共查询到20条相似文献,搜索用时 15 毫秒
1.
Stormflow generation in a small rainforest catchment in the Luquillo Experimental Forest,Puerto Rico
J. Schellekens F. N. Scatena L. A. Bruijnzeel A. I. J. M. van Dijk M. M. A. Groen R. J. P. van Hogezand 《水文研究》2004,18(3):505-530
Various complementary techniques were used to investigate the stormflow generating processes in a small headwater catchment in northeastern Puerto Rico. Over 100 samples were taken of soil matrix water, macropore flow, streamflow and precipitation, mainly during two storms of contrasting magnitude, for the analysis of calcium, magnesium, silicon, potassium, sodium and chloride. These were combined with hydrometric information on streamflow, return flow, precipitation, throughfall and soil moisture to distinguish water following different flow paths. Geo‐electric sounding was used to survey the subsurface structure of the catchment, revealing a weathering front that coincided with the elevation of the stream channel instead of running parallel to surface topography. The hydrometric data were used in combination with soil physical data, a one‐dimensional soil water model (VAMPS ) and a three‐component chemical mass‐balance mixing model to describe the stormflow response of the catchment. It is inferred that most stormflow travelled through macropores in the top 20 cm of the soil profile. During a large event, saturation overland flow also accounted for a considerable portion of the stormflow, although it was not possible to quantify the associated volume fully. Although the mass‐balance mixing model approach gave valuable information about the various flow paths within the catchment, it was not possible to distill the full picture from the model alone; additional hydrometric and soil physical evidence was needed to aid in the interpretation of the model results. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
Aline Maraci Lopes Saraiva Okello Stefan Uhlenbrook Graham P.W. Jewitt Ilyas Masih Edward Sebastian Riddell Pieter Van der Zaag 《水文研究》2018,32(10):1334-1350
Chemical hydrograph separation using electrical conductivity and digital filters is applied to quantify runoff components in the 1,640 km2 semi‐arid Kaap River catchment and its subcatchments in South Africa. A rich data set of weekly to monthly water quality data ranging from 1978 to 2012 (450 to 940 samples per site) was analysed at 4 sampling locations in the catchment. The data were routinely collected by South Africa's national Department of Water and Sanitation, using standard sampling procedures. Chemical hydrograph separation using electrical conductivity (EC) as a tracer was used as reference and a recursive digital filter was then calibrated for the catchment. Results of the two‐component hydrograph separation indicate the dominance of baseflow in the low flow regime, with a contribution of about 90% of total flow; however, during the wet season, baseflow accounts for 50% of total flow. The digital filter parameters were very sensitive and required calibration, using chemical hydrograph separation as a reference. Calibrated baseflow estimates ranged from 40% of total flow at the catchment outlet to 70% in the tributaries. The study demonstrates that routinely monitored water quality data, especially EC, can be used as a meaningful tracer, which could also aid in the calibration of a digital filter method and reduce uncertainty of estimated flow components. This information enhances our understanding of how baseflow is generated and contributed to streamflow throughout the year, which can aid in quantification of environmental flows, as well as to better parameterize hydrological models used for water resources planning and management. Baseflow estimates can also be useful for groundwater and water quality management. 相似文献
3.
Runoff components of the Zastler catchment (18\4 km2, southern Black Forest, Germany) were analysed with hydrograph separations using stable oxygen isotopes and dissolved silica. It was shown that event water and components with low silica contributed only small amounts to total runoff. In addition, comparison of the two‐component hydrograph separations showed that the low‐silica components are generated by both event water and pre‐event water fractions, depending on the state of the system. A modified three‐component hydrograph separation method was introduced using dissolved silica and 18O. During storm events an interaction of three runoff components having distinct silica concentrations could be shown. Based on the geological and geomorphological genesis of the study site, it was appropriate to assign (i) the low silica component to the riparian zones and impermeable areas, (ii) the medium silica component to the periglacial debris cover and (iii) the high silica component to the crystalline detritus and crystalline hard rock. Exact quantification of the runoff components remained difficult. However, runoff components with medium silica concentrations reacted very sensitively and intensely. The contribution of this component to total runoff is comparatively large. This shows the important role of the periglacial debris to runoff generation of the study site and emphasizes the importance of runoff generation processes occurring in this reservoir. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
4.
Increasing dissolved organic carbon (DOC) concentrations have been reported during the last 15 years in streams from the United Kingdom, Northern Europe and North America. Identifying the sources of DOC and the controls of the delivery to the stream is important to understand the significance of these trends. This relies on the availability of observations of DOC dynamics during storm events, since much of the DOC export from soils to streams occurs during high flows. This study analyses DOC data for eight storm events during winter 2005–2006 in a small agricultural experimental catchment—the Kervidy‐Naizin experimental catchment—located in Western France. A four end‐member mixing approach was applied to the eight monitored storm events to identify DOC sources and quantify their respective contribution to DOC stream fluxes, using DOC, nitrate, sulphate and chloride as tracers. The results show that DOC concentrations in the stream at the outlet of this catchment increase markedly during storm events. The slope of the linear regression between DOC concentration and discharge was not constant for the eight events and depended on pre‐event hydrological conditions. Between 64 and 86% of the DOC that enter the stream during storms originated from the upper layers of the riparian wetland soils. The variation of the delivery of DOC seems to be controlled by hydrological processes only, the wetland soils acting as a non‐limiting store. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
Analysis of water flow pathways from hillslopes to streams is essential for the optimal protection of water resources as well as for ecohydrological studies. This study addresses runoff generation processes at a hillslope and near‐stream shallow groundwater system in the Black Forest Mountains, southwestern Germany. The changing spatial and temporal flow patterns during differing hydrological situations were examined using a combined hydraulic and hydrochemical approach. Groundwater levels at 10 wells, discharge at a near‐stream saturated area, and several natural tracers (deuterium, dissolved silica, and major anions and cations) were observed at different locations during high and low flows. The importance of the groundwater component during flood formation was clearly demonstrated: its contribution was about 80% during a double peak flood event at the saturated area. In addition, a rapid change of the shallow groundwater levels was observed along two transects of groundwater wells in the floodplain. This led to an enhanced groundwater discharge into the saturated area located at the end of one study transect. The amount of groundwater additionally activated during the event was about 30% of total discharge recorded at the outlet of the saturated area. Two alternative hypotheses are discussed to explain this phenomenon: the establishment of locally confined conditions and the development of a pressure wave (hypothesis A), or the significant change of the three‐dimensional groundwater flow lines that caused a large increase of the groundwater catchment at the saturated area during the investigated event (hypothesis B). Even if the exact flow paths and mechanisms could not be clearly identified, the importance of rapid responding hillslope groundwater was undoubtedly demonstrated by a combination of tracer and hydrometric methods. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
6.
Understanding runoff generation processes is important for flood prediction, water management, erosion control, water quality, contaminant transport and the evaluation of impacts of land use change. However, little process research has been carried out in southern Chile. In particular the young volcanic ash soils, which are typical for this area, are not well understood in their hydrologic behaviour. To establish a ‘reference study’ which can then be used for comparison with other (disturbed) sites, this study focuses on the investigation of runoff generation processes in an undisturbed, forested catchment in the Chilean Andes. The paper reports on an investigation of these processes with different tracer methods at different spatial scales. Hydrograph separation with environmental isotopes and geochemical constituents was used on the catchment scale. Thermal energy was used as a tracer to investigate groundwater–surface water interactions at the local stream reach scale and dye tracers were used to study infiltration and percolation characteristics at the plot scale. It was found that pre‐event water dominates the storm hydrograph. In the lower reaches, however, water usually exfiltrates from the stream into the adjacent aquifer. The dye tracer experiments showed that while preferential vertical flow dominates under forest, water infiltrates as a straight horizontal front in the bare volcanic ashes (no vegetation) on the catchment rim. Subsurface flow patterns in the forest differ significantly from summer to winter. All three approaches used in this study suggest an important shift in dominant processes from dry to wet season. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
7.
Seasonal changes in runoff generation in a small forested mountain catchment 总被引:1,自引:0,他引:1 下载免费PDF全文
D. Penna H. J. van Meerveld O. Oliviero G. Zuecco R. S. Assendelft G. Dalla Fontana M. Borga 《水文研究》2015,29(8):2027-2042
This study aimed to investigate the seasonal variability of runoff generation processes, the sources of stream water, and the controls on the contribution of event water to streamflow for a small forested catchment in the Italian pre‐Alps. Hydrometric, isotopic, and electrical conductivity data collected between August 2012 and August 2013 revealed a marked seasonal variability in runoff responses. Noticeable differences in runoff coefficients and hydrological dynamics between summer and fall/spring rainfall events were related to antecedent moisture conditions and event size. Two‐component and three‐component hydrograph separation and end‐member mixing analysis showed an increase in event water contributions to streamflow with event size and average rainfall intensity. Event water fractions were larger during dry conditions in the summer, suggesting that stormflow generation in the summer consisted predominantly of direct channel precipitation and some saturated overland flow from the riparian zone. On the contrary, groundwater and hillslope soil water contributions dominated the streamflow response during wet conditions in fall. Seasonal differences were also noted between event water fractions computed based on isotopic and electrical conductivity data, likely because of the dilution effect during the wetter months. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
8.
Maximiliano Rodriguez Nils Ohlanders Francesca Pellicciotti Mark W. Williams James McPhee 《水文研究》2016,30(20):3609-3626
This paper presents a methodology for hydrograph separation in mountain watersheds, which aims at identifying flow sources among ungauged headwater sub‐catchments through a combination of observed streamflow and data on natural tracers including isotope and dissolved solids. Daily summer and bi‐daily spring season water samples obtained at the outlet of the Juncal River Basin in the Andes of Central Chile were analysed for all major ions as well as stable water isotopes, δ18O and δD. Additionally, various samples from rain, snow, surface streams and exfiltrating subsurface water (springs) were sampled throughout the catchment. A principal component analysis was performed in order to address cross‐correlation in the tracer dataset, reduce the dimensionality of the problem and uncover patterns of variability. Potential sources were identified in a two‐component U‐space that explains 94% of the observed tracer variability at the catchment outlet. Hydrograph separation was performed through an Informative‐Bayesian model. Our results indicate that the Juncal Norte Glacier headwater sub‐catchment contributed at least 50% of summer flows at the Juncal River Basin outlet during the 2011–2012 water year (a hydrologically dry period in the Region), even though it accounts for only 27% of the basin area. Our study confirms the value of combining solute and isotope information for estimating source contributions in complex hydrologic systems, and provides insights regarding experimental design in high‐elevation semi‐arid catchments. The findings of this study can be useful for evaluating modelling studies of the hydrological consequences of the rapid decrease in glacier cover observed in this region, by providing insights into the origin of river water in basins with little hydrometeorological information. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
9.
The paper deals with the hydro‐chemical analysis performed in order to reveal processes, sources, paths and timing of the runoff generation in an experimental catchment representative of the hilly, terrigenous and forested watershed in the Mediterranean humid eco‐region of southern Italy. The analysis is based on the data recorded at the outlet of the catchment during 2013–2014. A mixing law procedure was applied on discharge (Q) and electrical conductivity (EC) data, by using the Q–EC end members previously collected at selected groundwater, sub‐surficial and surficial stations. In this way, we found four bound curves delimiting fields in a Q–EC plot, each with hydro‐chemograph value ranges. At annual time scale, the analysis revealed a seasonal behaviour of the hydrological response, different for the wet period, when the aquifer is recharging, and the dry periods, when the aquifer is discharging, despite frequent summer rain showers. At event time scale, the catchment seems to show the behaviour of a typical hydro‐geomorphic threshold system. We interpreted this behaviour as due to a progressive addition of water from distinctive components (i.e. deep aquifer, riparian corridor, hillslope and hollow), each with originally different mechanisms of runoff production (i.e. groundwater, groundwater ridging, saturation excess, infiltration excess and soil pipe exfiltration) and response time. During the event, the contributing areas enlarge upward the riparian corridors and the zero‐order basins, where the aforementioned components become superposed and the mechanisms interact more and more. We hypothesize that the threshold values between different states of the system are defined by the intersections of the boundary curves on the Q–EC plot. Different patterns in the Q–EC hysteretic cycles are prevalently related to the pre‐event soil saturation and groundwater contributions to stormflow and recharge mechanisms. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
10.
Xiaofei Chen Juraj Parajka Borbála Széles Peter Strauss Günter Blöschl 《水文科学杂志》2020,65(13):2185-2195
ABSTRACT The objective of this study is to investigate the factors that control event runoff characteristics at the small catchment scale. The study area is the Hydrological Open Air Laboratory, Lower Austria. Event runoff coefficient (Rc), recession time constant (Tc) and peak discharge (Qp) are estimated from hourly discharge and precipitation data for 298 events in the period 2013–2015. The results show that the Rc and their variability tend to be largest for the tile drainages (mean Rc = 0.09) and the main outlet (mean Rc = 0.08) showing larger Rc in January/February and smaller Rc in July/August. Tc does not vary much between the systems and tends to be largest at the main outlet (mean Tc = 6.5 h) and smallest for the tile drainages (mean Tc = 4.5 h). Groundwater levels explain the temporal variability of Rc and Tc more than soil moisture or precipitation, suggesting a role of shallow flow paths. 相似文献
11.
Estimating the amount of irrigation water is challenging at the catchment scale because of the difficulties in direct measurement and interactions between the flow components. The objectives of the study were to characterize the catchment flows in an agricultural catchment with an irrigation system in subtropical China and to estimate catchment irrigation flow using hydrograph analysis methods. A weighting model and multiple regression models were established to estimate catchment irrigation outflow according to the hydrographs of the inflows and outflows of the catchment. The multiple regression models took into consideration the drainage time of base flow, resulting in better estimation on an event and annual basis. Using the MR‐6d method, the estimated irrigation outflows amounted to 3700 mm, 2600 mm and 2760 mm during 2001, 2002 and 2003 respectively, which covered 70%, 60% and 64% respectively of the total catchment outflows in the corresponding years. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
12.
The acidic discharge from Cement Creek, containing elevated concentrations of dissolved metals and sulphate, mixed with the circumneutral‐pH Animas River over a several hundred metre reach (mixing zone) near Silverton, CO, during this study. Differences in concentrations of Ca, Mg, Si, Sr, and SO42? between the creek and the river were sufficiently large for these analytes to be used as natural tracers in the mixing zone. In addition, a sodium chloride (NaCl) tracer was injected into Cement Creek, which provided a Cl? ‘reference’ tracer in the mixing zone. Conservative transport of the dissolved metals and sulphate through the mixing zone was verified by mass balances and by linear mixing plots relative to the injected reference tracer. At each of seven sites in the mixing zone, five samples were collected at evenly spaced increments of the observed across‐channel gradients, as determined by specific conductance. This created sets of samples that adequately covered the ranges of mixtures (mixing ratios, in terms of the fraction of Animas River water, %AR). Concentratis measured in each mixing zone sample and in the upstream Animas River and Cement Creek were used to compute %AR for the reference and natural tracers. Values of %AR from natural tracers generally showed good agreement with values from the reference tracer, but variability in discharge and end‐member concentrations and analytical errors contributed to unexpected outlier values for both injected and natural tracers. The median value (MV) %AR (calculated from all of the tracers) reduced scatter in the mixing plots for the dissolved metals, indicating that the MV estimate reduced the effects of various potential errors that could affect any tracer. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
13.
A previous hydrometric study of runoff production in tussock grassland drainage basins in Otago (45°50′S, 169°45′E), New Zealand, revealed a marked change of slope in storm hydrograph recessions. An environmental isotope study was initiated to investigate the runoff mechanisms operating and to test specific hypotheses to explain this break in the hydrograph recession. The results indicated that for quickflow volumes in excess of 10mm, the first part of the storm hydrograph can be attributed to two separate sources, namely, ‘old’ water from a shallow, unconfined groundwater reservoir and ‘new’ water from saturation overland flow on the lower wetlands of concave slopes. Despite the extensive area of wetlands, ‘old’ water runoff from the unconfined groundwater reservoir is delivered more rapidly to the stream than ‘new’ water from saturation overland flow. Substantial surface storage in the wetlands has first to be exceeded before rain becomes a significant part of stream discharge. For quickflow volumes less than 10mm, only ‘old’ water from groundwater contributes to the first part of the hydrograph recession. This means that only the largest 7 per cent of storms (in terms of quickflow volume) generate quickflow containing significant amounts of ‘new water’. The second part of the recession of the storm hydrograph consists of ‘old’ water derived from a remarkably well-mixed shallow unconfined groundwater body. 相似文献
14.
Theresa Blume Erwin Zehe Dominik E. Reusser Andrés Iroumé Axel Bronstert 《水文研究》2008,22(18):3661-3675
Catchment scale hydrological process studies in southern Chile are of special interest as little research at this scale has been carried out in this region. In particular, the young volcanic ash soils, which are typical for this area, are not well understood in their hydrological behaviour. In addition, extensive land use changes require detailed knowledge of hydrological processes in disturbed as well as undisturbed catchments in order to estimate resulting risks of erosion, eutrophication, floods and droughts. This study focuses on data collection and experimental determination of relevant processes in an undisturbed forested catchment in the Andes of southern Chile. The here gained understanding of runoff generation can serve as a reference for comparison with sites subject to human intervention, improving estimation of the effects of land use change. Owing to the lack of long‐term data for this catchment it was necessary to replace long time series by a multitude of experimental methods covering as many aspects of the runoff generation process as possible. The methods used in this investigation include: measurements of streamflow, rainfall, throughfall, water chemistry, soil water dynamics, groundwater dynamics, soil physics, soil mineralogy, geo‐electrical sounding, and tracer techniques. Methods and equipment used during field campaigns are described and evaluated for usefulness versus expenditure (labour and financial costs). Selected results and the hypotheses developed from these findings are presented. The results suggest the importance of fast processes for rainfall runoff response on the one hand as well as considerable dampening effects of a large subsurface storage on the other hand. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
15.
D. Tetzlaff C. Soulsby S. Waldron I. A. Malcolm P. J. Bacon S. M. Dunn A. Lilly A. F. Youngson 《水文研究》2007,21(10):1289-1307
Tracer investigations were combined with a geographical information system (GIS) analysis of the 31 km2 Girnock catchment (Cairngorm Mountains, Scotland) in order to understand hydrological functioning by identifying dominant runoff sources and estimating mean residence times. The catchment has a complex geology, soil cover and topography. Gran alkalinity was used to demonstrate that catchment geology has a dominant influence on baseflow chemistry, but flow paths originating in acidic horizons in the upper soil profiles controlled stormflow alkalinity. Chemically based hydrograph separations at the catchment scale indicated that ~30% of annual runoff was derived from groundwater sources. Similar contributions (23–36%) were estimated for virtually all major sub‐basins. δ18O of precipitation (mean: ? 9·4‰; range: ? 16·1 to ? 5·0‰) and stream waters (mean: ? 9·1‰; range: ? 11·6 to ? 7·4‰) were used to assess mean catchment and sub‐basin residence times, which were in the order ~4–6 months. GIS analysis showed that these tracer‐based diagnostic features of catchment functioning were consistent with the landscape organization of the catchment. Soil and HOST (Hydrology of Soil Type) maps indicated that the catchment and individual sub‐basins were dominated by hydrologically responsive soils, such as peats (Histosol), peaty gleys (Histic Gleysols) and rankers (Umbric Leptosols and Histosols). Soil cover (in combination with a topographic index) predicted extensive areas of saturation that probably expand during hydrological events, thus providing a high degree of hydrological connectivity between catchment hillslopes and stream channel network. This was validated by aerial photographic interpretation and groundtruthing. These characteristics of hydrological functioning (i.e. dominance of responsive hydrological pathways and short residence times) dictate that the catchment is sensitive to land use change impacts on the quality and quantity of streamflows. It is suggested that such conceptualization of hydrological functioning using tracer‐validated GIS analysis can play an important role in the sustainable management of river basins. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
16.
ABSTRACTThe objective of this study was to evaluate: (i) the influence of slope position and land use on plot-scale runoff, and (ii) the ability of the curve number (CN) approach to estimate the measured runoff using microplots (1 m × 1 m) spaced 0.5 m apart. The study considered two slope positions: upslope (5.8%), and downslope (2.3%), and two land-use types: tilled maize-beans (TMB) intercrop and fallow shrub-grassland (FSG). Runoff was measured from September to November 2014 and from July to October 2015. The rainfall–runoff events in 2014 and 2015 were subjected to statistical analysis. The CN was computed with rainfall–runoff data. The results showed a significant (p < 0.05) effect of land use on surface runoff in 2015. Neither the slope position nor its interaction with land use had a significant (p < 0.05) effect on surface runoff. The runoff estimation captured the dynamics of runoff with better estimation observed under the TMB plot compared to the FSG. 相似文献
17.
Ravindra Dwivedi Thomas Meixner Jennifer C. McIntosh P.A. Ty Ferr Christopher J. Eastoe Guo‐Yue Niu Rebecca L. Minor Greg A. Barron‐Gafford Jon Chorover 《水文研究》2019,33(4):476-494
High‐elevation mountain catchments are often subject to large climatic and topographic gradients. Therefore, high‐density hydrogeochemical observations are needed to understand water sources to streamflow and the temporal and spatial behaviour of flow paths. These sources and flow paths vary seasonally, which dictates short‐term storage and the flux of water in the critical zone (CZ) and affect long‐term CZ evolution. This study utilizes multiyear observations of chemical compositions and water residence times from the Santa Catalina Mountains Critical Zone Observatory, Tucson, Arizona to develop and evaluate competing conceptual models of seasonal streamflow generation. These models were tested using endmember mixing analysis, baseflow recession analysis, and tritium model “ages” of various catchment water sources. A conceptual model involving four endmembers (precipitation, soil water, shallow, and deep groundwater) provided the best match to observations. On average, precipitation contributes 39–69% (55 ± 16%), soil water contributes 25–56% (41 ± 16%), shallow groundwater contributes 1–5% (3 ± 2%), and deep groundwater contributes ~0–3% (1 ± 1%) towards annual streamflow. The mixing space comprised two principal planes formed by (a) precipitation‐soil water‐deep groundwater (dry and summer monsoon season samples) and (b) precipitation‐soil water‐shallow groundwater (winter season samples). Groundwater contribution was most important during the wet winter season. During periods of high dynamic groundwater storage and increased hydrologic connectivity (i.e., spring snowmelt), stream water was more geochemically heterogeneous, that is, geochemical heterogeneity of stream water is storage‐dependent. Endmember mixing analysis and 3H model age results indicate that only 1.4 ± 0.3% of the long‐term annual precipitation becomes deep CZ groundwater flux that influences long‐term deep CZ development through both intercatchment and intracatchment deep groundwater flows. 相似文献
18.
Snow and glacier melt are significant contributors to streamflow in Himalayan catchments, and their increasing contributions serve as key indicators of climate change. Consequently, the quantification of these streamflow components holds significant importance for effective water resource management. In this study, we utilized the spatio-temporal variability of isotopic signatures in stream water, rainfall, winter fresh snow, snowpack, glaciers, springs, and wells, in conjunction with hydrometeorological observations and Snow Cover Area (SCA) data, to identify water sources and develop a conceptual understanding of streamflow dynamics in three catchments (Lidder, Sindh, and Vishow) within the western Himalayas. The following results were obtained: (a) endmember contributions to the streamflow exhibit significant spatial and seasonal variability across the three catchments during 2018–2020; (b) snowmelt dominates streamflow, with average contributions across the entire catchment varying: 59% ± 9%, 55% ± 4%, 56% ± 6%, and 55% ± 9% in Lidder, 43% ± 6%, 38% ± 6%, 32% ± 4%, and 33% ± 5% in Sindh and 45% ± 8%, 40% ± 6%, 39% ± 6%, and 32% ± 5% in Vishow during spring, summer, autumn, and winter seasons, respectively; (c) glacier melt contributions can reach ~30% to streamflow near the source regions during peak summer; (d) The primary uncertainties in streamflow components are attributed to the spatiotemporal variability of tracer signatures of winter fresh snow/snowpack (±1.9% to ±20%); (e)regarding future streamflow components, if the glacier contribution were to disappear completely, the annual average streamflow in Lidder and Sindh could decrease up to ~20%. The depletion of the cryosphere in the region has led to a rapid increase in runoff (1980–1900), but it has also resulted in a significant streamflow reduction due to glacier mass loss and changes in peak streamflow over the past three decades (1990–2020). The findings highlight the significance of environmental isotope analysis, which provides insights into water resources and offers a critical indication of the streamflow response to glacier loss under a changing climate. 相似文献
19.
The use of electrical resistivity tomography (ERT; non‐intrusive geophysical technique) was assessed to identify the hydrogeological conditions at a surface water/groundwater test site in the southern Black Forest, Germany. A total of 111 ERT transects were measured, which adopted electrode spacings from 0·5 to 5 m as well as using either Wenner or dipole‐dipole electrode arrays. The resulting two‐dimensional (2D) electrical resistivity distributions are related to the structure and water content of the subsurface. The images were interpreted with respect to previous classical hillslope hydrological investigations within the same research basin using both tracer methods and groundwater level observations. A raster‐grid survey provided a quasi 3D resistivity pattern of the floodplain. Strong structural heterogeneity of the subsurface could be demonstrated, and (non)connectivities between surface and subsurface bodies were mapped. Through the spatial identification of likely flow pathways and source areas of runoff, the deep groundwater within the steeper valley slope seems to be much more connected to runoff generation processes within the valley floodplain than commonly credited in such environmental circumstances. Further, there appears to be no direct link between subsurface water‐bodies adjacent to the stream channel. Deep groundwater sources are also able to contribute towards streamflow from exfiltration at the edge of the floodplain as well as through the saturated areas overlying the floodplain itself. Such exfiltrated water then moves towards the stream as channelized surface flow. These findings support previous tracer investigations which showed that groundwater largely dominates the storm hydrograph of the stream, but the source areas of this component were unclear without geophysical measurements. The work highlighted the importance of using information from previous, complementary hydrochemical and hydrometric research campaigns to better interpret the ERT measurements. On the other hand, the ERT can provide a better spatial understanding of existing hydrochemical and hydrometric data. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
20.
The role of bedrock groundwater in rainfall–runoff processes is poorly understood. Hydrometric, tracer and subsurface water potential observations were conducted to study the role of bedrock groundwater and subsurface flow in the rainfall–runoff process in a small headwater catchment in Shiranui, Kumamoto prefecture, south‐west Japan. The catchment bedrock consists of a strongly weathered, fractured andesite layer and a relatively fresh continuous layer. Major chemical constituents and stable isotopic ratios of δ18O and δD were analysed for spring water, rainwater, soil water and bedrock groundwater. Temporal and spatial variation in SiO2 showed that stream flow under the base flow condition was maintained by bedrock groundwater. Time series of three components of the rainstorm hydrograph (rainwater, soil water and bedrock groundwater) separated by end member mixing analysis showed that each component fluctuated during rainstorm, and their patterns and magnitudes differed between events. During a typical mid‐magnitude storm event, a delayed secondary runoff peak with 1·0 l s−1 was caused by increase in the bedrock groundwater component, whereas during a large rainstorm event the bedrock groundwater component increased to ≈ 2·5 l s−1. This research shows that the contribution of bedrock groundwater and soil water depends strongly on the location of the groundwater table, i.e. whether or not it rises above the soil–bedrock interface. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献