首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 591 毫秒
1.
This study investigates the effectiveness of the modal analysis using two‐degree‐of‐freedom (2DOF) modal stick to deal with the seismic analysis of one‐way asymmetric elastic systems with supplemental damping. The 2DOF modal stick possessing the non‐proportional damping property enables the modal translation and rotation to not be proportional even at elastic state. The analytical results of one‐storey and three‐storey buildings obtained by the proposed method are compared with those obtained by direct integration of the equation of motion and conventional approximate method, which neglects the off‐diagonal elements in the transformed damping matrix. It is found that the proposed simplified method, compared to conventional approximate methods, can significantly improve the accuracy of the analytical results and, at the same time, without obviously increasing computational efforts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates the response of asymmetric‐plan buildings with supplemental viscous damping to harmonic ground motion using modal analysis techniques. It is shown that most modal parameters, except dynamic amplification factors (DAFs), are affected very little by the plan‐wise distribution of supplemental damping in the practical range of system parameters. Plan‐wise distribution of supplemental damping significantly influences the DAFs, which, in turn, influence the modal deformations. These trends are directly related to the apparent modal damping ratios; the first modal damping ratio increases while the second decreases as CSD moves from right to left of the system plan, and their values increase with larger plan‐wise spread of the supplemental damping. The largest reduction in the flexible edge deformation occurs when damping in the first mode is maximized by distributing the supplemental damping such that the damping eccentricity takes on the largest value with algebraic sign opposite to the structural eccentricity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
The Rayleigh damping model, which is pervasive in nonlinear response history analysis (RHA) of buildings, is shown to develop ‘spurious’ damping forces and lead to inaccurate response results. We prove that a viscous damping matrix constructed by superposition of modal damping matrices—irrespective of the number of modes included or values assigned to modal damping ratios—completely eliminates the ‘spurious’ damping forces. This is the damping model recommended for nonlinear RHA. Replacing the stiffness‐proportional part of Rayleigh damping by the tangent stiffness matrix is shown to improve response results. However, this model is not recommended because it lacks a physical basis and has conceptual implications that are troubling: hysteresis in damping force–velocity relationship and negative damping at large displacements. Furthermore, the model conflicts with the constant‐damping model that has been the basis for fundamental concepts and accumulated experience about the inelastic response of structures. With a distributed plasticity model, the structural response is not sensitive to the damping model; even the Rayleigh damping model leads to acceptable results. This perspective on damping provides yet another reason to employ the superior distributed plasticity models in nonlinear RHA. OpenSees software has been extended to include a damping matrix defined as the superposition of modal damping matrices. Although this model leads to a full populated damping matrix, the additional computational demands are demonstrated to be minimal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A new response spectrum method, which is named complex multiple-support response spectrum (CMSRS) method in this article, is developed for seismic analysis of non-classically damped linear system subjected to spatially varying multiple-supported ground motion. The CMSRS method is based on fundamental principles of random vibration theory and properly accounts for the effect of correlation between the support motions as well as between the modal displacement and velocity responses of structure, and provides an reasonable and acceptable estimate of the peak response in term of peak seismic ground motions and response spectra at the support points and the coherency function. Meanwhile, three new cross-correlation coefficients or cross covariance especially for the non-classically damped linear structures with multiple-supports excitations are derived under the same assumptions of the MSRS method of classically damped system. The CMSRS method is examined and compared to the results of time history analyses in two numerical examples of non-classically damped structures in consideration of the coherences of spatially variable ground motion. The results show that for non-classically damped structure, the cross terms representing the cross covariance between the pseudo-static and dynamic component are also quite small just as same as classically damped system. In addition, it is found that the usual way of neglecting all the off-diagonal elements in transformed damping matrix in modal coordinates in order to make the concerned non-classically damped structure to become remaining proportional damping property will bring some errors in the case of subjected to spatially excited inhomogeneous ground motion.  相似文献   

5.
Two one‐way eccentric, two‐storey, one‐by‐one‐bay reinforced concrete (RC) structures are pseudodynamically tested under unidirectional ground motions. Theoretical considerations about the effect of torsional coupling on modal periods and shapes agree with modal results of the test structure, considering member stiffness is equal to the secant stiffness to yielding in skew‐symmetric bending. Modal periods of such an elastic structure are in fair agreement with effective periods inferred from the measured response at the beginning of a test of a thoroughly cracked structure and at the end of the test. A time‐varying stiffness matrix and a non‐proportional damping matrix fitted to the test results may be used to reproduce the measured response approximately by modal superposition and identify the role of the four time‐varying modes. Flexible side columns sustained very large drift demands simultaneously in the two transverse directions and suffered significant but not heavy, damage at lap‐splices. RC‐jacketing of the flexible side columns practically eliminated the static eccentricity between the floor centres of twist and mass as well as the torsional response. Inelastic time‐history analysis with point‐hinge member models, using as elastic stiffness the secant stiffness to yielding and neglecting post‐ultimate‐strength cyclic degradation of resistance in members with plain bars and poor detailing, predicted fairly well the response until the peak displacements and member deformations occurred. After that, it underestimated displacement peaks and the lengthening of the apparent period and missed the gradual drifting of the response towards a permanent offset. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The classical normal mode method of determining response is extremely useful for practical calculations, but depends upon the damping matrix being orthogonal with respect to the modal vectors. Approximations that allow the method to be used when this condition is not satisfied have been suggested; the simplest approach is to neglect off-diagonal terms in the triple matrix product formed from the damping and modal matrices. In this paper the errors in response caused by this approximation are determined for several simple structures for a wide range of damping parameters and different types of excitation. Based on these results a criterion, relating modal damping and natural frequencies, is formulated; if this is satisfied, the errors in response caused by this diagonalization procedure are within acceptable limits.  相似文献   

7.
To foster the use of seismic isolation in structures, existing guidelines strive to formulate design methods which are simple and accessible to non‐specialized engineers. On the other hand, not all of the simplifying provisions adopted by the norms can be said to have been adequately tested to provide a consistent level of accuracy. The study attempts, in particular, to elucidate three aspects related to the methods of analysis for linear or linearized isolated bridges on which little or no advice can be found in the norms. The first one is about the way one has to account for the fact that damping matrices of isolated bridges are never of proportional type. The present study demonstrates, through a number of typical applications, that classical modal analysis, using real modes and the diagonal terms of the modal damping matrices, still provide a fully acceptable approximation. The second and third aspects are related to the use of linearization expressions extended to the analysis of hyperstatic bridges. Parametric analyses conducted in the study show that none of the formulas in current use gives satisfactory results for both the displacement and the force responses, a requirement for a reliable design of an isolated bridge. How to use the equivalent linear parameters, and in particular the isolators equivalent damping ratios, in the context of a modal analysis, is treated next. This problem is seldom if ever mentioned in the norms where at most a formula is given for constructing modal damping ratios based on the damping ratios of the isolators. A rational, approximate procedure is discussed in this paper, applicable to all types of structures with non‐proportional damping, which in the case of bridges can be shown to reduce to the expression provided in the Japanese bridge design guidelines. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
混合结构的阻尼矩阵不满足经典阻尼条件,导致传统的模态叠加法无法适用。复阻尼理论无法适用于时域计算,其自由振动响应中存在发散现象。针对混合结构的阻尼矩阵非比例性和复阻尼理论的时域发散性,基于频域等效原则构建了求解Rayleigh阻尼系数的数学优化模型,进而得到与复阻尼理论等效的Rayleigh阻尼运动方程。算例分析表明:依据位移时程响应和结构等效阻尼比可证明Rayleigh阻尼运动方程的正确性。基于本文研究成果,等效复阻尼理论的混合结构Rayleigh阻尼运动方程可直接采用模态叠加法,结合其确定的结构等效阻尼比,为混合结构的振型分解反应谱法提供理论依据。  相似文献   

9.
One widespread problem in damping estimation of high-rise buildings is the neglect of structural modal directions, which may induce beating in measured dynamic responses along building geometric axes and thereby induce errors in damping estimations to some extent. Based on a proposed two degrees of freedom (2-DOF) simulation model, the effects of neglecting the modal directions on damping estimate are systematically investigated. The results show that the angular differences between the modal directions and the building geometric axes, as well as the frequency difference between the involved modes, both have significant effects on the damping estimate of high-rise buildings. This paper proposes a spectral method to determine the modal directions of high-rise buildings and further validate this method by an analysis of full-scale measurements from four skyscrapers. The damping ratios estimated based on the responses along the identified modal directions are more accurate than those based on those measured along the building geometric axes. Furthermore, an empirical prediction model for damping ratio of high-rise buildings with heights over 200 m is proposed based on the field measured damping results of several buildings with consideration of the modal directions. The objective of this study is to improve the accuracy of damping estimation of high-rise buildings and therefore provide useful information for the structural design of future skyscrapers.  相似文献   

10.
Supplemental damping could mitigate the earthquake‐induced damage in buildings with asymmetric plan, known to be more vulnerable to damage than comparable symmetric‐plan buildings. This investigation aims to improve the understanding of how and why planwise distribution of fluid viscous dampers (FVDs) influences the response of linearly elastic, one‐storey, asymmetric‐plan systems. Starting with vibration mode shapes, we predict this influence on the modal damping ratios, and in turn on the individual modal responses and the total response. These predictions are confirmed by the computed responses, which demonstrated that the reduction in earthquake response of the system achieved by supplemental damping is strongly influenced by its planwise distribution, which is characterized by four parameters. Identified are asymmetric distributions of supplemental damping that are more effective in reducing the response compared to symmetric distribution. The percentage reduction achieved by a judiciously selected asymmetric distribution can be twice or even larger compared to symmetric distribution. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Output‐only system identification is developed here towards assessing current modal dynamic properties of buildings under seismic excitation. Earthquake‐induced structural response signals are adopted as input channels for two different Operational Modal Analysis (OMA) techniques, namely, a refined Frequency Domain Decomposition (rFDD) algorithm and an improved Data‐Driven Stochastic Subspace Identification (SSI‐DATA) procedure. Despite that short‐duration, non‐stationary, earthquake‐induced structural response signals shall not fulfil traditional OMA assumptions, these implementations are specifically formulated to operate with seismic responses and simultaneous heavy damping (in terms of identification challenge), for a consistent estimation of natural frequencies, mode shapes, and modal damping ratios. A linear ten‐storey frame structure under a set of ten selected earthquake base‐excitation instances is numerically simulated, by comparing the results from the two identification methods. According to this study, best up‐to‐date, reinterpreted OMA techniques may effectively be used to characterize the current dynamic behaviour of buildings, thus allowing for potential Structural Health Monitoring approaches in the Earthquake Engineering range.  相似文献   

12.
The equations of motion of a structure in undamped modal coordinates may have non-zero off-diagonal terms in the damping matrix. Although these terms are commonly neglected, studies have shown that they may have a significant influence on the response to dynamic loads. In this paper, two independent criteria are developed to determine when these damping terms will affect the structure's modal properties and response. It is found that even small off-diagonal damping values can be significant if the structure has closely spaced natural frequencies. To quantify and understand the influence of these damping terms, closed-form analytical expressions are derived for the modal properties and harmonic and stochastic response of structures with closely spaced natural frequencies. One conclusion is that off-diagonal damping terms will decrease a modal damping ratio for each pair of closely spaced modes. This is significant, since a response analysis performed by neglecting these off-diagonal terms will underestimate the true response.  相似文献   

13.
An alternative damping matrix that leads to classical normal modes and that depends explicitly on a set of prescribed modal damping ratios is presented. The alternative damping matrix can be thought of as a factorized Caughey series that allows for a simple explicit solution for the coefficients of the series and thus avoids the need to solve a potentially ill‐conditioned system of algebraic equations. The relation between the proposed damping matrix and Rayleigh, Caughey and modal damping matrices is examined. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Coupling between lateral and torsional motions may lead to much larger edge deformations in asymmetric-plan systems compared to systems with a symmetric plan. Supplemental viscous damping has been found to be effective in reducing deformations in the symmetric-plan system. This investigation examined how supplemental damping affects the edge deformations in asymmetric-plan systems. First, the parameters that characterize supplemental viscous damping and its plan-wise distribution were identified, and then the effects of these parameters on edge deformations were investigated. It was found that supplemental damping reduces edge deformations and that reductions by a factor of up three are feasible with proper selection of system parameters. Furthermore, viscous damping may be used to reduce edge deformations in asymmetric-plan systems to levels equal to or smaller than those in the corresponding symmetric-plan system. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
Diagonal damping matrices were computed for three systems which have non-proportional damping matrices. These diagonal damping matrices were computed on three bases, as follows: 1. After normalizing the equations of motion by the modal matrix, the diagonal terms are retained ignoring the non-diagonal terms. 2. Diagonal damping matrix is established by the optimization algorithm which minimizes the mean square error of the frequency response. 3. Diagonal damping is determined from the normalized differential equation by matching the peaks of the coupled and uncoupled system. The frequency responses for the three cases of one of the three systems are presented together with a comparison of the energy dissipation.  相似文献   

16.
This work presents a unified procedure for determining the natural frequencies, modal damping ratios and modal shapes of a structure from its ambient vibration, free vibration and earthquake response data. To evaluate the coefficient matrices of a state‐space model, the proposed procedure applies a subspace approach cooperating with an instrumental variable concept. The dynamic characteristics of a structure are determined from the coefficient matrices. The feasibility of the procedure is demonstrated through processing an in situ ambient vibration measurement of a five‐storey steel frame, an impulse response measurement of a three‐span continuous bridge, and simulated earthquake responses of five‐storey steel frames from shaking table tests. The excellent agreement of the results obtained herein with those published previously confirms the feasibility of the present procedure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
A procedure is presented to determine new modal combination rules (both CQC and SRSS) for non‐classically damped structures. The procedure presented in this paper does not need the solution of any complex eigenvalue problem, in contrast to other methods found in the literature. Thus, the modal combination rules presented here are easily applicable, even by those engineers who are unaccustomed to using complex algebra. Moreover, these formulations show the further advantage of requiring the response spectra only for the target damping ratio value. So the use of approximated formulae, necessary for passing from the response spectrum with the target damping ratio value to other ones, is avoided. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
研究了应用主动锚索控制装置控制相邻建筑地震响应的有效性。首先,建立了主动锚索-相邻建筑系统的运动方程;然后应用广义振型分析方法,寻求了主动锚索联结的相邻建筑的力学特性,特别是振型阻尼比;最后,在频率域内应用广义振型分析与虚拟激励相结合的方法,建立了主动锚索控制装置联结相邻建筑的随机地震响应的分析方法。应用本文建立的公式,我们编制了计算机程序,进行了广泛的参数研究,以评价控制装置的有效性,并确定最优传感器类型及控制装置参数。研究表明,如果应用速度传感器,并能适当地选择主动锚索控制器的参数,则可以显著地提高系统的振型阻尼比,减小两个结构的地震响应。  相似文献   

19.
There is no consensus at the present time regarding an appropriate approach to model viscous damping in nonlinear time‐history analysis of base‐isolated buildings because of uncertainties associated with quantification of energy dissipation. Therefore, in this study, the effects of modeling viscous damping on the response of base‐isolated reinforced concrete buildings subjected to earthquake ground motions are investigated. The test results of a reduced‐scale three‐story building previously tested on a shaking table are compared with three‐dimensional finite element simulation results. The study is primarily focused on nonlinear direct‐integration time‐history analysis, where many different approaches of modeling viscous damping, developed within the framework of Rayleigh damping are considered. Nonlinear direct‐integration time‐history analysis results reveal that the damping ratio as well as the approach used to model damping has significant effects on the response, and quite importantly, a damping ratio of 1% is more appropriate in simulating the response than a damping ratio of 5%. It is shown that stiffness‐proportional damping, where the coefficient multiplying the stiffness matrix is calculated from the frequency of the base‐isolated building with the post‐elastic stiffness of the isolation system, provides reasonable estimates of the peak response indicators, in addition to being able to capture the frequency content of the response very well. Furthermore, nonlinear modal time‐history analyses using constant as well as frequency‐dependent modal damping are also performed for comparison purposes. It was found that for nonlinear modal time‐history analysis, frequency‐dependent damping, where zero damping is assigned to the frequencies below the fundamental frequency of the superstructure for a fixed‐base condition and 5% damping is assigned to all other frequencies, is more appropriate, than 5% constant damping. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The classical response spectrum method continues to be the most popular approach for designing base‐isolated buildings, therefore avoiding computationally expensive nonlinear time‐history analyses. In this framework, a new method for the seismic analysis and design of building structures with base isolation system (BIS) is formulated and numerically validated, which enables one to overcome the main shortcomings of existing techniques based on the response spectrum method. The main advantages are the following: first, reduced computational effort with respect to an exact complex‐valued modal analysis, which is obtained through a transformation of coordinates in two stages, both involving real‐valued eigenproblems; second, effective representation of the damping, which is pursued by consistently defining different viscous damping ratios for the modes of vibration of the coupled BIS‐superstructure dynamic system; and third, ease of use, because a convenient reinterpretation of the combination coefficients leads to a novel damping‐adjusted combination rule, in which just a single response spectrum is required for the reference value of the viscous damping ratio. The proposed approach is specifically intended for design situations where (i) the dynamic behaviour of seismic isolators can be linearised and (ii) effects of nonproportional damping, as measured by modal coupling indexes, are negligible in the BIS‐superstructure assembly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号