首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RS‐tempQ Model ( r each– s cale t emporary flow biogeochemical model) is a conceptual model that can describe the hydrologic, sediment transport and biogeochemical processes of temporary rivers at the reach scale. The model takes into account the expansion–contraction of the inundated area of the river. It simulates the sediment transport and the nutrient fluxes that are transferred to the coastal area due to the first flash flood and during extreme rain events. The RS‐tempQ Model simulates the in‐stream processes during the wet and dry cycles as the river corridor expands and contracts. The model was used to assess and quantify the hydrologic and geochemical processes occurring in a temporary river reach (Krathis River) in Greece. Since the conventional gauging techniques cannot measure the flow in rivers that are split into small braided streams, discharge measurements could not be obtained in order to calibrate and verify the model. Other field measurements such as infiltration losses and sediment accumulation were used for model calibration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In order to determine material fluxes in rivers by non‐contact methods, it is essential to estimate river discharge first. Although developed and optimized for open oceans, satellite radar altimetry has the potential to monitor variations in the levels of inland waters such as lakes and rivers. Making use of the concept of an ‘assumed reference point’, we converted TOPEX/Poseidon satellite altimetry data on water level variations in the Yangtze River (Changjiang) to ‘water level’ data. We also used ‘water level’ time‐series data and in situ river discharge to establish a rating curve. By use of the rating curve, we converted data on ‘water level’ derived from 7 years (1993–99) of TOPEX/Poseidon data to actual river discharge. On the basis of statistical correlation between discharge and nutrient concentration data collected in 1987–88 and in 1998–99, we estimated the total amounts of freshwater and material fluxes transferred by the Yangtze River during the 1990s. The result reveals that an overall, but very slight, increase in freshwater and material fluxes occurred during the 1990s. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
《Continental Shelf Research》2007,27(10-11):1422-1446
The coastal areas of the Southern North Sea (SNS) experience eutrophication problems resulting from freshwater nitrogen (N) and phosphorus (P) inputs from rivers. In particular, massive blooms of Phaeocystis colonies occur in Belgian waters. In this region, water masses result from the mixing of Western Channel (WCH) waters transported through the Straits of Dover with nutrient-rich freshwater from the Scheldt, the Rhine and Meuse, the Seine, the Thames and other smaller rivers. However, the relative contribution of the WCH and each river to the inorganic nutrient pool and the impact on the phytoplankton community structure (diatoms and Phaeocystis) are not known. In order to effectively manage the eutrophication problems, it is necessary to know: (i) the relative contribution of the WCH and of each river impacting the region and (ii) the relative effect of a N and/or P nutrient reduction on the Phaeocystis blooms. To answer these questions, sensitivity tests (1% nutrient reduction) and nutrient reduction scenarios (50% nutrient reduction) have been performed with a three-dimensional (3D) coupled physical–biogeochemical model (MIRO&CO-3D).MIRO&CO-3D results from the coupling of the COHERENS 3D hydrodynamic model with the ecological model MIRO. The model has been set up for the region between 48.5°N, 4°W and 52.5°N, 4.5°E and run to simulate the annual cycle of carbon, inorganic and organic nutrients, phytoplankton (diatoms and Phaeocystis), bacteria and zooplankton (microzooplankton and copepods) in the SNS under realistic forcing (meteorology and river inputs) for the period 1991–2003. The relative contribution of the WCH waters and of the different rivers on the inorganic nutrient pool available for phytoplankton (diatoms and Phaeocystis) growth is assessed by decreasing by 1% the nutrient (dissolved inorganic nitrogen, DIN and inorganic phosphate, PO4) inputs from the WCH and from, respectively, the Scheldt (and smaller Belgian rivers), the Rhine/Meuse and the Seine (and smaller French rivers) [sensitivity tests]. The relative role of N and P reduction on the diatoms/Phaeocystis distribution is further explored by simulations with 50% reduction of the total (inorganic and organic) N and total P river inputs [nutrient reduction scenarios]. These scenarios allow assessing the impact of the expected 50% reduction of river nutrient inputs resulting from the implementation of nutrient reduction policy.Results of the sensitivity tests suggest that the impact of a 1% reduction of river nutrient inputs on surface nutrients (DIN and PO4) over the Belgian Exclusive Economic Zone (EEZ) area is similar for the Seine and the Scheldt, which are in turn greater than for the Rhine. However, a hypothetical 1% reduction of nutrient input from the WCH boundary would have a higher impact than for the Scheldt. The impact of nutrient reduction is higher for DIN than for PO4 whatever the river (contrary to the WCH). DIN is more sensitive to riverine nutrient reduction because the rivers are over enriched in DIN compared to PO4. The sensitivity tests suggest also that a PO4 river input reduction would result in a N:P increase and a DIN river input reduction would result in a N:P decrease but that a combined (PO4 and DIN) input reduction would reduce the N:P ratio at sea.From 50% nutrient reduction scenarios, model results suggest that a total P reduction would induce a significant decrease of diatoms and a small (coast) to negligible (offshore) decrease of Phaeocystis biomass. On the contrary, a total N reduction would induce a significant decrease of Phaeocystis biomass and a moderate increase of diatoms. When N and P river input reductions are combined, the model predicts a significant decrease of Phaeocystis biomass in Belgian waters and a significant decrease of diatom biomass in the coastal waters and a small increase offshore. A future management plan aiming at Phaeocystis reduction should thus prioritise N reduction.  相似文献   

4.
Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment‐associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment‐associated chemical constituent concentrations for (1) baseline, (2) land‐use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment‐associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment‐associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges: Atlantic rivers (49%) > Pacific rivers (40%) > Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources. Almost all the elevated sediment‐associated chemical concentrations found in conterminous US coastal rivers are lower than worldwide averages. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We report here the first direct measurements of nutrient fluxes via groundwater discharge into the Upper Gulf of Thailand. Nutrient and standard oceanographic surveys were conducted during the wet and dry seasons along the Chao Phraya River, Estuary and out into the Upper Gulf of Thailand. Additional measurements in selected near-shore regions of the Gulf included manual and automatic seepage meter deployments, as well as nutrient evaluations of seepage and coastal waters. The river transects characterized the distribution of biogeochemical parameters in this highly contaminated urban environment. Seepage flux measurements together with nutrient analyses of seepage fluids were used to estimate nutrient fluxes via groundwater pathways for comparison to riverine fluxes.  相似文献   

6.
For the first time, a dedicated release of the hydrology and water use model WaterGAP3, has been developed to spatially explicit calculate hydrological fluxes within river basins draining into the Mediterranean and Black Sea. The main differences between the new regional version of the global WaterGAP3 model and the previously applied global version WaterGAP2 can be found in the spatial resolution, snow modeling, and water use modeling. Comparison with observations shows that WaterGAP3 features a more realistic representation of modeled river runoff and inflow into both seas. WaterGAP3 generates more inflow to both seas than WaterGAP2. In the WaterGAP3 simulation, contributions to the total runoff into the Black Sea from individual discharge regions show in general a good agreement to climatology derived runoff, but lesser importance of Georgian rivers for the basin's water. After the successful model validation WaterGAP3 has been applied to correct estimates of seawater mass derived from the GRACE gravity mission and to account for freshwater inflow into both basins. The performance of the WaterGAP3 regional solution has been evaluated by comparing the seawater mass derived from GRACE corrected for the leakage of continental hydrology, to an independent estimate derived from steric-corrected satellite altimetry with steric correction from regional oceanographic models. The agreement is higher in the Mediterranean Sea than in the Black Sea. Results using WaterGAP3 and WaterGAP2 are not significantly different. However the agreement with the altimetry-derived results is higher using WaterGAP2, due to the smaller annual amplitude of the continental hydrology leakage from WaterGAP3. We conclude that the regional model WaterGAP3 is capable of realistically quantifying water mass variation in the region, further developments have been identified.  相似文献   

7.
Much of the sediment and nutrient load to the Great Barrier Reef (GBR) lagoon happens during over bank floods, when discharge can be significantly underestimated by standard river gauges. This paper assesses the potential need for a flood load correction for 28 coastal rivers that discharge into the GBR lagoon. For each river, daily discharge was divided into flows above and below a 'flood' threshold to calculate the mean annual percentage flow above this threshold. Most GBR rivers potentially need a flood load correction as over 15% of their mean annual flow occurs above the minor flood level; only seven rivers need little/no correction as their flood flows were less than 5% of the mean annual flow. Improved assessment of the true load of materials to the GBR lagoon would be an important contribution to the monitoring and reporting of progress towards Reef Plan and associated marine load targets.  相似文献   

8.
In coastal rivers, tides can propagate for tens to hundreds of kilometres inland beyond the saltwater line. Yet the influence of tides on river–aquifer connectivity and solute transport in tidal freshwater zones (TFZs) is largely unknown. We estimate that along the TFZ of White Clay Creek (Delaware, USA), 11% of river water exchanges through tidal bank storage zones. Additional hyporheic processes such as flow through bedforms likely contribute even more exchange. The turnover length associated with tidal bank storage is 150 km, on the order of turnover lengths for all hyporheic exchange processes in non‐tidal rivers of similar size. Based on measurements at a transect of piezometers located 17 km from the coast, tides exchange 0.36 m3 of water across the banks and 0.86 m3 across the bed per unit river length. Exchange fluxes range from ?1.66 to 2.26 m day?1 across the bank and ?0.84 to 1.88 m day?1 across the bed. During rising tide, river water infiltrates into the riparian aquifer, and the downstream transport rate in the channel is low. During falling tide, stored groundwater is released to the river, and the downstream transport rate in the channel increases. Tidal bank storage zones may remove nutrients or other contaminants from river water and attenuate nutrient loads to coasts. Alternating expansion and contraction of aerobic zones in the riparian aquifer likely influence contaminant removal along flow paths. A clear need exists to understand contaminant removal and other ecosystem services in TFZs and adopt best management practices to promote these ecosystem services. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This study aims to examine the changing patterns of Changjiang material fluxes, which are influenced by anthropogenic activities, and the resultant modifications to the coastal and shelf oceanographic conditions, and to propose future research about the effect of these changes on the estuarine and shelf ecosystem. Within the catchment basin of the Changjiang River, the construction of more than 48,000 dams has caused significant sediment discharge reduction, together with modifications to the timing of seasonal freshwater discharge. In the future, the mean freshwater discharge will decrease following the completion of the water-diverting project for water supply to northern China. At the same time, the riverine nutrient loadings (N and P) have increased due to the extensive use of chemical fertilizers and the large discharge of industrial wastewater and domestic sewage. These changes are modifying the oceanographic conditions of the estuarine and shelf waters. The flushing time for the river water becomes longer in wet seasons but shorter in dry seasons. An increase in salinity can be expected after the completion of the water-diverting project. Nutrient concentrations will be enhanced in the shelf waters. In contrast to the decrease in the suspended sediment concentration of the river water, field measurements have not shown well-defined patterns of changes within the estuary; nevertheless, net sediment accumulation and carbon burial rates would be reduced in the deltaic areas because of the reduced sediment discharge. Finally, increase in the nutrient input appears to enhance the primary production in the East China Sea region, which, in turn, may enhance the fishery catch.  相似文献   

10.
Winterwerp  Johan C.  Wang  Zheng Bing 《Ocean Dynamics》2013,63(11):1279-1292

This is Part I of two papers on man-induced regime shifts in small, narrow, and converging estuaries, with focus on the interaction between effective hydraulic drag, fine sediment import, and tidal amplification, induced by river engineering works, e.g., narrowing and deepening. In this part, a simple linear analytical model is derived, solving the linearized shallow water equations in exponentially converging tidal rivers. Distinguishing reflecting and non-reflecting conditions, a non-dimensional dispersion equation is derived which yields the real and imaginary wave numbers as a function of the estuarine convergence number and effective hydraulic drag. The estuarine convergence number describes the major geometrical features of a tidal river, e.g., intertidal area, convergence length, and water depth. This model is used in Part II analyzing the historical development of the tide in four rivers. Part I also presents a conceptual model on the response of tidal rivers to narrowing and deepening. It is argued that, upon the loss of intertidal area, flood-dominant conditions prevail, upon which fine sediments are pumped into the river, reducing its effective hydraulic drag. Then a snowball effect may be initiated, bringing the river into a hyper-turbid state. This state is self-maintaining because of entrainment processes, and favorable from an energetic point of view, and therefore highly stable. We may refer to an alternative steady state.

  相似文献   

11.
Increasing eutrophication in the coastal seas of China from 1970 to 2050   总被引:4,自引:0,他引:4  
We analyzed the potential for eutrophication in major seas around China: the Bohai Gulf, Yellow Sea and South China Sea. We model the riverine inputs of nitrogen (N), phosphorus (P) and silica (Si) to coastal seas from 1970 to 2050. Between 1970 and 2000 dissolved N and P inputs to the three seas increased by a factor of 2–5. In contrast, inputs of particulate N and P and dissolved Si, decreased due to damming of rivers. Between 2000 and 2050, the total N and P inputs increase further by 30–200%. Sewage is the dominant source of dissolved N and P in the Bohai Gulf, while agriculture is the primary source in the other seas. In the future, the ratios of Si to N and P decrease, which increases the risk of harmful algal blooms. Sewage treatment may reduce this risk in the Bohai Gulf, and agricultural management in the other seas.  相似文献   

12.
Water temperature is a key physical habitat determinant in lotic ecosystems as it influences many physical, chemical, and biological properties of rivers. Hence, a good understanding of the thermal regime of rivers and river heat fluxes is essential for effective management of water and fisheries resources. This study dealt with the modelling of river water temperature using a deterministic model. This model calculated the different heat fluxes at the water surface and from the streambed using different hydrometeorological conditions. The water temperature model was applied on two watercourses of different sizes and thermal characteristics, but within a similar meteorological region, namely, the Little Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada). The model was also applied using microclimate data, i.e. meteorological conditions within the river environment (1–2 m above the water surface), for a better estimation of river heat fluxes. Water temperatures at different depths within the riverbed were also used to estimate the streambed heat fluxes. Results showed that microclimate data were essential to get accurate estimates of the surface heat fluxes. Results also showed that for larger river systems, the surface heat fluxes were generally the dominant component of the heat budget with a correspondingly smaller contribution from the streambed. As watercourses became smaller and groundwater contribution more significant, the streambed contribution became important. For instance, approximately 80% of the heat fluxes occurred at the surface for Catamaran Brook (20% from the streambed) whereas the Little Southwest Miramichi River showed values closer to 90% (10% from the streambed). As was reported in previous studies, the solar radiation input dominated the contribution to the heat gain at 63% for Catamaran Brook and 89% for Little Southwest Miramichi River. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.

This is Part II of two papers on man-induced regime shifts in small, narrow, and converging estuaries, with focus on the interaction between effective hydraulic drag, fine sediment import, and tidal amplification, induced by river engineering works, e.g., narrowing and deepening. Paper I describes a simple linear analytical model for the tidal movement in narrow, converging estuaries and a conceptual model on the response of tidal rivers to river engineering works. It is argued that such engineering works may set in motion a snowball effect bringing the river into an alternative steady state. Part II analyses the historic development in tidal range in four rivers, e.g., the Elbe, Ems, Loire, and Scheldt, all in northwest Europe; data are available for many decades, up to a century. We use the analytical model derived in Part I, showing that the effective hydraulic drag in the Ems and Loire has decreased considerably over time, as anticipated in Part I. We did not find evidence that the Upper Sea Scheldt is close to its tipping point towards hyperturbid conditions, but risks have been identified. In the Elbe, tidal reflections against the profound step in bed level around Hamburg seem to have affected the tidal evolution in the last decades. It is emphasized that the conceptual picture sketched in these papers is still hypothetical and needs to be validated, for instance through hind-cast modeling of the evolution of these rivers. This will not be an easy task, as historical data for a proper calibration of the models required are scarce.

  相似文献   

14.
A pilot Coastal Observatory has been established in Liverpool Bay which integrates (near) real-time measurements with coupled models and whose results are displayed on the web. The aim is to understand the functioning of coastal seas, their response to natural forcing and the consequences of human activity. The eastern Irish Sea is an apt test site, since it encompasses a comprehensive range of processes found in tidally dominated coastal seas, including near-shore physical and biogeochemical processes influenced by estuarine inflows, where both vertical and horizontal gradients are important. Applications include hypernutrification, since the region receives significantly elevated levels of nutrient inputs, shoreline management (coastal flooding and beach erosion/accretion), and understanding present conditions to predict the impact of climate change (for instance if the number and severity of storms, or of high or low river flows, change). The integrated measurement suite which started in August 2002 covers a range of space and time scales. It includes in situ time series, four to six weekly regional water column surveys, an instrumented ferry, a shore-based HF radar system measuring surface currents and waves, coastal tide gauges and visible and infra-red satellite data. The time series enable definition of the seasonal cycle, its inter-annual variability and provide a baseline from which the relative importance of events can be quantified. A suite of nested 3D hydrodynamic, wave and ecosystem models is run daily, focusing on the observatory area by covering the ocean/shelf of northwest Europe (at 12-km resolution) and the Irish Sea (at 1.8 km), and Liverpool Bay at the highest resolution of 200 m. The measurements test the models against events as they happen in a truly 3D context. All measurements and model outputs are displayed freely on the Coastal Observatory website () for an audience of researchers, education, coastal managers and the public.  相似文献   

15.
To set accurate critical values for the protection of lakes and coastal areas, it is crucial to know the seasonal variation of nutrient exports from rivers. This article presents an improved method for estimating export and in‐stream nutrient retention and its seasonal variation. For 13 lowland river catchments in Western Europe, inputs to surface water and exports were calculated on a monthly basis. The catchments varied in size (21 to 486 km2), while annual in‐stream retention ranged from 23 to 84% for N and 39 to 72% for P. A novel calculation method is presented that quantifies monthly exports from lowland rivers based on an annual load to the river system. Inputs in the calculation are annual emission to the surface waters, average monthly river discharge, average monthly water temperature and fraction of surface water area in the catchment. The method accounts for both seasonal variation of emission to the surface water and seasonal in‐stream retention. The agreement between calculated values and calibration data was high (N: r2 = 0·93; p < 0·001 and P: r2 = 0·81; p < 0·001). Validation of the model also showed good results with model efficiencies for the separate catchments ranging from 31 to 95% (average 76%). This indicates that exports of nitrogen and phosphorus on a monthly basis can be calculated with few input data for a range of West European lowland rivers. Further analysis showed that retention in summer is higher than that in winter, resulting in lower summer nutrient concentrations than that calculated with an average annual input. This implies that accurate evaluation of critical thresholds for eutrophication effects must account for seasonal variation in hydrology and nutrient loading. Our quantification method thus may improve the modelling of eutrophication effects in standing waters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The Sepik River is a major contributor of water, sediment and associated organic loads to the coastal waters of northern New Guinea and the Bismarck Sea. We compare dissolved and particulate organic carbon data from September 1997 during an extremely dry El Nino year with those from 1996, 1999 and 2000 during La Nina wet season discharges. Estimated Sepik River flux of DOC is 3.2×1010 mol yr−1 and POC is 1.1×1011 mol yr−1. The estimates for total river nutrient fluxes to the sea are 1.1×1010 mol yr−1 for nitrogen and 4.6×108 mol yr−1 for phosphorus. The Sepik DOC flux is about equal to that combined from all four major rivers that enter the Gulf of Papua on the south coast of PNG. The Sepik inorganic PIC flux is low (1.4×108 mol yr−1) as the river does not drain carbonate soils. With a narrow continental shelf, and strong coastal currents, much of this exported material is available for long distance transport into the coastal Bismarck Sea and beyond.  相似文献   

17.
Man-induced regime shifts in small estuaries—II: a comparison of rivers   总被引:3,自引:2,他引:1  
This is Part II of two papers on man-induced regime shifts in small, narrow, and converging estuaries, with focus on the interaction between effective hydraulic drag, fine sediment import, and tidal amplification, induced by river engineering works, e.g., narrowing and deepening. Paper I describes a simple linear analytical model for the tidal movement in narrow, converging estuaries and a conceptual model on the response of tidal rivers to river engineering works. It is argued that such engineering works may set in motion a snowball effect bringing the river into an alternative steady state. Part II analyses the historic development in tidal range in four rivers, e.g., the Elbe, Ems, Loire, and Scheldt, all in northwest Europe; data are available for many decades, up to a century. We use the analytical model derived in Part I, showing that the effective hydraulic drag in the Ems and Loire has decreased considerably over time, as anticipated in Part I. We did not find evidence that the Upper Sea Scheldt is close to its tipping point towards hyperturbid conditions, but risks have been identified. In the Elbe, tidal reflections against the profound step in bed level around Hamburg seem to have affected the tidal evolution in the last decades. It is emphasized that the conceptual picture sketched in these papers is still hypothetical and needs to be validated, for instance through hind-cast modeling of the evolution of these rivers. This will not be an easy task, as historical data for a proper calibration of the models required are scarce.  相似文献   

18.
Man-induced regime shifts in small estuaries—I: theory   总被引:3,自引:2,他引:1  
This is Part I of two papers on man-induced regime shifts in small, narrow, and converging estuaries, with focus on the interaction between effective hydraulic drag, fine sediment import, and tidal amplification, induced by river engineering works, e.g., narrowing and deepening. In this part, a simple linear analytical model is derived, solving the linearized shallow water equations in exponentially converging tidal rivers. Distinguishing reflecting and non-reflecting conditions, a non-dimensional dispersion equation is derived which yields the real and imaginary wave numbers as a function of the estuarine convergence number and effective hydraulic drag. The estuarine convergence number describes the major geometrical features of a tidal river, e.g., intertidal area, convergence length, and water depth. This model is used in Part II analyzing the historical development of the tide in four rivers. Part I also presents a conceptual model on the response of tidal rivers to narrowing and deepening. It is argued that, upon the loss of intertidal area, flood-dominant conditions prevail, upon which fine sediments are pumped into the river, reducing its effective hydraulic drag. Then a snowball effect may be initiated, bringing the river into a hyper-turbid state. This state is self-maintaining because of entrainment processes, and favorable from an energetic point of view, and therefore highly stable. We may refer to an alternative steady state.  相似文献   

19.
Submarine groundwater discharge (SGD) introduces solute and nutrients to the global oceans, resulting in considerable nutrient cycling and dynamics in the coastal areas. We have conducted high‐resolution, spatio‐temporal, lunar tidal cycle patterns and variability of discharged solute/nutrient assessment to get an overview of seasonal nutrient flux to the Bay of Bengal in eastern parts of the Indian subcontinent. Whereas the premonsoon season SGD was found to be dominant in the marine influence (M‐SGD), the postmonsoon season was found to be predominated by the terrestrial component of SGD (T‐SGD), extending from coast to near offshore. The solute fluxes and redox transformation were found to be extensively influenced by tidal and diurnal cycles, overlapping on seasonal patterns. We have assessed the possible role of SGD‐associated solute/nutrient fluxes and their discharge mechanisms, and their associated temporal distributions have severe implications on the biological productivity of the Bay of Bengal. The estimated annual solute fluxes, using the average end‐member concentration of the SGD‐associated nutrients, were found to be 240 and 224 mM·m?2·day?1 for NO3? and Fetot, respectively. Together with huge freshwater flux from the Himalayan and Peninsular Indian rivers, the SGD has considerable influence on the bay water circulation, stratification, and solute cycling. Thus, the observation from this study implies that SGD‐associated nutrient flux to the Bay of Bengal may function as a nutrient sink, which might influence the long‐term solute/nutrient flux along the eastern coast of India.  相似文献   

20.
Within the hydrodynamic modelling community, it is common practice to apply different modelling systems for coastal waters and river systems. Whereas for coastal waters 3D finite difference or finite element grids are commonly used, river systems are generally modelled using 1D networks. Each of these systems is tailored towards specific applications. Three-dimensional coastal water models are designed to model the horizontal and vertical variability in coastal waters and are less well suited for representing the complex geometry and cross-sectional areas of river networks. On the other hand, 1D river network models are designed to accurately represent complex river network geometries and complex structures like weirs, barrages and dams. A disadvantage, however, is that they are unable to resolve complex spatial flow variability. In real life, however, coastal oceans and rivers interact. In deltaic estuaries, both tidal intrusion of seawater into the upstream river network and river discharge into open waters play a role. This is frequently approached by modelling the systems independently, with off-line coupling of the lateral boundary forcing. This implies that the river and the coastal model run sequentially, providing lateral discharge (1D) and water level (3D) forcing to each other without the possibility of direct feedback or interaction between these processes. An additional disadvantage is that due to the time aggregation usually applied to exchanged quantities, mass conservation is difficult to ensure. In this paper, we propose an approach that couples a 3D hydrodynamic modelling system for coastal waters (Delft3D) with a 1D modelling system for river hydraulics (SOBEK) online. This implies that contrary to off-line coupling, the hydrodynamic quantities are exchanged between the 1D and 3D domains during runtime to resolve the real-time exchange and interaction between the coastal waters and river network. This allows for accurate and mass conserving modelling of complex coastal waters and river network systems, whilst the advantages of both systems are maintained and used in an optimal and computationally efficient way. The coupled 1D–3D system is used to model the flows in the Pearl River Delta (Guangdong, China), which are determined by the interaction of the upstream network of the Pearl River and the open waters of the South China Sea. The highly complex upstream river network is modelled in 1D, simulating river discharges for the dry and wet monsoon periods. The 3D coastal model simulates the flow due to the external (ocean) periodic tidal forcing, the salinity distribution for both dry and wet seasons, as well as residual water levels (sea level anomalies) originating from the South China Sea. The model is calibrated and its performance extensively assessed against field measurements, resulting in a mean root mean square (RMS) error of below 6% for water levels over the entire Pearl River Delta. The model also represents both the discharge distribution over the river network and salinity transport processes with good accuracy, resolving the discharge distribution over the main branches of the river network within 5% of reported annual mean values and RMS errors for salinity in the range of 2 ppt (dry season) to 5 ppt (wet season).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号