cameras were mounted on a mast on the foredune crest at a height of about 14 m above the beach. Maps of beach surface moisture were created based on a calibrated relationship between surface brightness from the photographs and surface moisture content measured in situ at points spaced every 2.5 m along a transect using a Delta‐T moisture probe. A time sequence of maps of surface moisture content captured beach surface evolution through the transport event at a spatial and temporal resolution that would be difficult to achieve with other sampling techniques such as impedance probes. Erosion of the foreshore and berm crest resulted in an increase in surface moisture content in these areas as the wetter underlying sediments were exposed. Flow expansion downwind of the berm crest led to sand deposition and a consequent decrease in surface moisture content. Remote sensing systems such as the one presented here allow observations of the combined evolution of beach surface moisture, shoreline position, and fetch distances during short‐term experiments and hence provide a comprehensive rendering of sediment erosion and transport processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper suggests a multi‐criteria protocol for appropriately evaluating the predictions of hydrologic models during calibration and evaluation stages. The protocol includes different statistical, analytical and visual criteria such as analysis of peak and low flows, cumulative volumes, extreme value statistics, performance statistics, etc. Furthermore, the protocol assesses the physical consistency of model predictions by filtering the total observed hydrograph into different flow‐components (baseflow, interflow and overland flow) and using these filtered data in the calibration and evaluation processes. Based on the distributed modelling of a medium size catchment, it is shown that application of the suggested protocol, and in particular the use of the filtered flow‐components in model calibration, enhances the physical consistency of model predictions, adding considerable value to the calibration process. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, an adaptive on‐line parametric identification algorithm based on the variable trace approach is presented for the identification of non‐linear hysteretic structures. At each time step, this recursive least‐square‐based algorithm upgrades the diagonal elements of the adaptation gain matrix by comparing the values of estimated parameters between two consecutive time steps. Such an approach will enforce a smooth convergence of the parameter values, a fast tracking of the parameter changes and will remain adaptive as time progresses. The effectiveness and efficiency of the proposed algorithm is shown by considering the effects of excitation amplitude, of the measurement units, of larger sampling time interval and of measurement noise. The cases of exact‐, under‐, over‐parameterization of the structural model have been analysed. The proposed algorithm is also quite effective in identifying time‐varying structural parameters to simulate cumulative damage in structural systems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Evaporation dominates the water balance in arid and semi‐arid areas. The estimation of evaporation by land‐cover type is important for proper management of scarce water resources. Here, we present a method to assess spatial and temporal patterns of actual evaporation by relating water balance evaporation estimates to satellite‐derived radiometric surface temperature. The method is applied to a heterogeneous landscape in the Krishna River basin in south India using 10‐day composites of NOAA advanced very high‐resolution radiometer satellite imagery. The surface temperature predicts the difference between reference evaporation and modelled actual evaporation well in the four catchments (r2 = 0·85 to r2 = 0·88). Spatial and temporal variations in evaporation are linked to vegetation type and irrigation. During the monsoon season (June–September), evaporation occurs quite uniformly over the case‐study area (1·7–2·1 mm day?1), since precipitation is in excess of soil moisture holding capacity, but it is higher in irrigated areas (2·2–2·7 mm day?1). In the post‐monsoon season (December–March) evaporation is highest in irrigated areas (2·4 mm day?1). A seemingly reasonable estimate of temporal and spatial patterns of evaporation can be made without the use of more complex and data‐intensive methods; the method also constrains satellite estimates of evaporation by the annual water balance, thereby assuring accuracy at the seasonal and annual time‐scales. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
An efficient dynamic analysis method using the modified Lanczos co‐ordinates is presented. The proposed method is obtained by applying the modified Lanczos algorithm using Lanczos vectors that satisfy the stiffness‐orthonormality condition to the conventional Lanczos co‐ordinates method. The modified Lanczos co‐ordinates method is more efficient than the conventional method in the case of structures under multi‐input loads. The effectiveness of the modified Lanczos co‐ordinates method is verified by analysing a numerical example. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
In 1997–98, unique critical beach erosion led to structural failure along the Penarth, South Wales, UK coastline and anthropogenic activities, such as the construction of the Cardiff Bay Barrage and offshore marine aggregate dredging, were suggested as causes. The time‐frame of significant erosion was between 1995 and 1997 and forcing agents (extreme sea level and wind direction) and shoreline indicators (mean beach level and MHW) were analysed in order to assess change. Water level analysis showed that although there was no significant difference between actual and predicted mean sea levels, extreme sea levels at that time were significantly higher (t = 3·305; d.f. = 8; p < 0·05). Three wind direction analyses (annual mean, mean annual maximum gust and mean annual maximum gust ≥28 kn) between 1995 and 1997 also showed significant differences (p < 0·05). All comprised more easterly components which meant they approached the beach from the sea. Furthermore, gusts ≥28 kn from the northeast quadrant, that is, 0° to 90° true, were significantly more frequent during these years (t = 3·674; d.f. = 8; p < 0·01). Justification of statistical significances was established and there was supporting evidence of unusual meteorological conditions at that time. Relationships showed correlation between forcing agents (extreme sea level and wind direction) and shoreline indicators (mean beach level and Mean High Water). Furthermore, regression analysis showed winds from the northeast quadrant resulted in steeper longshore gradients, as a consequence of beach material loss. Therefore, it was concluded that the critical erosion of Penarth beach between 1995 and 1997 was caused by increased wave attack from the northeast and southeast quadrants, generated by unique significant changes in wind direction and extreme sea levels. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A smeared crack approach has been proposed to model the static and dynamic behavior of mass concrete in three‐dimensional space. The proposed model simulates the tensile fracture on the mass concrete and contains pre‐softening behavior, softening initiation, fracture energy conservation and strain rate effects under dynamic loads. The validity of the proposed model has been checked using the available experimental results under static and dynamic loads. The direct and indirect displacement control algorithms have been employed under incremental increasing static loads. It was found that the proposed model gives excellent results and crack profiles when compared with the available data under static loads. The Koyna Dam in India has been used to verify the dynamic behavior of the proposed model. It was found that the resulting crack profiles were in good agreement with the available experimental results. Finally, the Morrow Point Dam was analyzed, including the dam–reservoir interaction effects, to consider its non‐linear seismic behavior. It was found that the resulting crack profiles were in good agreement with the contour of maximum principal stresses and no numerical instability occurred during the analysis. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Daily river inflow time series are highly valuable for water resources and water environment management of large lakes. However, the availability of continuous inflow data for large lakes is still relatively limited, especially for large lakes situated within humid plain regions with tens or even hundreds of tributaries. In this study, we choose the fifth largest freshwater Lake Chaohu in China as our study area to introduce a new approach to reconstruct historical daily inflows at ungauged subcatchments of large lakes. This approach makes use of water level, lake surface rainfall, evaporation from the lake, and catchment rainfall observations. Rainfall–runoff relationship at a reference catchment was analysed to select rainfall input and estimate run‐off coefficient firstly, and the run‐off coefficient was then transferred to ungauged subcatchments to initially estimate daily inflows. Run‐off coefficient was scaled to adjust daily inflows at ungauged subcatchments according to water balance of the lake. This approach was evaluated using sparsely measured inflows at eight subcatchments of Lake Chaohu and compared with the commonly used drainage area ratio method. Results suggest that the inflow time series reconstructed from this approach consistent well to corresponding observations, with mean R2 and Nash–Sutcliffe efficiency values of 0.69 and 0.6, respectively. This approach outperforms drainage area ratio method in terms of mean R2 and Nash–Sutcliffe efficiency values. Accuracy of this approach holds well when the number of water‐level station being used decreased from four to one.  相似文献   

18.
Evaporation from a regenerating forest was determined concurrently by atmospheric measurements of the Bowen ratio, soil water depletion, and by weighing lysimeter. The methods agreed closely over 18 days in spring and 11 days in summer. Accordingly, the Bowen ratio technique was then used as the control against which any effect on evaporation by enclosure of the lysimeter with a chamber of varied ventilation rate could be quantified hourly and daily. Accuracy of gas analysis was checked against lysimeter values. Daily evaporation by the lysimeter was generally unaffected by enclosure—on a few afternoons there was a statistically significant enhancement of hourly values by the chamber. This was accounted for by difference in turbulence between chamber and forest. The general agreement in daytime hourly values is attributed to the frequent occurrence of equilibrium evaporation (rate at which evaporation is independent of ventilation). At night, evaporation was higher during enclosure. Comparisons were not possible with rain or dew. Determination of evaporation by gas analysis agreed within about 5 per cent of lysimeter values during a dry period. We conclude that the ventilated chamber as used provides realistic estimates of evaporation by forests. We show how periods of bias can be anticipated and corrected by theory.  相似文献   

19.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A formulation is developed for modal response analysis of multi‐support structures using a random vibration approach. The spectral moments of the structural response are rigorously decomposed into contributions from spectral moments of uncoupled modal responses. An advantage of the proposed formulation is that the total dynamic response can be obtained on the basis of mode by mode uncoupled analyses. The contributions to the total response from modal responses under individual support ground motions and under cross‐correlated pairs of support ground motions can be recognized explicitly. The application and performance of the formulation is illustrated by means of an example using a well‐established coherency spectrum model and widely known power spectra models, such as white noise and Kanai–Tajimi. The first three spectral moments of displacement, shear, and bending moment responses are computed, showing that the formulation produces the same results as the exact solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号