首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Rill bank collapse is an important component in the adjustment of channel morphology to changes in discharge and sediment flux. Sediment inputs from bank collapse cause abrupt changes in flow resistance, flow patterns and downstream sediment concentrations. Generally, bank retreat involves gradual lateral erosion, caused by flow shear stress, and sudden bank collapse, triggered by complex interactions between channel flow and bank and soil water conditions. Collapse occurs when bank height exceeds the critical height where gravitational forces overcome soil shear strength. An experimental study examined conditions for collapse in eroding rill channels. Experiments with and without a deep water table were carried out on a meandering rill channel in a loamy sand and sandy loam in a laboratory flume under simulated rainfall and controlled runon. Different discharges were used to initiate knickpoint and rill incision. Soil water dynamics were monitored using microstandpipes, tensiometers and time domain reflectometer probes (TDR probes). Bank collapse occurred with newly developed or rising pre‐existing water tables near rill banks, associated with knickpoint migration. Knickpoint scour increased effective bank height, caused positive pore water pressure in the bank toe and reduced negative pore pressures in the unsaturated zone to near zero. Matric tension in unsaturated parts of the bank and a surface seal on the ‘interrill’ zone behind the bank enhanced stability, while increased effective bank height and positive pore water pressure at the bank toe caused instability. With soil water contents >35 per cent (sandy loam) and >23 per cent (loamy sand), critical bank heights were 0·11–0·12 m and 0·06–0·07 m, respectively. Bank toe undercutting at the outside of the rill bends also triggered instability. Bank displacement was quite different on the two soils. On the loamy sand, the failed block slid to the channel bed, revealing only the upper half of the failure plane, while on the sandy loam the failed block toppled forwards, exposing the failure plane for the complete bank height. This study has shown that it is possible to predict location, frequency and magnitude of the rill bank collapse, providing a basis for incorporation into predictive models for hillslope soil loss or rill network development. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Several mechanisms contribute to streambank failure including fluvial toe undercutting, reduced soil shear strength by increased soil pore‐water pressure, and seepage erosion. Recent research has suggested that seepage erosion of noncohesive soil layers undercutting the banks may play an equivalent role in streambank failure to increased soil pore‐water pressure. However, this past research has primarily been limited to laboratory studies of non‐vegetated banks. The objective of this research was to utilize the Bank Stability and Toe Erosion Model (BSTEM) in order to determine the importance of seepage undercutting relative to bank shear strength, bank angle, soil pore‐water pressure, and root reinforcement. The BSTEM simulated two streambanks: Little Topashaw Creek and Goodwin Creek in northern Mississippi. Simulations included three bank angles (70° to 90°), four pore‐water pressure distributions (unsaturated, two partially saturated cases, and fully saturated), six distances of undercutting (0 to 40 cm), and 13 different vegetation conditions (root cohesions from 0·0 to 15·0 kPa). A relative sensitivity analysis suggested that BSTEM was approximately three to four times more sensitive to water table position than root cohesion or depth of seepage undercutting. Seepage undercutting becomes a prominent bank failure mechanism on unsaturated to partially saturated streambanks with root reinforcement, even with undercutting distances as small as 20 cm. Consideration of seepage undercutting is less important under conditions of partially to fully saturated soil pore‐water conditions. The distance at which instability by undercutting became equivalent to instability by increased soil pore‐water pressure decreased as root reinforcement increased, with values typically ranging between 20 and 40 cm at Little Topashaw Creek and between 20 and 55 cm at Goodwin Creek. This research depicts the baseline conditions at which seepage undercutting of vegetated streambanks needs to be considered for bank stability analyses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Field‐measured patterns of mean velocity and turbulent airflow are reported for isolated barchan dunes. Turbulence was sampled using a high frequency sonic anemometer, deriving near‐surface Reynolds shear and normal stresses. Measurements upwind of and over a crest‐brink separated barchan indicated that shear stress was sustained despite a velocity reduction at the dune toe. The mapped streamline angles and enhanced turbulent intensities suggest the effects of positive streamline curvature are responsible for this maintenance of shear stress. This field evidence supports an existing model for dune morphodynamics based on wind tunnel turbulence measurements. Downwind, the effect of different dune profiles on flow re‐attachment and recovery was apparent. With transverse incident flow, a re‐attachment length between 2·3 and 5·0h (h is dune brink height) existed for a crest‐brink separated dune and 6·5 to 8·6h for a crest‐brink coincident dune. The lee side shear layer produced elevated turbulent stresses immediately downwind of both dunes, and a decrease in turbulence with distance characterized flow recovery. Recovery of mean velocity for the crest‐brink separated dune occurred over a distance 6·5h shorter than the crest‐brink coincident form. As the application of sonic anemometers in aeolian geomorphology is relatively new, there is debate concerning the suitability of processing their data in relation to dune surface and streamline angle. This paper demonstrates the effect on Reynolds stresses of mathematically correcting data to the local streamline over varying dune slope. Where the streamline angle was closely related to the surface (windward slope), time‐averaged shear stress agreed best with previous wind tunnel findings when data were rotated along streamlines. In the close lee, however, the angle of downwardly projected (separated) flow was not aligned with the flat ground surface. Here, shear stress appeared to be underestimated by streamline correction, and corrected shear stress values were less than half of those uncorrected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The highly stochastic nature of riverbank erosion has driven the need for spatially explicit empirical models. Detailed bank profile surveys along a meander bend of the Brandywine Creek in Pennsylvania, USA, before and after 28 high flow events over a 2·5 year period are used to develop an empirical model of cohesive bank profile erosion. Two hundred and thirty‐six bank erosion observations are classified as hydraulic erosion or subaerial erosion. Threshold conditions required to initiate bank erosion cannot be defined based on field measurements. Using the near‐bank velocity and the number of freeze–thaw cycles as predictors, regression equations are derived for hydraulic erosion that specify the length, thickness, and location on the bank face of eroded blocks. An empirical discriminant function defines the critical geometry of overhang failures, and the volumes removed by overhang failures are computed using another regression equation. All the regression equations are significant, but have low correlation coefficients, suggesting that cohesive bank erosion has a strong stochastic component. Individual events typically remove small masses of soil (average volume 0·084 m3/m) a few centimeters thick (median = 0·057 m) and a few decimeters in length (median = 0·50 m) from the lower third of the bank. Hydraulic erosion is responsible for 87% of all erosion. When applied to three survey sites not used in its development, the profile model predicts the total volume of erosion with errors of 23%, 5% and 1%. Twenty‐four percent of computed erosion volumes for single events are within 50% of observed volumes at these three sites. Extending the approach to decadal timescales and to entire bends will require three‐dimensional observations of bank failure, and spatially and temporally explicit methods to account for the influence of individual large trees on bank failures and near‐bank hydraulic processes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Riffle–pool sequences are maintained through the preferential entrainment of sediment grains from pools rather than riffles. This preferential entrainment has been attributed to a reversal in the magnitude of velocity and shear stress under high flows; however the Differential Sediment Entrainment Hypothesis (DSEH) postulates that differential entrainment can instead result from spatial sedimentological contrasts. Here we use a novel suite of in situ grain‐scale field measurements from a riffle–pool sequence to parameterize a physically‐based model of grain entrainment. Field measurements include pivoting angles, lift forces and high resolution digital elevation models (DEMs) acquired using terrestrial laser scanning, from which particle exposure, protrusion and surface roughness were derived. The entrainment model results show that grains in pools have a lower critical entrainment shear stress than grains in either pool exits or riffles. This is because pool grains have looser packing, hence greater exposure and lower pivoting angles. Conversely, riffle and pool exit grains have denser packing, lower exposure and higher pivoting angles. A cohesive matrix further stabilizes pool exit grains. The resulting predictions of critical entrainment shear stress for grains in different subunits are compared with spatial patterns of bed shear stress derived from a two‐dimensional computational fluid dynamics (CFD) model of the reach. The CFD model predicts that, under bankfull conditions, pools experience lower shear stresses than riffles and pool exits. However, the difference in sediment entrainment shear stress is sufficiently large that sediment in pools is still more likely to be entrained than sediment in pool exits or riffles, resulting in differential entrainment under bankfull flows. Significantly, this differential entrainment does not require a reversal in flow velocities or shear stress, suggesting that sedimentological contrasts alone may be sufficient for the maintenance of riffle–pool sequences. This finding has implications for the prediction of sediment transport and the morphological evolution of gravel‐bed rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Laboratory tests using Jet Erosion Testing (JET) apparatus, impinging normally on a horizontal boundary, were conducted to determine the critical shear stress (τc) of non‐cohesive soil samples. A three‐dimensional (3D) SonTek/YSI 16 MHz Micro‐Acoustic Doppler Velocimeter (MicroADV) was used to measure turbulent kinetic energy (TKE) at a radial limit of entrainment in the wall jet zone and the measurements were used to calculate τc of the samples. The results showed that TKE increases exponentially with increasing particle size. The τc from this study were comparable (R2 = 0.8) to the theoretical τc from Shields diagram after bed roughness scale ratio (D/ks), due to the non‐uniform bed conditions, was accounted for. This study demonstrated that JET and TKE can be used to determine τc of non‐cohesive soils. The use of JET and TKE was found to be faster and easier when compared to the conventional approach of using flumes. A relationship of TKE at the onset of incipient motion (TKEc) and samples’ D50 developed in this study can be used to predict τc of non‐cohesive soils under similar non‐uniform conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Stochastic erosion of composite banks in alluvial river bends   总被引:2,自引:0,他引:2       下载免费PDF全文
The erosion of composite river banks is a complex process involving a number of factors including fluvial erosion, seepage erosion, and cantilever mass failure. To predict the rate of bank erosion with these complexities, a stochastic bank erosion model is suitable to define the probability distribution of the controlling variables. In this study, a bank erosion model in a river bend is developed by coupling several bank erosion processes with an existing hydrodynamic and morphological model. The soil erodibility of cohesive bank layers was measured using a submerged jet test apparatus. Seasonal bank erosion rates for four consecutive years at a bend in the Brahmaputra River, India, were measured by repeated bankline surveys. The ability of the model to predict erosion was evaluated in the river bend that displayed active bank erosion. In this study, different monsoon conditions and the distribution functions of two variables were considered in estimating the stochastic bank erosion rate: the probability of the soil erodibility and stochastic stage hydrographs for the nth return period river stage. Additionally, the influences of the deflection angle of the streamflow, longitudinal slope of river channel, and bed material size on bank erosion rate were also investigated. The obtained stochastic erosion predictions were compared with the observed distribution of the annual‐average bank erosion rate of 45 river bends in the Brahmaputra River. The developed model appropriately predicted the short‐term morphological dynamics of sand‐bed river bends with composite banks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The stability of a river bank depends on the balance of forces, motive and resistive, associated with the most critical mechanism of failure. Many mechanisms are possible and the likelihood of failure occurring by any particular one depends on the size, geometry and structure of the bank, the engineering properties of the bank material, the hydraulics of flow in the adjacent channel and climatic conditions. Rivers flowing through alluvial deposits often have a composite structure of cohesionless sand and gravel overlain by cohesive silt/clay. Bank erosion occurs by fluvial entrainment of material from the lower, cohesionless bank at a much higher rate than material from the upper, cohesive bank. This leads to undermining that produces cantilevers of cohesive material. Upper bank retreat takes place predominantly by the failure of these cantilevers. Three mechanisms of failure have been identified: shear, beam and tensile failure. The stability of a cantilever may be analysed using static equilibrium and beam theory, and dimensionless charts for cantilever stability constructed. Application of the charts requires only a few simple measurements of cantilever geometry and soil properties. In this analysis the effects of cracks and fissures in the soil must be taken into account. These cracks seriously weaken the soil and can invalidate a stability analysis by affecting the shape of the failure surface. Following mechanical failure, blocks of soil must be removed from the basal area by fluvial entrainment if rapid undermining and cantilever generation are to continue. Hence, the rate of bank retreat is fluvially controlled, even though the mechanism of failure of the upper bank is not directly fluvial in nature. This cycle of bank erosion: undermining, cantilever failure and fluvial scour of the toe, operates over several flood events and has important implications for river engineering, channel changes, and the movement of sediment through fluvial systems.  相似文献   

10.
Bank retreat in the Jingjiang Reach is closely related not only to the near‐bank intensity of fluvial erosion but also to the composition and mechanical properties of bank soils. Therefore, it is necessary to correctly simulate bank retreat to determine the characteristics of fluvial processes in the Jingjiang Reach. The current version of bank stability and toe erosion model (5.4) was improved to predict riverbank retreat, by inputting a dynamic water table, and calculating the approximation of the distribution of dynamic pore water pressure in the soil near the river bank face, and considering the depositional form of the failed blocks, which is assumedly based on a triangular distribution, with the slope approximately equalling the stable submerged bank slope and half of collapsed volume deposited in the bank‐toe region. The degrees of riverbank stability at Jing34 were calculated using the improved bank stability and toe erosion model. The results indicate the following trends: (a) the degrees of riverbank stability were high during the dry season and the rising stage, which led to minimal bank failure, and (b) the stability degrees were low during the flood season and the recession stage, with the events of bank collapse occurring frequently, which belonged to a stage of intensive bank erosion. Considering the effects of bank‐toe erosion, water table lag, and the depositional form of the collapsed bank soil, the bank‐retreat process was simulated at the right riverbank of Jing34. The model‐predicted results exhibit close agreement with the measured data, including the total bank‐retreat width and the collapsed bank profile. A sensitivity analysis was conducted to determine the quantitative effects of toe erosion and water table lag on the degree of bank stability. The calculated results for toe erosion indicate that the amount of toe erosion was largest during the flood season, which was a primary reason for bank failure. The influence of water table lag on the degree of stability demonstrates that water table lag was an important cause of bank failure during the recession stage.  相似文献   

11.
We present a geotechnical stability analysis for the planar failure of riverbanks, which incorporates the effects of root reinforcement and surcharge for mature stands of woody riparian vegetation. The analysis relies on a new method of representing the root distribution in the soil, which evaluates the effects of the vegetation's position on the bank. The model is used in a series of sensitivity analyses performed for a wide range of bank morphological (bank slope and height) and sedimentological (bank cohesion and friction angle) conditions, enabling discrimination of the types of bank environment for which vegetation has an effect on bank stability. The results indicate that woody vegetation elements have a maximal impact on bank stability when they are located at the ends of the incipient failure plane (i.e. at the bank toe or at the intersection of the failure plane with the floodplain) and that vegetation has a greater effect on net bank stability when it is growing on low, shallow, banks comprised of weakly cohesive sediments. However, the magnitude of these effects is limited, with vegetation typically inducing changes (relative to non‐vegetated banks) in simulated factors of safety of less than 5%. If correct, this suggests that the well documented effects of vegetation on channel morphology must be related to alternative process mechanisms (such as the interaction of vegetation with river flows) rather than the mechanical effects of vegetation on bank failure, except in special cases where the equivalent non‐vegetated bank has a highly marginal stability status. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Increased bank stability by riparian vegetation can have profound impacts on channel morphology and dynamics in low‐energy systems, but the effects are less clear in high‐energy environments. Here we investigate the role of vegetation in active, aggrading braided systems at Mount Pinatubo, Philippines, and compare results with numerical modeling results. Gradual reductions in post‐eruption sediment loads have reduced bed reworking rates, allowing vegetation to finally persist year‐round on the Pasig‐Potrero and Sacobia Rivers. From 2009–2011 we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into the RipRoot model and BSTEM (Bank Stability and Toe Erosion Model) shows cohesion due to roots increases from zero in unvegetated conditions to > 10·2 kPa in densely‐growing grasses. Field‐based parameters were incorporated into a cellular model comparing vegetation strength and sediment mobility effects on braided channel dynamics. The model shows both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. The competing influence of vegetation strength versus channel dynamics is a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. An estimated T* between 1·5 and 2·3 for the Pasig‐Potrero River suggests channels are still very mobile and likely to remain braided until aggradation rates decline further. Vegetation does have an important effect on channel dynamics, however, by focusing flow and thus aggradation into the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. The future trajectory of channel–vegetation interactions as sedimentation rates decline is complicated by strong seasonal variability in precipitation and sediment loads, driving incision and armoring in the dry season. By 2011, incision during the dry season was substantial enough to lower the water‐table, weaken existing vegetation, and allow for vegetation removal in future avulsions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Groundwater seepage can lead to the erosion and failure of streambanks and hillslopes. Two groundwater instability mechanisms include (i) tension failure due to the seepage force exceeding the soil shear strength or (ii) undercutting by seepage erosion and eventual mass failure. Previous research on these mechanisms has been limited to non‐cohesive and low cohesion soils. This study utilized a constant‐head, seepage soil box packed with more cohesive (6% and 15% clay) sandy loam soils at prescribed bulk densities (1.30 to 1.70 Mg m?3) and with a bank angle of 90° to investigate the controls on failure mechanisms due to seepage forces. A dimensionless seepage mechanism (SM) number was derived and evaluated based on the ratio of resistive cohesion forces to the driving forces leading to instability including seepage gradients with an assumed steady‐state seepage angle. Tension failures and undercutting were both observed dependent primarily on the saturated hydraulic conductivity, effective cohesion, and seepage gradient. Also, shapes of seepage undercuts for these more cohesive soils were wider and less deep compared to undercuts in sand and loamy sand soils. Direct shear tests were used to quantify the geotechnical properties of the soils packed at the various bulk densities. The SM number reasonably predicted the seepage failure mechanism (tension failure versus undercutting) based on the geotechnical properties and assumed steady‐state seepage gradients of the physical‐scale laboratory experiments, with some uncertainty due to measurement of geotechnical parameters, assumed seepage gradient direction, and the expected width of the failure block. It is hypothesized that the SM number can be used to evaluate seepage failure mechanisms when a streambank or hillslope experiences steady‐state seepage forces. When prevalent, seepage gradient forces should be considered when analyzing bank stability, and therefore should be incorporated into commonly used stability models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Measurements from a fixed‐bed, Froude‐scaled hydraulic model of a stream in northeastern Vermont demonstrate the importance of forested riparian vegetation effects on near‐bank turbulence during overbank flows. Sections of the prototype stream, a tributary to Sleepers River, have increased in channel width within the last 40 years in response to passive reforestation of its riparian zone. Previous research found that reaches of small streams with forested riparian zones are commonly wider than adjacent reaches with non‐forested, or grassy, vegetation; however, driving mechanisms for this morphologic difference are not fully explained. Flume experiments were performed with a 1:5 scale, simplified model of half a channel and its floodplain, mimicking the typical non‐forested channel size. Two types of riparian vegetation were placed on the constructed floodplain: non‐forested, with synthetic grass carpeting; and forested, where rigid, randomly distributed, wooden dowels were added. Three‐dimensional velocities were measured with an acoustic Doppler velocimeter at 41 locations within the channel and floodplain at near‐bed and 0·6‐depth elevations. Observations of velocity components and calculations of turbulent kinetic energy (TKE), Reynolds shear stress and boundary shear stress showed significant differences between forested and non‐forested runs. Generally, forested runs exhibited a narrow band of high turbulence between the floodplain and main channel, where TKE was roughly two times greater than TKE in non‐forested runs. Compared to non‐forested runs, the hydraulic characteristics of forested runs appear to create an environment with higher erosion potential. Given that sediment entrainment and transport can be amplified in flows with high turbulence intensity and given that mature forested stream reaches are wider than comparable non‐forested reaches, our results demonstrated a possible driving mechanism for channel widening during overbank flow events in stream reaches with recently reforested riparian zones. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Plants interact with and modify the processes of riverbank erosion by altering bank hydrology, flow hydraulics and bank geotechnical properties. The physically based slope stability model GWEDGEM was used to assess how changes in bank geotechnical properties due to the roots of native Australian riparian trees affected the stability of bank sections surveyed along the Latrobe River. Modelling bank stability against mass failure with and without the reinforcing effects of River Red Gum (Eucalyptus camaldulensis) or Swamp Paperbark (Melaleuca ericifolia) indicates that root reinforcement of the bank substrate provides high levels of bank protection. The model indicates that the addition of root reinforcement to an otherwise unstable bank section can raise the factor of safety (F s) from F s = 1·0 up to about F s = 1·6. The addition of roots to riverbanks improves stability even under worst‐case hydrological conditions and is apparent over a range of bank geometries, varying with tree position. Trees growing close to potential failure plane locations, either low on the bank or on the floodplain, realize the greatest bank reinforcement. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
The erosion of a composite river bank critically depends on the erodibility of its fine soils, as the fine soil has higher resistance against erosion. Therefore, for the estimation of the bank erosion in the case of a composite river bank, it is important to determine the critical shear stress and erodibility coefficients of the bank soil and their spatial distribution. In the present study, erodibility parameters of the river bank of Brahmaputra in India have been estimated through 58 in situ submerged jet tests. The significance of spatial and layer‐wise distribution of the erodibility parameters was tested through analysis of variance (ANOVA). Results indicate that the spatial variation of erodibility parameters is highly significant, but layer‐wise variations of the erodibility parameters are not significant. Therefore, the erodibility of the riverbank depends on the particular location, whereas layer‐wise average erodibility parameters can be lumped for the estimation of the bank erosion for the specific site. Using the measured erodibility parameters, yearly river bank erosions at the study locations were computed and found to fall within the reported range of the bank erosion in the Brahmaputra River. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Recent research has started to focus on how prolonged periods of sub‐threshold flows may be capable of imparting structural changes that contribute to increased bed stability. To date, this effect (termed ‘stress history’) has been found to be significant in acting to increase a bed's critical shear stress at entrainment threshold. However, it is supported by only limited, qualitative and often speculative information on the mechanisms of this stabilization process in grade‐specific studies. As such, this paper uses high resolution laser scanning to quantitatively ascertain the granular mechanics underpinning the relationship between stress history and entrainment threshold for beds of a range of grain size distributions. Employing a bed slope of 1/200, three grain size distributions with median grain sizes (D50) of 4·8 mm [uniform (σg = (D84/D16)0.5 = 1·13; bimodal (σg = 2·08); and, unimodal (σg = 1·63)] were exposed to antecedent stress histories of 60 and 960 minutes duration. Antecedent shear stress magnitude was set at 50% of the critical shear stress for the D50 when no stress history period was employed. Two laser displacement scans of the bed surface (approximate area 100 mm × 117 mm) were taken, one prior to the antecedent period and one after this period, so that changes to surface topography could be quantified (resolution of x = 0·10 mm, y = 0·13 mm and z = 0·24 mm). Rearrangement of bed surface structure is described using statistical analysis and two‐dimensional (2D) semi‐variograms to analyse scaling behaviour. Results reveal vertical settlement, changes to bed roughness and particle repositioning. However, the bed grain size distribution influences the relative importance of each mechanism in determining stress history induced bed stability; this is the focus of discussion in this paper. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Bank erosion rates and processes across a range of spatial scales are poorly understood in most environments, especially in the seasonally wet tropics of northern Australia where sediment yields are among global minima. A total of 177 erosion pins was installed at 45 sites on four sand‐bed streams (Tributaries North and Central, East Tributary and Ngarradj) in the Ngarradj catchment in the Alligator Rivers Region. Bank erosion was measured for up to 3·5 years (start of 1998/99 wet season to end of 2001/02 wet season) at three spatial scales, namely a discontinuous gully (0·6 km2) that was initiated by erosion of a grass swale between 1975 and 1981, a small continuous channel (2·5 km2) on an alluvial fan that was formed by incision of a formerly discontinuous channel between 1964 and 1978, and three medium‐sized, continuous channels (8·5–43·6 km2) with riparian vegetation. The bank erosion measurements during a period of average to above‐average rainfall established that substantial bank erosion occurred during the wet season on the two smaller channels by rapid lateral migration (Tributary Central) and by erosion of gully sidewalls due to a combination of within‐gully flows and overland flow plunging over the sidewalls (Tributary North). Minor bank erosion also occurred during the dry season by faunal activity, by desiccation and loss of cohesion of the sandy bank sediments and by dry flow processes. The larger channels with riparian vegetation (East Tributary and Ngarradj) did not generate significant amounts of sediment by bank erosion. Deposition (i.e. negative pin values) was locally significant at all scales. Bank profile form and channel planform exert a strong control on erosion rates during the wet season but not during the dry season. Copyright © 2006 Commonwealth Government of Australia.  相似文献   

20.
Between a.d. 2006 and 2008, we completed annual surveys of two mercury‐contaminated eroding banks, one forested and the other grass covered, along the gravel‐bed, bedrock South River in Virginia. Gridded digital terrain models with a resolution of 0·05 m were created from bank topography data collected using a terrestrial laser scanner. Model comparisons indicate that the forested bank retreated nearly 1 m around two leaning trees, while elsewhere the extent of bank retreat was negligible. On the grassy bank, retreat was controlled by the creation of small overhanging clumps of turf at the top of the bank, their occasional failure, and the ultimate removal of failed debris from the bank toe. Partial autocorrelation analysis of vertically integrated bank retreat demonstrates that bank profile erosion is virtually uncorrelated at horizontal distances greater than about 1 m on both banks, a length scale of approximately half the bank height. This extensive streamwise variability suggests that widely spaced profile data cannot adequately represent bank erosion at these sites. Additional analysis of our comprehensive spatial data also indicates that traditional bank profile surveys with any spacing greater than 1 m would result in measurement errors exceeding 10%, an important conclusion for assessing annual rates of mercury loading into the South River from bank erosion. Our results suggest that three‐dimensional gridded bare‐earth models of bank topography may be required to accurately measure annual bank retreat in similar river systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号