首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
边坡大变形弹塑性有限元分析[Ⅱ]   总被引:1,自引:0,他引:1  
本文应用Updated Lagrangian有限元分析理论,分析了石龙庙滑坡的稳定性,其中包括滑坡的大变形,初始应力和超孔隙水压力。根据土的工程地质性质,滑坡体分为四层,土层被视为是弹塑性的,土的塑性屈服采用Drucker-Prager理想塑性屈服准则,挡土墙建成前后的滑坡应力和变形被分别分析和讨论,最后根据这些分析结果,提出了滑坡的整治方案。  相似文献   

3.
Summary A finite element formulation is proposed for finite deformation dynamic analysis of saturated soil systems. The formulation is based on an updated Lagrangian approach and specifically considers the finite deformation effects on the flow of water through a soil element which undergoes a large deformation or rotation. A two-surface plasticity model is used to model the stress-strain behaviour of the soil skeleton. The proposed formulation has been implemented and is applied to simulate the response of a centrifuge model embankment. The calculated response is in good agreement with the observed behaviour of the soil embankment in the centrifuge test.  相似文献   

4.
This paper is concerned with a fundamental assumption in the theory of plasticity: the direction of plastic strain increments is independent of the loading (stress) increment direction. This assumption, also known as plastic flow rule postulate, works quite well for metal‐like materials. However, geomaterials such as sand present deformational mechanisms that are distinctive from those of metals when they are loaded. As such, we hereby examine the validity of this postulate for granular media accounting for their discrete nature. This is accomplished by analysing the mechanical behaviour of a cubic assembly of polydispersed spherical articles using a particle flow code. An extension to Gudehus' response envelope to three‐dimensional conditions is used to study the incremental character and influence of loading direction on the behaviour of these materials. It is found that plastic flow in granular media is governed by both current state variables and incremental loading direction and magnitude, especially under non‐axisymmetric stress conditions. The flow rule postulate of plasticity remains valid only in axisymmetric and biaxial conditions. We also verified that the plastic response might be significantly influenced by the stress path (or history) taken prior to loading. These findings raise the question of whether or not classic elastoplastic models based on the above postulate will have serious shortcomings, especially in true‐triaxial conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the novel concept of probabilistic yielding is used for 1‐D cyclic simulation of the constitutive behavior of geomaterials. Fokker–Planck–Kolmogorov equation‐based probabilistic elastic–plastic constitutive framework is applied for obtaining the complete probabilistic (probability density function) material response. Both perfectly plastic and hardening‐type material models are considered. It is shown that when uncertainties in material parameters are taken into consideration, even the simple, elastic‐perfectly plastic model captures some of the important features of geomaterial behavior, for example, modulus reduction with cyclic strain, which, deterministically, is only possible with more advanced constitutive models. Furthermore, it is also shown that the use of isotropic and kinematic hardening rules does not significantly improve the probabilistic material response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents the application of a discrete element technique to the analysis of the dynamic indentation of either a purely brittle or a brittle viscoplastic geomaterial which can experience fragmentation resulting in fragments with size dependent strength characteristics.  相似文献   

7.
Geomaterials such as sand and clay are highly heterogeneous multiphase materials. Nonlocality (or a characteristic length scale) in modeling geomaterials based on the continuum theory can be associated with several factors, for instance, the physical interactions of material points within finite distance, the homogenization or smoothing process of material heterogeneity, and the particle or problem size-dependent mechanical behavior (eg, the thickness of shear bands) of geomaterials. In this article, we formulate a nonlocal elastoplastic constitutive model for geomaterials by adapting a local elastoplastic model for geomaterials at a constant suction through the constitutive correspondence principle of the state-based peridynamics theory. We numerically implement this nonlocal constitutive model via the classical return-mapping algorithm of computational plasticity. We first conduct a one-dimensional compression test of a soil sample at a constant suction through the numerical model with three different values of the nonlocal variable (horizon) δ. We then present a strain localization analysis of a soil sample under the constant suction and plane strain conditions with different nonlocal variables. The numerical results show that the proposed nonlocal model can be used to simulate the inception and propagation of shear banding as well as to capture the thickness of shear bands in geomaterials at a constant suction.  相似文献   

8.
A four‐node plane parametric element AQGβ6‐I is constructed on the basis of the quadrilateral area coordinate, the generalized conforming principle and the projection technique with a penalty factor β within an interval of 0–1. When β = 0, the element has excellent bending performance. When β = 1, the element can pass patch test strictly; its performance is as good as many famous elements. When β value is between 0 and 1, such as β = 0.5, the element can arrive at a compromise between (relatively) low sensitivity to mesh distortion and perfect convergence. The work provides an illuminating method to alleviate a difficult problem in finite element modelling using the four‐node quadrilateral element, which can pass the strict patch test, but has poor performance in bending dominated problem; on the contrary, it has excellent performance in bending dominated problem but cannot pass the strong patch test. The AQGβ6‐I with the convergence formulation (β = 1) is then applied to coupled solid‐deformation/fluid‐flow simulation for porous geomaterials. The computational examples are carried out to demonstrate that the AQGβ6‐I (β = 1) element is not only stable, reliable and efficient but also of high accuracy. The present study provides a good applicable element for finite element simulations of solid‐deformation/fluid‐flow for porous geomaterials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This paper describes a robust and efficient methodology for predicting displacements, deformations, and stresses in geomaterials that are susceptible to creep. The methodology is based on two integration schemes, which consider substepping algorithms. The first scheme is used for integrating space-time relations in a global sense, whereas the second scheme is used for integrating stress-stain relations in a local sense. Different from previous studies, both integration schemes are easy to implement and general in the sense that they can be applied to any type of creep law. Through an in-house finite element simulator, several numerical tests are performed. They include triaxial and wellbore closure analyses considering soft soils and salt rocks. The results show that the combination of both schemes leads to stable and accurate solutions with reduced computational time.  相似文献   

10.
A multiphase coupled elasto‐viscoplastic finite element analysis formulation, based on the theory of porous media, is used to describe the rainfall infiltration process into a one‐dimensional soil column. Using this framework, we have numerically analyzed the generation of pore water pressure and deformations when rainfall is applied to the soil. A parametric study, including rainfall intensity, soil–water characteristic curves, and permeability, is carried out to observe their influence on the changes in pore water pressure and volumetric strain. From the numerical results, it is shown that the generation of pore water pressure and volumetric strain is mainly controlled by material parameters α and n′ that describe the soil–water characteristic curve. A comparison with the laboratory results shows that the proposed method can describe very well the characteristics observed during the experiments of one‐dimensional water infiltration into a layered unsaturated soil column. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The mechanical behaviour of bonded geomaterials is described by means of an elastoplastic strain‐hardening model. The internal variables, taking into account the ‘history’ of the material, depend on the plastic strains experienced and on a conveniently defined scalar measure of damage induced by weathering and/or chemical degradation. For the sake of simplicity, it is assumed that only internal variables are affected by mechanical and chemical history of the material. Despite this simplifying assumption, it can be shown that many interesting phenomena exhibited by weathered bonded geomaterials can be successfully described. For instance, (i) the transition from brittle to ductile behaviour with increasing pressure of a calcarenite with collapsing internal structure, (ii) the complex behaviour of chalk and other calcareous materials in oedometric tests, (iii) the chemically induced variation of the stress and strain state of such kind of materials, are all phenomena that can be qualitatively reproduced. Several comparisons with experimental data show that the model can capture the observed behaviour also quantitatively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
A finite element analysis of a reinforced embankment-foundation system has been conducted using a coupled formulation and elastoplasticity theory. Such important factors as type of reinforcement, the type of clay, depth of foundation and drainage condition affecting the system have been systematically investigated using appropriate constitutive models to depict various components of the system and material parameters of two typical soft clay deposits found in India. The displacements, reinforcement force and maximum heights of the embankments are among the aspects presented and discussed. It is shown that the effectiveness of the reinforcement is dependent on its stiffness and the shear strength of the clay deposit. The foundation depth has significant effect on the nature and magnitude of displacement, the reinforcement force and the height of embankment. Drainage conditions are shown to markedly influence the effectiveness of reinforcement. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
刚-柔性桩复合地基变形特性有限元分析   总被引:2,自引:0,他引:2  
朱奎  徐日庆  郭印  周鹏飞 《岩土力学》2008,29(4):937-943
在现场试验基础上对条形基础下刚-柔性桩复合地基进行有限元模拟分析。着重讨论了褥垫层、承台、刚性桩、柔性桩等的参数变化对刚-柔性桩复合地基沉降特性的影响。结果表明,复合地基沉降随着褥垫层厚度减小而减小,随着褥垫层模量增加而减小,承台厚度增加有利于减少差异沉降,刚性桩是控制沉降的主要构件,柔性桩桩长增加可以减少差异沉降。分析结果为刚-柔性桩复合地基的优化设计提供理论基础。  相似文献   

14.
In this paper, the ability of a material rate‐independent system to evolve toward another mechanical state from an equilibrium configuration, with no change in the control parameters, is investigated. From a mechanical point of view, this means that the system can spontaneously develop kinetic energy with no external disturbance from an equilibrium state, which corresponds to a particular case of bifurcation. The existence of both conjugate incremental strain and stress such that the second‐order work vanishes is established as a necessary and sufficient condition for the appearance of this bifurcation phenomenon. It is proved that this fundamental result is independent of the constitutive relation of the rate‐independent material considered. Then the case of homogeneous loading paths is investigated, and, as an illustration, the subsequent results are applied to interpret the well‐known liquefaction observed under isochoric triaxial loading conditions with loose granular materials. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
非饱和土渗流与变形耦合问题的有限元分析   总被引:3,自引:2,他引:3  
徐炎兵  韦昌富  李幻  陈辉 《岩土力学》2009,30(5):1490-1496
基于多孔介质力学原理,建立能模拟非饱和土两相流动与变形耦合问题的理论模型。利用Galerkin法对控制方程进行离散,得到控制方程的有限元计算格式。在此基础上,自主开发了有限元计算程序U-DYSAC2,并对Liakopoulos两相流动试验这一经典算例以及重非亲水相流体(DNAPL)在饱和多孔介质中迁移的离心模型试验进行了数值模拟。计算结果表明,理论预测与试验结果基本吻合,验证了所提出的分析方法在模拟非饱和土渗流以及变形问题时的有效性,从而为定量研究饱和-非饱和渗流以及变形问题提供了一条有效途径。  相似文献   

16.
模拟土体本构特性的热力学方法   总被引:4,自引:1,他引:3  
孔亮  Ian F. Collins 《岩土力学》2008,29(7):1732-1740
简要介绍了建立岩土材料弹塑性本构模型的热力学方法。它不仅具有紧凑的数学结构,而且自动满足热力学定律,仅从两个热力学势函数,即自由能函数与耗散增量函数出发,就足以导出弹塑性理论必须的屈服条件,流动法则,硬化定律和弹性定律。通过理论证明指出,只要耗散增量函数依赖于当前应力,流动法则必然是非关联的,岩土材料的摩擦特性与非关联流动法则密不可分。介绍该方法在三维模型,岩土材料的微细观力学特性,应力应变的均匀化以及剪胀和各向异性方面应用的主要研究进展,并对一些重要的概念,诸如“储存的塑性功”,“Reynolds-Taylor状态”等,进行分析与解释。最后给出近期需进一步深入研究的几点建议。  相似文献   

17.
We present here results for the Andra Couplex 1 test case, obtained with the code Cast3m. This code is developped at the CEA (Commissariat l'nergie atomique) and is used mainly to solve problems of solid mechanics, fluid mechanics and heat transfers. Different types of discretization are available, among them finite element, finite volume and mixed hybrid finite element method. Cast3m is also a componant of the platteform Alliances (co-developped by Andra, CEA), which will be used by Andra for the safety calculation of an underground waste disposal in year 2004. We solve the Darcy equation for the water flow and a convection–diffusion transport equation for the Iodine 129 which escapes from a repository cave into the water. The water flow is calculated with a MHFE discretization. It is shown that this method provides sharp results even on relatively coarse grids. The convection–diffusion transport equation is discretized with FE (Finite Element), MHFE (Mixed Hybrid Finite Element) and FV (Finite Volume) methods. In our comparison, we point out the differences of these methods in term of accuracy, respect of the maximum principle and calculations cost. Neither the finite element nor the mixed hybrid finite element approach respects the maximum principle. This results in the presence of negative concentrations near the repository cave, whereas FV calculations respect the monotonicity. We show that mass lumping techniques suppress this problem but with strong restrictions on the grid. FE and MHFE approaches are more accurate than FV for the diffusion equation, but the overall results are equivalent since the advective terms are dominant in the far field and are discretized with centered schemes. We conclude by studying the influence of the grid: a very fine grid near the repository solves almost all the problems of monotonicity, without employing mass lumping techniques. We also observed a very important increase of the accuracy on a structured grid made up of rectangles.  相似文献   

18.
A finite element formulation is proposed to approximate a nonlinear system of partial differential equations, composed by an elliptic subsystem for the pressure–velocity and a transport equation (convection–diffusion) for the concentration, which models the incompressible miscible displacement of one fluid by another in a rigid porous media. The pressure is approximated by the classical Galerkin method and the velocity is calculated by a post-processing technique. Then, the concentration is obtained by a Galerkin/least-squares space–time (GLS/ST) finite element method. A numerical analysis is developed for the concentration approximation. Then, stability, convergence and numerical results are presented confirming the a priori error estimates.  相似文献   

19.
The instantaneous response of saturated low permeability grounds to tunnel excavation is important for deformations and stability close to the tunnel face. It is characterized by zero volume change in combination with the development of excess pore pressures. In tunnelling through poor quality ground under great depth of cover and high in situ pore pressure, heavily squeezing conditions (characterized by very large convergences) may occur soon after excavation. This paper presents exact finite strain analytical solutions for the undrained ground response around cylindrical and spherical openings that are unloaded from uniform and isotropic initial stress states, on the basis of the Modified Cam Clay (MCC) model and the Mohr–Coulomb (MC) model. The solution for a Drucker–Prager material is also given as it requires only a very small modification to the MC solution. The so‐called ground response curve, that is, the relationship between the support pressure and the cavity wall displacement, is derived in closed form for the MC model. The solution for the MCC problem is semi‐analytical in that it uses the trapezium rule for the computation of a definite integral. The influence of the significant parameters of the problem on the predicted deformation behaviour is shown by means of dimensionless charts. Finally, the practical usefulness of the solutions presented is illustrated by applying them to the breccia zones of the planned Gibraltar Strait tunnel – an extreme case of weak, low permeability ground under high pore pressure. The solutions can serve as a trustworthy benchmark for numerical procedures that incorporate material and geometric nonlinearities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A damage model for geomaterials and concrete is proposed. This model expresses the anisotropic character induced by the degradation of material. The law of behavior obtained by differentiation of the free energy shows the dissymmetry effect observed in traction–compression loading and the residual strains caused by the damage. The present approach requires the identification of a reduced number of parameters having a clear physical significance. An application to the case of the uniaxial traction–compression loading shows a good adequacy with the experimental observations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号