首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Based on the approximation by polynomial‐fraction, a series of systematic lumped‐parameter models are developed in this paper for efficiently representing the dynamic behaviour of unbounded soil. Concise formulation is first employed to represent the dynamic flexibility function of foundation with a ratio of two polynomials. By defining an appropriate quadratic error function, the optimal coefficients of the polynomials can be directly solved from a system of linear equations. Through performing partial‐fraction expansion on this polynomial‐fraction and designing two basic discrete‐element models corresponding to the partial fractions, systematic lumped‐parameter models can be conveniently established by connecting these basic units in series. Since the systematic lumped‐parameter models are configured without introducing any mass, the foundation input motion can be directly applied to these models for their applications to the analysis of seismic excitation. The effectiveness of these new models is strictly validated by successfully simulating a semi‐infinite bar on an elastic foundation. Subsequently, these models are applied for representing the dynamic stiffness functions for different types of foundation. Comparison of the new models with the other existing lumped‐parameter models is also made to illustrate their advantages in requiring fewer parameters and featuring a more systematic expansion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Most modern seismic imaging methods separate input data into parts (shot gathers). We develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield forward or backward in time. This approach has the potential for generating accurate images free of artiefacts associated with conventional approaches. We derive novel high‐order partial differential equations in the source–receiver time domain. The fourth‐order nature of the extrapolation in time leads to four solutions, two of which correspond to the incoming and outgoing P‐waves and reduce to the zero‐offset exploding‐reflector solutions when the source coincides with the receiver. A challenge for implementing two‐way time extrapolation is an essential singularity for horizontally travelling waves. This singularity can be avoided by limiting the range of wavenumbers treated in a spectral‐based extrapolation. Using spectral methods based on the low‐rank approximation of the propagation symbol, we extrapolate only the desired solutions in an accurate and efficient manner with reduced dispersion artiefacts. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach.  相似文献   

4.
When modelling unbounded domains, formulation of a matrix‐valued force–displacement relationship which can take radiation damping into account is of major importance. In this paper, a method to describe the dynamic stiffness by a system of fractional differential equations in the time‐domain is presented. Here, a doubly asymptotic rational approximation of the low‐frequency force–displacement relationship is used, whereas a direct interpretation of the asymptotic part as a fractional derivative is possible. The numerical solution of the corresponding system of fractional differential equations is demonstrated using the infinite beam on elastic foundation as an example. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The effects of soil‐structure interaction on the seismic response of multi‐span bridges are investigated by means of a modelling strategy based on the domain decomposition technique. First, the analysis methodology is presented: kinematic interaction analysis is performed in the frequency domain by means of a procedure accounting for radiation damping, soil–pile and pile‐to‐pile interaction; the seismic response of the superstructure is evaluated in the time domain by means of user‐friendly finite element programs introducing suitable lumped parameter models take into account the frequency‐dependent impedances of the soil–foundation system. Second, a real multi‐span railway bridge longitudinally restrained at one abutment is analyzed. The input motion is represented by two sets of real accelerograms: one consistent with the Italian seismic code and the other constituted by five records characterized by different frequency contents. The seismic response of the compliant‐base model is compared with that obtained from a fixed‐base model. Pile stress resultants due to kinematic and inertial interactions are also evaluated. The application demonstrates the importance of performing a comprehensive analysis of the soil–foundation–structure system in the design process, in order to capture the effects of soil‐structure interaction in each structural element that may be beneficial or detrimental. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A series of scalar and vector intensity measures is examined to determine their suitability within the seismic risk assessment of liquid storage tanks. Using a surrogate modelling approach on a squat tank that is examined under both anchored and unanchored support conditions, incremental dynamic analysis is adopted to generate the distributions of response parameters conditioned on each of the candidate intensity measures. Efficiency and sufficiency metrics are used in order to perform the intensity measure evaluation for individual failure modes, while a comparison in terms of mean annual frequency of exceedance is performed with respect to a damage state that is mutually governed by the impulsive and convective modes of the tank. The results reveal combinations of spectral acceleration ordinates as adequate predictors, among which the average spectral acceleration is singled out as the optimal solution. The sole exception is found for the sloshing‐controlled modes of failure, where mainly the convective period spectral acceleration is deemed adequate to represent the associated response due to their underlying linear relationship. A computationally efficient method in terms of site hazard analysis is finally proposed to serve in place of the vector‐valued intensity measures, providing a good match for the unanchored tank considered and a more conservative one for the corresponding anchored system.  相似文献   

7.
The ‘strength’ of an earthquake ground motion is often quantified by an Intensity Measure (IM), such as peak ground acceleration or spectral acceleration at a given period. This IM is used to predict the response of a structure. In this paper an intensity measure consisting of two parameters, spectral acceleration and epsilon, is considered. The IM is termed a vector‐valued IM, as opposed to the single parameter, or scalar, IMs that are traditionally used. Epsilon (defined as a measure of the difference between the spectral acceleration of a record and the mean of a ground motion prediction equation at the given period) is found to have significant ability to predict structural response. It is shown that epsilon is an indicator of spectral shape, explaining why it is related to structural response. By incorporating this vector‐valued IM with a vector‐valued ground motion hazard, we can predict the mean annual frequency of exceeding a given value of maximum interstory drift ratio, or other such response measure. It is shown that neglecting the effect of epsilon when computing this drift hazard curve leads to conservative estimates of the response of the structure. These observations should perhaps affect record selection in the future. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A number of methods have been proposed that utilize the time‐domain transformations of frequency‐dependent dynamic impedance functions to perform a time‐history analysis. Though these methods have been available in literature for a number of years, the methods exhibit stability issues depending on how the model parameters are calibrated. In this study, a novel method is proposed with which the stability of a numerical integration scheme combined with time‐domain representation of a frequency‐dependent dynamic impedance function can be evaluated. The method is verified with three independent recursive parameter models. The proposed method is expected to be a useful tool in evaluating the potential stability issue of a time‐domain analysis before running a full‐fledged nonlinear time‐domain analysis of a soil–structure system in which the dynamic impedance of a soil–foundation system is represented with a recursive parameter model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Based on an average‐derivative method and optimization techniques, a 27‐point scheme for a 3D frequency‐domain scalar wave equation is developed. Compared to the rotated‐coordinate approach, the average‐derivative optimal method is not only concise but also applies to equal and unequal directional sampling intervals. The resulting 27‐point scheme uses a 27‐point operator to approximate spatial derivatives and the mass acceleration term. The coefficients are determined by minimizing phase velocity dispersion errors and the resultant optimal coefficients depend on ratios of directional sampling intervals. Compared to the classical 7‐point scheme, the number of grid points per shortest wavelength is reduced from approximately 13 to approximately 4 by this 27‐point optimal scheme for equal directional sampling intervals and unequal directional sampling intervals as well. Two numerical examples are presented to demonstrate the theoretical analysis. The average‐derivative algorithm is also extended to a 3D frequency‐domain viscous scalar wave equation.  相似文献   

10.
The concept of polynomial‐fraction approximation is explored in this article to develop a nested type of systematic lumped‐parameter model for unbounded soil. Based on the optimal coefficients determined from the flexibility formulation, the reciprocal of the polynomial‐fraction is first taken to represent the dynamic stiffness function of foundation and then decomposed into a linear polynomial and another polynomial‐fraction. The nested division introduced in this study is operated to generate a nested form for this decomposed polynomial‐fraction, which directly corresponds to a nested discrete‐element model. The nested type of lumped‐parameter model is then easily constructed by connecting this nested discrete‐element model in series with another simple discrete‐element model corresponding to the linear polynomial. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The complex‐valued first‐arrival traveltime can be used to describe the properties of both velocity and attenuation as seismic waves propagate in attenuative elastic media. The real part of the complex‐valued traveltime corresponds to phase arrival and the imaginary part is associated with the amplitude decay due to energy absorption. The eikonal equation for attenuative vertical transversely isotropic media discretized with rectangular grids has been proven effective and precise to calculate the complex‐valued traveltime, but less accurate and efficient for irregular models. By using the perturbation method, the complex‐valued eikonal equation can be decomposed into two real‐valued equations, namely the zeroth‐ and first‐order traveltime governing equations. Here, we first present the topography‐dependent zeroth‐ and first‐order governing equations for attenuative VTI media, which are obtained by using the coordinate transformation from the Cartesian coordinates to the curvilinear coordinates. Then, we apply the Lax–Friedrichs sweeping method for solving the topography‐dependent traveltime governing equations in order to approximate the viscosity solutions, namely the real and imaginary parts of the complex‐valued traveltime. Several numerical tests demonstrate that the proposed scheme is efficient and accurate in calculating the complex‐valued P‐wave first‐arrival traveltime in attenuative VTI media with an irregular surface.  相似文献   

12.
13.
The inversion of induced‐polarization parameters is important in the characterization of the frequency electrical response of porous rocks. A Bayesian approach is developed to invert these parameters assuming the electrical response is described by a Cole–Cole model in the time or frequency domain. We show that the Bayesian approach provides a better analysis of the uncertainty associated with the parameters of the Cole–Cole model compared with more conventional methods based on the minimization of a cost function using the least‐squares criterion. This is due to the strong non‐linearity of the inverse problem and non‐uniqueness of the solution in the time domain. The Bayesian approach consists of propagating the information provided by the measurements through the model and combining this information with a priori knowledge of the data. Our analysis demonstrates that the uncertainty in estimating the Cole–Cole model parameters from induced‐polarization data is much higher for measurements performed in the time domain than in the frequency domain. Our conclusion is that it is very difficult, if not impossible, to retrieve the correct value of the Cole–Cole parameters from time‐domain induced‐polarization data using standard least‐squares methods. In contrast, the Cole–Cole parameters can be more correctly inverted in the frequency domain. These results are also valid for other models describing the induced‐polarization spectral response, such as the Cole–Davidson or power law models.  相似文献   

14.
15.
Planar waves events recorded in a seismic array can be represented as lines in the Fourier domain. However, in the real world, seismic events usually have curvature or amplitude variability, which means that their Fourier transforms are no longer strictly linear but rather occupy conic regions of the Fourier domain that are narrow at low frequencies but broaden at high frequencies where the effect of curvature becomes more pronounced. One can consider these regions as localised “signal cones”. In this work, we consider a space–time variable signal cone to model the seismic data. The variability of the signal cone is obtained through scaling, slanting, and translation of the kernel for cone‐limited (C‐limited) functions (functions whose Fourier transform lives within a cone) or C‐Gaussian function (a multivariate function whose Fourier transform decays exponentially with respect to slowness and frequency), which constitutes our dictionary. We find a discrete number of scaling, slanting, and translation parameters from a continuum by optimally matching the data. This is a non‐linear optimisation problem, which we address by a fixed‐point method that utilises a variable projection method with ?1 constraints on the linear parameters and bound constraints on the non‐linear parameters. We observe that slow decay and oscillatory behaviour of the kernel for C‐limited functions constitute bottlenecks for the optimisation problem, which we partially overcome by the C‐Gaussian function. We demonstrate our method through an interpolation example. We present the interpolation result using the estimated parameters obtained from the proposed method and compare it with those obtained using sparsity‐promoting curvelet decomposition, matching pursuit Fourier interpolation, and sparsity‐promoting plane‐wave decomposition methods.  相似文献   

16.
A seismic variant of the distorted Born iterative inversion method, which is commonly used in electromagnetic and acoustic (medical) imaging, has been recently developed on the basis of the T‐matrix approach of multiple scattering theory. The distorted Born iterative method is consistent with the Gauss–Newton method, but its implementation is different, and there are potentially significant computational advantages of using the T‐matrix approach in this context. It has been shown that the computational cost associated with the updating of the background medium Green functions after each iteration can be reduced via the use of various linearisation or quasi‐linearisation techniques. However, these techniques for reducing the computational cost may not work well in the presence of strong contrasts. To deal with this, we have now developed a domain decomposition method, which allows one to decompose the seismic velocity model into an arbitrary number of heterogeneous domains that can be treated separately and in parallel. The new domain decomposition method is based on the concept of a scattering‐path matrix, which is well known in solid‐state physics. If the seismic model consists of different domains that are well separated (e.g., different reservoirs within a sedimentary basin), then the scattering‐path matrix formulation can be used to derive approximations that are sufficiently accurate but far more speedy and much less memory demanding because they ignore the interaction between different domains. However, we show here that one can also use the scattering‐path matrix formulation to calculate the overall T‐matrix for a large model exactly without any approximations at a computational cost that is significantly smaller than the cost associated with an exact formal matrix inversion solution. This is because we have derived exact analytical results for the special case of two interacting domains and combined them with Strassen's formulas for fast recursive matrix inversion. To illustrate the fact that we have accelerated the T‐matrix approach to full‐waveform inversion by domain decomposition, we perform a series of numerical experiments based on synthetic data associated with a complex salt model and a simpler two‐dimensional model that can be naturally decomposed into separate upper and lower domains. If the domain decomposition method is combined with an additional layer of multi‐scale regularisation (based on spatial smoothing of the sensitivity matrix and the data residual vector along the receiver line) beyond standard sequential frequency inversion, then one apparently can also obtain stable inversion results in the absence of ultra‐low frequencies and reduced computation times.  相似文献   

17.
Real‐time hybrid testing is a promising technique for experimental structural dynamics, in which the structure under consideration is split into a physical test of key components and a numerical model of the remainder. The physical test and numerical analysis proceed in parallel, in real time, enabling testing of critical elements at large scale and at the correct loading rate. To date most real‐time hybrid tests have been restricted to simple configurations and have used approximate delay compensation schemes. This paper describes a real‐time hybrid testing approach in which non‐linearity is permitted in both the physical and numerical models, and in which multiple interfaces between physical and numerical substructures can be accommodated, even when this results in very stiff coupling between actuators. This is achieved using a Newmark explicit numerical solver, an advanced adaptive controller known as MCSmd and a multi‐tasking strategy. The approach is evaluated through a series of experiments on discrete mass–spring systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
In order to account for the effects of elastic wave propagation in marine seismic data, we develop a waveform inversion algorithm for acoustic‐elastic media based on a frequency‐domain finite‐element modelling technique. In our algorithm we minimize residuals using the conjugate gradient method, which back‐propagates the errors using reverse time migration without directly computing the partial derivative wavefields. Unlike a purely acoustic or purely elastic inversion algorithm, the Green's function matrix for our acoustic‐elastic algorithm is asymmetric. We are nonetheless able to achieve computational efficiency using modern numerical methods. Numerical examples show that our coupled inversion algorithm produces better velocity models than a purely acoustic inversion algorithm in a wide variety of cases, including both single‐ and multi‐component data and low‐cut filtered data. We also show that our algorithm performs at least equally well on real field data gathered in the Korean continental shelf.  相似文献   

19.
A formulation is developed for modal response analysis of multi‐support structures using a random vibration approach. The spectral moments of the structural response are rigorously decomposed into contributions from spectral moments of uncoupled modal responses. An advantage of the proposed formulation is that the total dynamic response can be obtained on the basis of mode by mode uncoupled analyses. The contributions to the total response from modal responses under individual support ground motions and under cross‐correlated pairs of support ground motions can be recognized explicitly. The application and performance of the formulation is illustrated by means of an example using a well‐established coherency spectrum model and widely known power spectra models, such as white noise and Kanai–Tajimi. The first three spectral moments of displacement, shear, and bending moment responses are computed, showing that the formulation produces the same results as the exact solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
To reduce the numerical errors arising from the improper enforcement of the artificial boundary conditions on the distant surface that encloses the underground part of the subsurface, we present a finite‐element–infinite‐element coupled method to significantly reduce the computation time and memory cost in the 2.5D direct‐current resistivity inversion. We first present the boundary value problem of the secondary potential. Then, a new type of infinite element is analysed and applied to replace the conventionally used mixed boundary condition on the distant boundary. In the internal domain, a standard finite‐element method is used to derive the final system of linear equations. With a novel shape function for infinite elements at the subsurface boundary, the final system matrix is sparse, symmetric, and independent of source electrodes. Through lower upper decomposition, the multi‐pole potentials can be swiftly obtained by simple back‐substitutions. We embed the newly developed forward solution to the inversion procedure. To compute the sensitivity matrix, we adopt the efficient adjoint equation approach to further reduce the computation cost. Finally, several synthetic examples are tested to show the efficiency of inversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号