首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
As integral parts of du Toit’s (1927) “Samfrau Geosyncline”, the Sauce Grande basin–Ventana foldbelt (Argentina) and Karoo basin–Cape foldbelt (South Africa) share similar paleoclimatic, paleogeographic, and paleotectonic aspects related to the Late Paleozoic tectono-magmatic activity along the Panthalassan continental margin of Gondwanaland. Late Carboniferou-earliest Permian glacial deposits were deposited in the Sauce Grande (Sauce Grande Formation) and Karoo (Dwyka Formation) basins and Falkland–Malvinas Islands (Lafonia Formation) during an initial (sag) phase of extension. The pre-breakup position of the Falkland (Malvinas) Islands on the easternmost part of the Karoo basin (immediately east of the coast of South Africa) is supported by recent paleomagnetic data, lithofacies associations, paleoice flow directions and age similarities between the Dwyka and the Lafonia glacial sequences. The desintegration of the Gondwanan Ice Sheet (GIS) triggered widespread transgressions, reflected in the stratigraphic record by the presence of inter-basinally correlatable, open marine, fine-grained deposits (Piedra Azul Formation in the Sauce Grande basin, Prince Albert Formation in the Karoo basin and Port Sussex Formation in the Falkland Islands) capping glacial marine sediments. These early postglacial transgressive deposits, characterised by fossils of the Eurydesma fauna and Glossopteris flora, represent the maximum flooding of the basins. Cratonward foreland subsidence was triggered by the San Rafael orogeny (ca. 270 Ma) in Argentina and propogated along the Gondwanan margin. This subsidence phase generated sufficient space to accommodate thick synorogenic sequences derived from the orogenic flanks of the Sauce Grande and Karoo basins. Compositionally, the initial extensional phase of these basins was characterized by quartz-rich, craton-derived detritus and was followed by a compressional (foreland) phase characterized by a paleocurrent reversal and dominance of arc/foldbelt-derived material. In the Sauce Grande basin, tuffs are interbedded in the upper half of the synorogenic, foldbelt-derived Tunas Formation (Early–early Late? Permian). Likewise, the first widespread appearance of tuffs in the Karoo basin is in the Whitehill Formation, of late Early Permian (260?Ma) age. Silicic volcanism along the Andes and Patagonia (Choiyoi magmatic province) peaked between the late Early Permian and Late Permian. A link between these volcanics and the consanguineous airborne tuffs present in the Sauce Grande and Karoo basins is suggested on the basis of their similar compositions and ages.  相似文献   

2.
An Early Permian glacial diamictite forms a distinctive unit within the Falkland Islands sedimentary succession and two aspects of its significance have recently been serendipitously enhanced. Fossil discoveries in exotic limestone clasts bear on palaeogeography, whilst a series of mineral‐exploration borehole cores have allowed a detailed study of the sedimentary record of deglaciation that followed deposition of the diamictite. Statistical analysis of reflectance and XRF core‐scanning data has identified likely Milankovitch periodicities and enabled tentative time‐scale modelling. The ‘icehouse to greenhouse’ transition appears to have spanned approximately 1.2 million years, with waning cycles of re‐advance superimposed on overall glacial retreat. The new results play into a long‐debated geological paradox: although the Falkland Islands are now proximal to the South Atlantic coastline of South America, their geology bears an uncanny resemblance to that of the Cape Fold Belt and Karoo Basin in South Africa. This puzzled the geological pioneers, but became readily explicable when first continental drift and then plate tectonics were invoked to reconstruct the break‐up of the Gondwana supercontinent—although the details remain controversial. One of the key stratigraphical correlation levels throughout the major fragments of southern Gondwana—South Africa, South America, Antarctica and Australia—is the glacigenic deposit left behind by the extensive, Late Carboniferous to Early Permian regional glaciation; in the Falkland Islands it is designated the Fitzroy Tillite Formation.  相似文献   

3.
Late Palaeozoic glaciation in Australia, discovered over a century ago, is now known to have covered a large part of the continent. In South Australia, tillite and outwash debris lie upon clearly striated pavements within glacial valleys, and show that ice sheets with valley tongues moved northward from sources now occupied by deep ocean south of the continent. These glaciers reached into the Cooper, Arckaringa, and Pedirka Basins at the end of the Carboniferous and laid down patches of till in the Early Permian, now preserved largely in the subsurface. In Tasmania, an ice sheet waxed in the latest Carboniferous from sources to the west of the island, and deposited till and “drop‐stones” into fossiliferous marine strata until well into the Late Permian. In Victoria, the ice cap laid down till on a striated floor, and here and there sequences of outwash, including boulder pavements. In New South Wales, continental glaciation expanded eastward to the sea early in the Permian, and left a record intercalated with volcanics and coal beds into the Late Permian. Bordering the Tamworth Trough of northern New South Wales, and occurring also in the highlands of New England, alpine glaciers left a record in the form of striated stones and dropstones, in very thick sequences of fluviatile, lacustrine, and marine clastic sediments. The mountains existed in Middle and early Late Carboniferous times, and were largely worn down to gentle relief when continental glaciers expanded northward in the Early Permian. A non‐glacial interval at the end of the Carboniferous therefore probably occurred in New South Wales. In Queensland, alpine glaciers occupied mountains at the western rim of the Bowen Basin at the end of the Carboniferous. Large blocks carried by icebergs from glaciers of unknown locations were dropped into Lower and Upper Permian strata of the Bowen Basin as well. In Western Australia Early Permian ice centres were located on the Yilgarn Block, east of the Perth Basin, on the Pilbara Block southwest of the Canning Basin, and on the Kimberley Block. Evidence for this glaciation consists mostly of ice‐rafted debris and fluvial‐glacial and glacial‐marine strata that reached as far north as the Bonaparte Gulf Basin.

The rapid growth northward of continental glaciers in Australia near the end of the Carboniferous corresponds with a rapid shift of palaeolatitude as judged from Irving's palaeomagnetic studies. The ice sheet grew quickly upon upland areas when Gondwanaland moved to a near polar position and the unfrozen Palaeo‐Pacific lay near at hand to provide an abundant source of moisture.  相似文献   

4.
《Earth》2009,94(3-4):47-76
At least six glaciations are purported to have affected North Africa and the Middle East region over the last one billion years, including two in the Cryogenian (Neoproterozoic), Hirnantian (Late Ordovician), Silurian, Carboniferous and Early Permian events. The sedimentary record associated with these glaciations, together with the intensity to which each has been investigated, is highly variable. As hydrocarbon exploration proceeds aggressively across the North Africa and Middle East regions, we review the relationship between glaciation and hydrocarbon accumulations.With the exception of Oman, and locally Egypt, which were tectonically active both during the Neoproterozoic and Early Palaeozoic all glaciations took place along an essentially stable passive continental margin. During the Neoproterozoic, two glaciations are recognised, referred to as older and younger Cryogenian glaciations respectively. Both of these Cryogenian events are preserved in Oman; only the younger Cryogenian has been reported in North Africa in Mauritania and Mali at the flanks of the Taoudenni Basin. The process of initial deglaciation in younger Cryogenian glaciations resulted in incision, at least locally producing large-bedrock palaeovalleys in Oman, and the deposition of glacial diamictites, gravels, sandstones and mudstones. As deglaciation progressed “cap carbonates” were deposited, passing vertically into shale with evidence for deposition in an anoxic environment. Hence, younger Cryogenian deglaciation may be associated with hydrocarbon source rock deposits.Hirnantian (Late Ordovician) glaciation was short lived (< 0.5 Myr) and affected intracratonic basins of Mauritania, Morocco, Algeria, Libya, Egypt and Saudi Arabia. The organisation of the glacial sedimentary record is considered to be controlled at the basin-scale by the location of fast-flowing ice streams active during glacial maxima, and by the processes of meltwater release during glacial recession. In these latter phases, subglacial tunnel valley networks were cut at or near the ice margin. These tunnel valleys were filled in two main phases. The initial phase was characterised by debris flow release, whereas during later phases of ice retreat a range of glaciofluvial, shallow glaciomarine to shelf deposits were laid down, depending on the water depth at the ice front. Production of linear accumulations of sediment, parallel to the ice front, also occurred between tunnel valleys at the grounding line. In Arabia, the geometry of these features may have been influenced by local tectonic uplift. As glaciogenic reservoirs, Hirnantian deposits are already of great economic significance across central North Africa. Therefore, an appreciation of the processes of ice sheet growth and decay provides significant insights into the controls on large-scale heterogeneities within these sediments, and in analogue deposits produced by glaciations of different ages.Deglacial, Early Silurian black shale represents the most important Palaeozoic source rock across the region. Existing models do not adequately explain the temporal and spatial development of anoxia, and hence of black shale/deglacial source rocks. The origins of a palaeotopography previously invoked as the primary driver for this anoxia is allied to a complex configuration of palaeo-ice stream pathways, “underfilled” tunnel valley incisions, glaciotectonic deformation structures and re-activation of older crustal structures during rebound. A putative link with the development of Silurian glaciation in northern Chad is suggested. Silurian glaciation appears to have been restricted to the southern Al Kufrah Basin in the eastern part of North Africa, and was associated with the deposition of boulder beds. Equivalent deposits are lacking in shallow marine deposits in neighbouring outcrop belts.Evidence for Carboniferous–Permian glaciation is tentative in the eastern Sahara (SW Egypt) but well established on the Arabian Peninsula in Oman and more recently in Saudi Arabia. Pennsylvanian–Sakmarian times saw repeated glaciation–deglaciation cycles affecting the region, over a timeframe of about 20 Myr. Repeated phases of deglaciation produced a complex stratigraphy consisting, in part, of structureless sandstone intervals up to 50 m thick. Some of these sandstone intervals are major hydrocarbon intervals in the Omani salt basins. Whilst studies of the Hirnantian glaciation can provide lessons on the causes of large-scale variability within Carboniferous–Permian glaciogenic reservoirs, additional factors also influenced their geometry. These include the effects of topography produced during Hercynian orogenesis and the mobilisation and dissolution of the Precambrian Ara Salt. Deglacial or interglacial lacustrine shale, with abundant palynomorphs, is also important. Whilst both Cryogenian intervals and the Hirnantian–Rhuddanian deglaciation resulted in the deposition of glaciomarine deposits, Carboniferous–Permian deglaciation likely occurred within a lacustrine setting. Hence, compared to shales of other glacial epochs, the source rock potential of Carboniferous–Permian deglacial deposits is minimal.  相似文献   

5.
This paper presents a model of late‐glacial and post‐glacial deposition for the late‐Neogene sedimentary succession of the Archipelago Sea in the northern Baltic Sea. Four genetically related facies associations are described: (i) an ice‐proximal, acoustically stratified draped unit of glaciolacustrine rhythmites; (ii) an onlapping basin‐fill unit of rotated rhythmite clasts in an acoustically transparent to chaotic matrix interpreted as debris‐flow deposits; (iii) an ice‐distal, acoustically stratified to transparent, draped unit of post‐glacial lacustrine, weakly laminated to homogeneous deposits; and (iv) an acoustically stratified to transparent unit of brackish‐water, organic‐rich sediment drifts. The debris‐flow deposits of the unit 2 pass laterally into slide scars that truncate the unit 1; they are interpreted to result from a time interval of intense seismic activity due to bedrock stress release shortly after deglaciation of the area. Ice‐berg scouring and gravitational failure of oversteepened depositional slopes may also have contributed to the debris‐flow deposition. Comparisons to other late‐Neogene glaciated basins, such as the Hudson Bay or glacial lakes formed along the Laurentide ice sheet, suggest that the Archipelago Sea succession may record development typical for the deglaciation phase of large, low relief, epicontinental basins. The Carboniferous–Permian glacigenic Dwyka Formation in South Africa may provide an ancient analogue for the studied succession. Chronological control for the studied sediments is provided by the independent palaeomagnetic and AMS‐14C dating methods. In order to facilitate dating of the organic‐poor early post‐glacial deposits of the northern Baltic Sea, the 10 000 year long Lake Nautajärvi palaeomagnetic reference chronology ( Ojala & Saarinen, 2002 ) is extended by 1200 years.  相似文献   

6.
U–Pb dating and Hf-isotope provenance analysis of detrital zircons from the glaciogenic lower Permian Grant Group of the Canning Basin indicate sources principally from basement terranes in central Australia, with subordinate components from terranes to the south and north. Integrating these data with field outcrop and subsurface evidence for ice sheets, including glacial valleys and striated pavements along the southern and northern margins of the basin, suggests that continental ice sheets extended over several Precambrian upland areas of western and central Australia during the late Paleozoic ice age (LPIA). The youngest zircons constrain the maximum age for contemporaneous ice sheet development to the late Carboniferous (Kasimovian), whereas palynology provides a minimum age of early Permian (Asselian–Sakmarian). Considering the palynological age of the Grant Group within the context of regional and global climate proxies, the main phase of continental ice sheet growth was possibly in the Ghzelian–Asselian. The presence of ice sheets older than Kasimovian in western and central Australia remains difficult to prove given a regional gap in deposition possibly covering the mid-Bashkirian to early Ghzelian within the main depocentres and even larger along basin margins, and the poor evidence for older Carboniferous glacial facies. There is also no evidence for extensive glacial facies younger than mid-Sakmarian in this region as opposed to eastern Australia where the youngest regional glacial phase was Guadalupian.  相似文献   

7.
The Late Carboniferous–Early Permian Itararé Group is a thick glacial unit of the Paraná Basin. Five unconformity-bounded sequences have been defined in the eastern outcrop belt and recognized in well logs along 400 km across the central portion of the basin. Deglaciation sequences are present in the whole succession and represent the bulk of the stratigraphic record. The fining-upward vertical facies succession is characteristic of a retrogradational stacking pattern and corresponds to the stratigraphic record of major ice-retreat phases. Laterally discontinuous subglacial tillites and boulder beds occur at the base of the sequences. When these subglacial facies are absent, deglaciation sequences lie directly on the basal disconformities. Commonly present in the lowermost portions of the deglaciation sequences, polymictic conglomerates and cross-bedded sandstones are generated in subaqueous proximal outwash fans in front of retreating glaciers. The overlying assemblage of diamictites, parallel-bedded and rippled sandstones, and Bouma-like facies sequences are interpreted as deposits of distal outwash fan lobes. The tops of the deglaciation sequences are positioned in clay-rich marine horizons that show little (fine-laminated facies with dropstones) or no evidence of glacial influence on the deposition and likely represent periods of maximum ice retreat.  相似文献   

8.
The Majunga Basin is located in the northwestern part of Madagascar with a N45–60°E trending axis. It was filled by almost exclusively continental Karoo Supergroup sediments, which are Permian to Early Jurassic in age, and by younger sequences, mainly marine, that were deposited from the Middle Jurassic to the present.The Karoo Basin geometry is deduced from the analysis of seismic sections. A central northeast trending horst is flanked by two sub-basins. Deposition of the Karoo sequences was controlled by these northeast trending faults. On the contrary, the Middle Jurassic to present sequences witness only a slight tilting of the basement towards the northwest.The development of the Majunga Basin includes, therefore, two successive stages. In the synrift episode, from Permian to Early Jurassic times, the sedimentation was syntectonic, controlled by synsedimentary faulting and the creation of a horst and graben extensive pattern. The postrift episode started during the Middle Jurassic.These two stages of the Majunga Basin development correspond to the geodynamic evolution recorded elsewhere in this part of the Gondwana.  相似文献   

9.
The glaciomarine model for deglaciation of the Irish Sea basin suggests that the weight of ice at the last glacial maximum was sufficient to raise relative sea‐levels far above their present height, destabilising the ice margin and causing rapid deglaciation. Glacigenic deposits throughout the basin have been interpreted as glaciomarine. The six main lines of evidence on which the hypothesis rests (sedimentology, deformation structures, delta deposits, marine fauna, amino‐acid ratios and radiocarbon dates) are reviewed critically. The sedimentological interpretation of many sections has been challenged and it is argued that subglacial sediments are common rather than rare and that there is widespread evidence of glaciotectonism. Density‐driven deformation associated with waterlain sediments is rare and occurs where water was ponded locally. Sand and gravel deposits interpreted as Gilbert‐type deltas are similarly the result of local ponding or occur where glaciers from different source areas uncoupled. They do not record past sea‐levels and the ad hoc theory of ‘piano‐key tectonics’ is not required to explain the irregular pattern of altitudes. The cold‐water foraminifers interpreted as in situ are regarded as reworked from Irish Sea sediments that accumulated during much of the late Quaternary, when the basin was cold and shallow with reduced salinities. Amino‐acid age estimates used in support of the glaciomarine model are regarded as unreliable. Radiocarbon dates from distinctive foraminiferal assemblages in northeast Ireland show that glaciomarine sediments do occur above present sea‐level, but they are restricted to low altitudes in the north of the basin and record a rise rather than a fall in sea‐level. It is suggested here that the oldest dates, around 17 000 yr BP, record the first Late Devensian (Weichselian) marine inundation above present sea‐level. This accords with the pattern but not the detail of recent models of sea‐level change. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The mass extinction that occurred at the end of the Permian Period approximately 251 Mya is widely accepted as the most devastating extinction event in Earth’s history. An estimated 75–90% of global diversity from both marine and terrestrial realms disappeared synchronously within at most one million and perhaps as little as 100,000 years. To date, most research has focused on the marine record and it is only recently that a few fully preserved terrestrial Permo-Triassic boundary sequences have been discovered. The main Karoo Basin of South Africa hosts several well-preserved non-marine Permo-Triassic boundary sequences that have been the focus of intensive research into the nature of the extinction and its possible causes. This study uses sedimentological and biostratigraphic data from boundary sequences near Bethulie in the southern Karoo Basin to make assumptions about the rates and timing of recovery of the terrestrial fauna in this portion of southern Gondwana after the extinction event. The biostratigraphic data gathered from 277 in situ vertebrate fossils allows us to define more accurately the temporal ranges of several taxa. These data also confirm a more precise extinction rate in this part of the basin of 54% of latest Permian vertebrate taxa, followed by the onset of a relatively rapid recovery, within an estimated 40–50 thousand years (based on the calculation of floodplain aggradation rates and compaction ratios) that included the origination of at least 12 new vertebrate taxa from amongst the survivors.  相似文献   

11.
The Late Westphalian to Artinskian glaciomarine deposits of the Karoo and Kalahari basins of southern Africa consist of massive and stratified diamictite, mudrock with ice-rafted material, sandstone, silty rhythmite, shale and subordinate conglomerate forming a cyclic succession recognizable across both basins. A complete cycle comprises a resistant basal unit of apparently massive diamictite overlain by softer, bedded stratified diamictite, sandstone and mudrock with a total thickness of as much as 350 m. Four major cycles are observed each separated by bounding surfaces. Lateral facies changes are present in some cycles. The massive diamictites formed as aprons and fans in front of the ice-grounding line, whereas the stratified diamictites represent more distal debris-flow fans. The sandstones originated in different environments as turbidite sands, small subaqueous outwash channel sands and delta front sands. The rhythmites and mudrock represent blanket deposits derived from turbid meltwater plumes. Cycles represent deglaciation sequences which formed during ice retreat phases caused by eustatic changes in the Karoo and Kalahari basins. Evidence for shorter-term fluctuation of the ice margin is present within the major advance-retreat cycles. Hardly any sediment was deposited during lowstand ice sheet expansion, whereas a deglaciation sequence was laid down during a sea-level rise and ice margin retreat with the volume of meltwater and sediment input depending on temporary stillstands of the ice margin during the retreat phase. The duration of the cycles is between 9 and 11 Ma suggesting major global tectono-eustatic events. Smaller cycles probably linked to orbital forcing were superimposed on the longer-term events. A sequence stratigraphic approach using the stacking of deglaciation sequences with the ice margin advance phases forming bounding surfaces, can be a tool in the framework analysis of ancient glaciomarine basin fills.  相似文献   

12.
The Gulf of Bothnia hosted a variety of palaeo‐glaciodynamic environments throughout the growth and decay of the last Fennoscandian Ice Sheet, from the main ice‐sheet divide to a major corridor of marine‐ and lacustrine‐based deglaciation. Ice streaming through the Bothnian and Baltic basins has been widely assumed, and the damming and drainage of the huge proglacial Baltic Ice Lake has been implicated in major regional and hemispheric climate changes. However, the dynamics of palaeo‐ice flow and retreat in this large marine sector have until now been inferred only indirectly, from terrestrial, peripheral evidence. Recent acquisition of high‐resolution multibeam bathymetry opens these basins up, for the first time, to direct investigation of their glacial footprint and palaeo‐ice sheet behaviour. Here we report on a rich glacial landform record: in particular, a palaeo‐ice stream pathway, abundant traces of high subglacial meltwater volumes, and widespread basal crevasse squeeze ridges. The Bothnian Sea ice stream is a narrow flow corridor that was directed southward through the basin to a terminal zone in the south‐central Bothnian Sea. It was activated after initial margin retreat across the Åland sill and into the Bothnian basin, and the exclusive association of the ice‐stream pathway with crevasse squeeze ridges leads us to interpret a short‐lived stream event, under high extension, followed by rapid crevasse‐triggered break‐up. We link this event with a c. 150‐year ice‐rafted debris signal in peripheral varved records, at c. 10.67 cal. ka BP. Furthermore, the extensive glacifluvial system throughout the Bothnian Sea calls for considerable input of surface meltwater. We interpret strongly atmospherically driven retreat of this marine‐based ice‐sheet sector.  相似文献   

13.
The Late Weichselian ice sheet of western Svalbard was characterized by ice streams and inter‐ice‐stream areas. To reconstruct its geometry and dynamics we investigated the glacial geology of two areas on the island of Prins Karls Forland and the Mitrahalvøya peninsula. Cosmogenic 10Be surface exposure dating of glacial erratics and bedrock was used to constrain past ice thickness, providing minimum estimates in both areas. Contrary to previous studies, we found that Prins Karls Forland experienced a westward ice flux from Spitsbergen. Ice thickness reached >470 m a.s.l., and warm‐based conditions occurred periodically. Local deglaciation took place between 16 and 13 ka. At Mitrahalvøya, glacier ice draining the Krossfjorden basin reached >300 m a.s.l., and local deglaciation occurred at c. 13 ka. We propose the following succession of events for the last deglaciation. After the maximum glacier extent, ice streams in the cross‐shelf troughs and fjords retreated, tributary ice streams formed in Forlandsundet and Krossfjorden, and, finally, local ice caps were isolated over both Prins Karls Forland and Mitrahalvøya and their adjacent shelves.  相似文献   

14.
Sediments of the Ordovician to Devonian Sinakumbe Group (∼210 m thick) and overlying Upper Carboniferous to Lower Jurassic Karoo Supergroup (∼4.5 km thick) were deposited in the mid-Zambezi Rift Valley Basin, southern Zambia.The Sinakumbe-Karoo succession represents deposition in a extensional fault-controlled basin of half-graben type. The basin-fill succession incorporates two major fining-upward cycles that resulted from major tectonic events, one event beginning with Sinakumbe Group sedimentation, possibly as early as Ordovician times, and the other beginning with Upper Karoo Group sedimentation near the Permo-Triassic boundary. Minor tectonic pulses occurred during deposition of the two major cycles. In the initial fault-controlled half-graben, a basin slope and alluvial fan system (Sikalamba Conglomerate Formation), draining southeastward, was apparently succeeded, without an intervening transitional facies, by a braided river system (Zongwe Sandstone Formation) draining southwestward, parallel to the basin margin. Glaciation followed by deglaciation resulted in glaciofluvial and glacio-lacustrine deposits of the Upper Carboniferous to Lower Permian Siankondobo Sandstone Formation of the Lower Karoo Group, and isostatic rebound eventually produced a broad flood plain on which the coal-bearing Lower Permian Gwembe Coal Formation was deposited. Fault-controlled maximum subsidence is represente by the lacustrine Upper Permian Madumabisa Mudstone Formation. Block-faulting and downwarping, probably due to the Gondwanide Orogeny, culminated with the introduction of large quantities of sediment through braided fluvial systems that overwhelmed and terminated Madumabisa Lake sedimentation, and is now represented by the Triassic Escarpment Grit and Interbedded Sandstone and Mudstone Formations of the Upper Karoo Group. Outpourings of basaltic flows in the Early Jurassic terminated Karoo sedimentation.  相似文献   

15.
The glacial hydrology of the meltwaters of the ice sheet during deglaciation in a large river basin has been reconstructed on the basis of heights of thresholds and saddles of bedrock topography, glaciofluvial accumulation forms (eskers, deltas and plains of sorted material) and erosional landforms (drainage channels and shorelines) as well as a few terminal moraines. The water level of glacial lake dropped in several stages. The lake existed and deglaciation took place before 9740±280 years B.P. The deglaciation took place at a much faster rate in the studied region than later in western Lapland.  相似文献   

16.
The Cordilleran Ice Sheet (CIS) covered much of the mountainous northwestern part of North America at least several times during the Pleistocene. The pattern and timing of its growth and decay are, however, poorly understood. Here, we present a reconstruction of the pattern of ice‐sheet retreat in central British Columbia at the end of the last glaciation based on a palaeoglaciological interpretation of ice‐marginal meltwater channels, eskers and deltas mapped from satellite imagery and digital elevation models. A consistent spatial pattern of high‐elevation (1600–2400 m a.s.l.), ice‐marginal meltwater channels is evident across central British Columbia. These landforms indicate the presence of ice domes over the Skeena Mountains and the central Coast Mountains early during deglaciation. Ice sourced in the Coast Mountains remained dominant over the southern and east‐central parts of the Interior Plateau during deglaciation. Our reconstruction shows a successive westward retreat of the ice margin from the western foot of the Rocky Mountains, accompanied by the formation and rapid evolution of a glacial lake in the upper Fraser River basin. The final stage of deglaciation is characterized by the frontal retreat of ice lobes through the valleys of the Skeena and Omineca Mountains and by the formation of large esker systems in the most prominent topographic lows of the Interior Plateau. We conclude that the CIS underwent a large‐scale reconfiguration early during deglaciation and was subsequently diminished by thinning and complex frontal retreat towards the Coast Mountains.  相似文献   

17.
Passchier, S., Laban, C., Mesdag, C.S. & Rijsdijk, K.F. 2010: Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea. Boreas, Vol. 39, pp. 633–647. 10.1111/j.1502‐3885.2009.00138.x. ISSN 0300‐9483. Changes in subglacial bed conditions through multiple glaciations and their effect on ice dynamics are addressed through an analysis of glacigenic sequences in the Upper Pleistocene stratigraphy of the southern North Sea basin. During Elsterian (MIS 12) ice growth, till deposition was subdued when ice became stagnant over a permeable substrate of fluvial sediments, and meltwater infiltrated into the bed. Headward erosion during glacial retreat produced a dense network of glacial valleys up to several hundreds of metres deep. A Saalian (MIS 6) glacial advance phase resulted in the deposition of a sheet of stiff sandy tills and terminal moraines. Meltwater was at least partially evacuated through the till layer, resulting in the development of a rigid bed. During the later part of the Saalian glaciation, ice‐stream inception can be related to the development of a glacial lake to the north and west of the study area. The presence of meltwater channels incised into the floors of glacial troughs is indicative of high subglacial water pressures, which may have played a role in the onset of ice streaming. We speculate that streaming ice flow in the later part of the Saalian glaciation caused the relatively early deglaciation, as recorded in the Amsterdam Terminal borehole. These results suggest that changing subglacial bed conditions through glacial cycles could have a strong impact on ice dynamics and require consideration in ice‐sheet reconstructions.  相似文献   

18.
Advance of the Late Weichselian (Valdaian) Scandinavian Ice Sheet (SIS) in northwestern Russia took place after a period of periglacial conditions. Till of the last SIS, Bobrovo till, overlies glacial deposits from the previous Barents and Kara Sea ice sheets and marine deposits of the Last Interglacial. The till is identified by its contents of Scandinavian erratics and it has directional properties of westerly provenance. Above the deglaciation sediments, and extra marginally, it is replaced by glaciofluvial and glaciolacustrine deposits. At its maximum extent, the last SIS was more restricted in Russia than previously outlined and the time of termination at 18-16 cal. kyr BP was almost 10 kyr delayed compared to the southwestern part of the ice sheet. We argue that the lithology of the ice sheets' substrate, and especially the location of former proglacial lake basins, influenced the dynamics of the ice sheet and guided the direction of flow. We advocate that, while reaching the maximum extent, lobe-shaped glaciers protruded eastward from SIS and moved along the path of water-filled lowland basins. Ice-sheet collapse and deglaciation in the region commenced when ice lobes were detached from the main ice sheet. During the Lateglacial warming, disintegration and melting took place in a 200-600 km wide zone along the northeastern rim of SIS associated with thick Quaternary accumulations. Deglaciation occurred through aerial downwasting within large fields of dead ice developed during successively detached ice lobes. Deglaciation led to the development of hummocky moraine landscapes with scattered periglacial and ice-dammed lakes, while a sub-arctic flora invaded the region.  相似文献   

19.
The Late Devensian (<20 ka BP) glacial geology of the Irish Sea Basin (4000 km2) is an event stratigraphy recording the entry of marine waters into a glacio-isostatically-depressed basin, and the rapid retreat of the Irish Sea Glacier as a tidewater ice margin. Marine limits occur up to 140 m O.D. Across much of the central basin, the ice margin was uncoupled from its bed exposing a subglacially-scoured topography to glaciomarine processes. The Irish Sea Glacier was a major drainage conduit of the last British Ice Sheet; calving of the marine ice margin resulted in fast flow (surging) of ice streams recorded by drumlin fields around the northern basin margin and tunnel valleys. Rapid evacuation of the basin may have stranded large areas of dead ice in peripheral zones (e.g. Cheshire/Shropshire Lowlands) and initiated the collapse of the ice sheet.Thick wedges of ice-contact glaciomarine sediments were deposited during ice retreat as morainal bank complexes by successive tidewater ice margins stabilized at pinning points around the Irish Sea coast. Where morainal banks occur on the seaward side of drumlin swarms there is a clear sequential relationship between rapid ice loss from calving ice margins, the development of fast flowing ice streams, drumlinization and the pumping of subglacial sediment to tidewater. Raised delta complexes are locally associated with marine limits along the high relief coastal margins of Wales, east central Ireland, and the Lake District. Associated valley infill complexes record downslope resedimentation of heterogenous sediments into the marine environment during ice retreat. Co-eval offshore deposits are represented by well-stratified glaciomarine complexes that infill a subglacially-scoured topography that shows networks of tunnel valleys. Glaciomarine mud drapes occur well to the south of the maximum limit of grounded ice in the basin (e.g. North Devon, Scilly Islands, Southern Ireland). The age of these distal sediments, previously mapped as pre-Devensian tills, is constrained by amino acid ratios.Basin rebound following deglaciation was rapid, with over 100 m recovery in 3 ka, and was followed by a low marine still stand. Peat, accumulating in offshore areas now as much as 55 m below sea level has been drowned by the postglacial eustatic rise in sea level.The glacio-sedimentary model identified in this paper, involving rapid ice retreat and related sedimentation triggered by rising relative sea level, suggests that isotatic downwarping is an important mechanism for deglaciating continental shelves.  相似文献   

20.
Late Pleistocene glacial and lake history of northwestern Russia   总被引:1,自引:0,他引:1  
Five regionally significant Weichselian glacial events, each separated by terrestrial and marine interstadial conditions, are described from northwestern Russia. The first glacial event took place in the Early Weichselian. An ice sheet centred in the Kara Sea area dammed up a large lake in the Pechora lowland. Water was discharged across a threshold on the Timan Ridge and via an ice-free corridor between the Scandinavian Ice Sheet and the Kara Sea Ice Sheet to the west and north into the Barents Sea. The next glaciation occurred around 75-70 kyr BP after an interstadial episode that lasted c. 15 kyr. A local ice cap developed over the Timan Ridge at the transition to the Middle Weichselian. Shortly after deglaciation of the Timan ice cap, an ice sheet centred in the Barents Sea reached the area. The configuration of this ice sheet suggests that it was confluent with the Scandinavian Ice Sheet. Consequently, around 70-65 kyr BP a huge ice-dammed lake formed in the White Sea basin (the 'White Sea Lake'), only now the outlet across the Timan Ridge discharged water eastward into the Pechora area. The Barents Sea Ice Sheet likely suffered marine down-draw that led to its rapid collapse. The White Sea Lake drained into the Barents Sea, and marine inundation and interstadial conditions followed between 65 and 55 kyr BP. The glaciation that followed was centred in the Kara Sea area around 55-45 kyr BP. Northward directed fluvial runoff in the Arkhangelsk region indicates that the Kara Sea Ice Sheet was independent of the Scandinavian Ice Sheet and that the Barents Sea remained ice free. This glaciation was succeeded by a c. 20-kyr-long ice-free and periglacial period before the Scandinavian Ice Sheet invaded from the west, and joined with the Barents Sea Ice Sheet in the northernmost areas of northwestern Russia. The study area seems to be the only region that was invaded by all three ice sheets during the Weichselian. A general increase in ice-sheet size and the westwards migrating ice-sheet dominance with time was reversed in Middle Weichselian time to an easterly dominated ice-sheet configuration. This sequence of events resulted in a complex lake history with spillways being re-used and ice-dammed lakes appearing at different places along the ice margins at different times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号