首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extensive forced‐vibration testing programme has been carried out on an 84‐m concrete gravity dam located in northeastern Québec, Canada. The dam was subjected to a harmonic load on the crest in summer and severe winter conditions with temperatures ranging from ?10°C to ?15°C and a 1.0–1.5m ice cover. Acceleration and hydrodynamic frequency responses were obtained in different locations on the dam and in the reservoir. The main objective of the repeated tests was to investigate the effects of the ice cover on the dynamic behaviour of the dam–reservoir–foundation system, by comparing summer and winter results. Modifications in damping and resonance frequencies were observed, as well as an additional resonance that was attributed to an interaction of the dam with the ice cover. These findings provided a reliable and unique database for the investigations of dam–reservoir–foundation interaction and, in particular, the ice‐cover effects for dams located in northern regions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The available substructure method and computer program for earthquake response analysis of arch dams, including the effects of dam–water–foundation rock interaction and recognizing the semi‐unbounded size of the foundation rock and fluid domains, are extended to consider spatial variations in ground motions around the canyon. The response of Mauvoisin Dam in Switzerland to spatially varying ground motion recorded during a small earthquake is analyzed to illustrate the results from this analysis procedure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The characterization of the dynamic behavior of an arch dam, and its evolution throughout the structure's lifetime, provides important data for the safety control process. Forced vibration tests remain a reliable technique for this purpose. The Baixo Sabor dam is a 123 m high arch dam recently built in Portugal. Forced vibration tests were performed before and after the reservoir filling. Two techniques for forced vibration test are compared, discrete frequency scanning, the standard methodology, and continuous frequency scanning (sine sweep), a new proposed methodology, which allowed faster results without loss of precision. For the interpretation of test results two numerical models of the dam-reservoir-foundation system were built, and calibrated with the experimental data. A good match of numerical and experimental results was obtained for the six lowest frequencies and corresponding mode shapes.  相似文献   

4.
A smeared crack approach has been proposed to model the static and dynamic behavior of mass concrete in three‐dimensional space. The proposed model simulates the tensile fracture on the mass concrete and contains pre‐softening behavior, softening initiation, fracture energy conservation and strain rate effects under dynamic loads. The validity of the proposed model has been checked using the available experimental results under static and dynamic loads. The direct and indirect displacement control algorithms have been employed under incremental increasing static loads. It was found that the proposed model gives excellent results and crack profiles when compared with the available data under static loads. The Koyna Dam in India has been used to verify the dynamic behavior of the proposed model. It was found that the resulting crack profiles were in good agreement with the available experimental results. Finally, the Morrow Point Dam was analyzed, including the dam–reservoir interaction effects, to consider its non‐linear seismic behavior. It was found that the resulting crack profiles were in good agreement with the contour of maximum principal stresses and no numerical instability occurred during the analysis. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Inspired from the simplified single degree of freedom modeling approach used in the preliminary design of concrete gravity dams, a pseudo‐dynamic testing method was devised for the seismic testing of a concrete gravity dam section. The test specimen was a 1/75 scaled section of the 120‐m‐high monolith of the Melen Dam, one of the highest concrete gravity dams to be built in Turkey. The single degree of freedom idealization of the dam section was validated in the first stage of the study using numerical simulations including the dam–reservoir interaction. Afterwards, pseudo‐dynamic testing was conducted on the specimen using three ground motions corresponding to different hazard levels. Lateral displacement and base shear demands were measured. The crack propagation at the base of the dam was monitored with the measurement of the crack widths and the base sliding displacements. After the pseudo‐dynamic loading, a static pushover test was conducted to determine the reserve capacity of the test specimen. Despite major cracking at the base of the monolith, neither significant sliding nor a stability problem that might jeopardize the stability of the dam was observed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
There are several alternatives to evaluate seismic damage‐cracking behavior of concrete arch dams, among which damage theory is the most popular. A more recent option introduced for this purpose is plastic–damage (PD) approach. In this study, a special finite element program coded in 3‐D space is developed on the basis of a well‐established PD model successfully applied to gravity dams in 2‐D plane stress state. The model originally proposed by Lee and Fenves in 1998 relies on isotropic damaged elasticity in combination with isotropic tensile and compressive plasticity to capture inelastic behaviors of concrete in cyclic or dynamic loadings. The present implementation is based on the rate‐dependent version of the model, including large crack opening/closing possibilities. Moreover, with utilizing the Hilber–Hughes–Taylor time integration scheme, an incremental–iterative solution strategy is detailed for the coupled dam–reservoir equations while the damage–dependent damping stress is included. The program is initially validated, and then, it is employed for the main analyses of the Koyna gravity dam in a 3‐D modeling as well as a typical concrete arch dam. The former is a major verification for the further examination on the arch dam. The application of the PD model to an arch dam is more challenging because the governing stress condition is multiaxial, causing shear damage to become more important than uniaxial states dominated in gravity dams. In fact, the softening and strength loss in compression for the damaged regions under multiaxial cyclic loadings affect its seismic safety. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents the experimental programme and results of a continuous ambient vibrations recording programme carried out on the 250 m arch dam of Mauvoisin. This project follows a series of previous measurements completed for seven different water levels. An automated system was set up on the dam and the ambient vibrations were recorded twice daily for a period of 6 months. Frequency shifts were tracked throughout the testing period and the effects of the varying water level were identified. The results confirmed the behaviour observed in previous ambient‐ and forced‐vibration tests. The added‐mass effects are overcome by the stiffening of the dam due to increasing hydrostatic pressure for lower reservoir levels. This trend is then reversed for higher water levels. Any temperature‐related effects were not identified. The experimental techniques are briefly described and the frequency identification process and its limitations are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
The important effects of bottom sediments on the seismic response of arch dams are studied in this paper. To do so, a three‐dimensional boundary element model is used. It includes the water reservoir as a compressible fluid, the dam and unbounded foundation rock as viscoelastic solids, and the bottom sediment as a two‐phase poroelastic domain with dynamic behaviour described by Biot's equations. Dynamic interaction among all those regions, local topography and travelling wave effects are taken into account. The results obtained show the important influence of sediment compressibility and permeability on the seismic response. The former is associated with a general change of the system response whereas the permeability has a significant influence on damping at resonance peaks. The analysis is carried out in the frequency domain considering time harmonic excitation due to P and S plane waves. The time‐domain results obtained by using the Fourier transform for a given earthquake accelerogram are also shown. The possibility of using simplified models to represent the bottom sediment effects is discussed in the paper. Two alternative models for porous sediment are tested. Simplified models are shown to be able to reproduce the effects of porous sediments except for very high permeability values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
A direct finite element method for nonlinear earthquake analysis of 2‐dimensional dam–water–foundation rock systems has recently been presented. The analysis procedure uses standard viscous‐damper absorbing boundaries to model the semi‐unbounded foundation‐rock and fluid domains and specifies the seismic input as effective earthquake forces at these boundaries. Presented in this paper is a generalization of the direct finite element method with viscous‐damper boundaries to 3‐dimensional dam–water–foundation rock systems. Step‐by‐step procedures for determining the effective earthquake forces starting from a ground motion specified at a control point on the foundation‐rock surface is developed, and several numerical examples are computed and compared with independent benchmark solutions to demonstrate the effectiveness of the analysis procedure for modeling 3‐dimensional systems.  相似文献   

10.
Based on the dynamic theory for saturated porous media by Biot (Journal of the Acoustical Society of America 1956; 28 : 168–178), a numerical model is presented to analyse the reflection behaviours of reservoir sediment and compared with those from the visco‐elastic model. It is concluded that the two models give very similar results of reflection coefficient α within the frequency range of interest. Then, using the two models, the change of the reflection coefficients α with various sedimentation parameters and excitation frequencies are studied in detail. The results are further used in the analysis of response functions of hydro‐dynamic pressures on, and structural displacements of the Xiang Hong Dian arch dam, for which some results from a field vibration test are available. It appears that effects of water compressibility with sediment reflection on hydro‐dynamic pressures and structural response are not significant for this specific case. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
以南京大胜关长江大桥为研究对象,建立其车桥耦合动力分析模型,采用逐步积分法求解动力方程,以动力系数作评判标准,讨论行车速度、阻尼比、行车方向、车辆数、吊杆布置方式等参数对动力性能的影响.结果表明:动力系数随行车速度的提高而增大;吊杆索力的动力系数与无应力索长成反比;随着阻尼比的增大,各构件动力系数均有所降低;同向行驶时...  相似文献   

12.
本文将随机振动的虚拟激励法与拱坝-地基动力相互作用FE-BE-IBE时域模型结合,发展了一个可以考虑多维随机地震动作用下的拱坝动力响应计算模型,并用Monte Garlo方法对模型进行了验证,计算结果表明,地震动分量的相关性对结构的动力响应存在一定影响,合理考虑地震动各方向分量的相关性可以更好地计算实际地震作用下的拱坝动力响应。  相似文献   

13.
钢管混凝土拱桥弹性动力稳定性能研究   总被引:2,自引:2,他引:0  
基于运动稳定性理论,以1座实际的钢管混凝土肋拱桥为例,利用改进的时间冻结法(动态特征值法)求得结构在地震波作用下的动态稳定系数时间历程,研究了不同输入方向和阻尼比对动力稳定临界系数的影响,并探讨了地震波作用下拱桥的稳定安全系数,对钢管混凝土拱桥的弹性动力稳定性能作出了评估。  相似文献   

14.
混凝土重力坝整体动力特性研究   总被引:1,自引:0,他引:1  
结合金安桥混凝土重力坝工程的抗震性能研究,对大坝按整体模型和分缝模型分别进行了动力试验。试验中考虑了横缝和动水压力的影响,得到了整个坝体空库、满库时的空间动力特性。并对大坝进行了三维有限元动力分析,与模型试验结果进行了比较,两者符合得较好。  相似文献   

15.
The purpose of this study is to investigate the effect of retrofitting dynamic characteristics of a damaged laboratory arch dam model, subsequently repaired with high-strength structural mortar and strengthened with composite carbon fiber reinforced polymer. This study constructed in laboratory conditions is a prototype arch dam–reservoir–foundation model. Five test cases of ambient vibration on the arch dam model illustrate the changes in dynamic characteristics: natural frequency, mode shape, and damping ratio, before and after retrofitting. The ambient vibration tests collected data from the dam body during vibrations by natural excitations which provided small impacts and response signals from sensitivity accelerometers placed at crest points. Enhanced Frequency Domain Decomposition Method in the frequency domain extracts the experimental dynamic characteristics. At the end of the study, experimentally identified dynamic characteristics obtained from all test cases have been compared with each other. Apparently, after the retrofitting, the natural frequencies of the dam body increased considerably, demonstrating that the retrofitting, including repairing and strengthening is very effective on the flashback of initial dynamic characteristics.  相似文献   

16.
Conventional seismic analysis of gravity dams assumes that the behaviour of the dam–water–soil system can be represented using a 2‐D model since dam vertical contraction joints between blocks allow them to vibrate independently from each other. The 2‐D model assumes the reservoir to be infinite and of constant width, which is not true for certain types of reservoirs. In this paper, a boundary element method (BEM) model in the frequency domain is used to investigate the influence of the reservoir geometry on the hydrodynamic dam response. Important conceptual conclusions about the dam–reservoir system behaviour are obtained using this model. The results show that the reservoir shape influences the seismic response of the dam, making it necessary to account for 3‐D effects in order to obtain accurate results. In particular, the 3‐D pressure and displacement responses can be substantially larger than those computed with the 2‐D model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
It is important to estimate the influence of layered soil in soil–structure interaction analyses. Although a great number of investigations have been carried out on this subject, there are very few practical methods that do not require complex calculations. In this paper, a simple and practical method for estimating the horizontal dynamic stiffness of a rigid foundation on the surface of multi‐layered soil is proposed. In this method, waves propagating in the soil are traced using the conception of the cone model, and the impulse response function can be calculated directly and easily in the time domain with a good degree of accuracy. The characteristics of the impedance, that is the transformed value to the frequency domain of the obtained impulse response, are studied using two‐ to four‐layered soil models. The cause of the fluctuation of impedance is expressed clearly from its relation to reflected waves from the lower layer boundary in the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
This paper proposes a dynamic centrifuge model test method for the accurate simulation of the behaviours of a liquid storage tank with different types of foundations during earthquakes. The method can be used to determine the actual stress conditions of a prototype storage‐tank structure. It was used in the present study to investigate the soil‐foundation‐structure interactions of a simplified storage tank under two different earthquake motions, which were simulated using a shaking table installed in a centrifuge basket. Three different types of foundations were considered, namely, a shallow foundation, a slab on the surface of the ground connected to piles and a slab with disconnected piles. The test results were organised to compare the ground surface and foundation motions, the slab of foundation and top of structure motions and the horizontal and vertical motions of the slab, respectively. These were used to establish the complex dynamic behaviours of tank models with different foundations. The effects of soil–foundation–structure interaction with three foundation conditions and two different earthquake motions are focused and some important factors, that should be considered for future designs are also discussed in this research. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Groundwater interacts with surface water features nearly in all types of landscapes. Understanding these interactions has practical consequences on the quantity and quality of water in either system, because the depletion or contamination of one of the systems will eventually affect the other one. Many studies have shown that the use of heat as natural tracer in conjunction with water level measurements is an effective method for estimating water flow (fluxes) between groundwater and surface water. A number of studies have explored the effects of spatial and temporal variability of groundwater–surface water flux exchanges using temperature and water level measurements; however, the effect of temporal resolution of water level and temperature data on estimating flux remains unexplored. Therefore, this study investigated the effect of temporal resolution of input data on temporal variation of groundwater–surface water flux exchanges. To this end, we calibrated a variably saturated two‐dimensional groundwater flow and heat transport model (VS2DH) at hourly and daily time scales using temperatures measured at multiple depths below the riverbed of the Zenne River, located at a well‐known Belgian brownfield site. Results of the study showed that the computed water flux through the streambed ranged between ?32 mm/day and +25 mm/day using the hourly model and from ?10 mm/day to ?37 mm/day using the daily model. The hourly model resulted in detecting reversal of flow direction inducing short‐term surface water flow into the streambed. However, such events were not captured if daily temperature and water level measurements were used as input. These findings have important implications for understanding contaminant mass flux and their attenuation in the mixing zone of groundwater and surface water. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
An evaluation of the wave passage effects on the relevant dynamic properties of structures with flexible foundation is presented. A simple soil–structure system similar to that used in practice to take into account the inertial interaction effects by the soil flexibility is studied. The kinematic interaction effects due to non‐vertically incident P, SV and Rayleigh waves are accounted for in this model. The effective period and damping of the system are obtained by establishing an equivalence between the interacting system excited by the foundation input motion and a replacement oscillator excited by the free‐field ground motion. In this way, the maximum structural response could be estimated from standard free‐field response spectra using the period and damping of the building modified by both the soil flexibility and the travelling wave effects. Also, an approximate solution for the travelling wave problem is examined over wide ranges of the main parameters involved. Numerical results are computed for a number of soil–structure systems to identify under which conditions the effects of wave passage are important. It comes out that these effects are generally negligible for the system period, but they may significantly change the system damping since the energy dissipation within the soil depends on both the wave radiation and the diffraction and scattering of the incident waves by the foundation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号