首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geomorphology》2002,42(1-2):1-24
The proposal that climate change can drive the uplift of mountain summits hinges on the requirement that glacial erosion significantly enhances the relief of a previously fluvially sculpted mountain range. We have tested this hypothesis through a systematic investigation of neighbouring glaciated and nonglaciated drainage basins on the eastern side of the Sierra Nevada, CA. We present a simple, objective method for investigating the relief structure of a drainage basin, which shows noticeable differences in the spatial distribution of relief between nonglaciated and glaciated basins. Glaciated basins on the eastern side of the Sierra Nevada have only ∼80 m greater mean geophysical relief than nonglaciated basins. This “extra” relief, though, is attributable principally to the larger size of the glaciated basins, as geophysical relief generally increases with basin size. The glaciers on this side of the range were only responsible for relief production if they substantially increased headward erosion rates into low relief topography, such as an elevated plateau, and thus enlarged previously fluvial basins. We carried out a preliminary morphometric analysis to elucidate the importance of this effect and found that the glaciers of the eastern Sierra Nevada may have eroded headward at considerably faster rates than rivers, but only when they were not obstructed from doing so by either competing larger glaciers in adjacent valleys or transfluent ice at the head of the basin. Our results also suggest that, in temperate regions, alpine glaciers are capable of eroding downward at faster rates than rivers above the equilibrium line altitude (ELA). Although we can rule out significant peak uplift in response to local relief production, in the special case of the Sierra Nevada the concentration of mass removal above the ELA could have contributed to flexural uplift at the edge of a tilting block.  相似文献   

2.
Despite spectacular landform evidence of a dominant role for glacial action in shaping landscapes under former northern hemisphere ice sheets, there is little quantitative evidence for rates and patterns of erosion associated with specific glaciations. Here we use cosmogenic nuclide data to assess rates of subglacial erosion underneath the Fennoscandian ice sheet. By testing whether there are remnant nuclide concentrations in samples taken from sites that include both relict areas and features and landscapes typically associated with vigorous glacial erosion, we can constrain the level and pattern of modification that resulted from the last glaciation. Cosmogenic 10Be and 36Cl data from the Torneträsk region confirm the temporal and spatial variability of glacial erosion suggested by geomorphological mapping. At some sites, glacial erosion estimates in what appear to be heavily scoured areas indicate erosion of only c. 2 ± 0.4 m of bedrock, based on cosmogenic nuclide inheritance. This implies that the generation of severely scoured terrain in this study area required multiple glaciations. The overall modification produced by ice sheets along glacial corridors may be more restricted than previously thought, or may have occurred preferentially during earlier Quaternary glacial periods.  相似文献   

3.
Despite spectacular landform evidence of a dominant role for glacial action in shaping landscapes under former northern hemisphere ice sheets, there is little quantitative evidence for rates and patterns of erosion associated with specific glaciations. Here we use cosmogenic nuclide data to assess rates of subglacial erosion underneath the Fennoscandian ice sheet. By testing whether there are remnant nuclide concentrations in samples taken from sites that include both relict areas and features and landscapes typically associated with vigorous glacial erosion, we can constrain the level and pattern of modification that resulted from the last glaciation. Cosmogenic 10Be and 36Cl data from the Torneträsk region confirm the temporal and spatial variability of glacial erosion suggested by geomorphological mapping. At some sites, glacial erosion estimates in what appear to be heavily scoured areas indicate erosion of only c. 2 ± 0.4 m of bedrock, based on cosmogenic nuclide inheritance. This implies that the generation of severely scoured terrain in this study area required multiple glaciations. The overall modification produced by ice sheets along glacial corridors may be more restricted than previously thought, or may have occurred preferentially during earlier Quaternary glacial periods.  相似文献   

4.
The Central Karakoram, which includes K2 in Pakistan, is one of the most rapidly rising areas on Earth and exhibits complex topography and extreme relief. Impressive valley fills and glacial landforms are present throughout the valleys. The dynamics of landscape evolution of the region are currently not well understood. Consequently, the landforms were mapped and assessed in the Skardu, Shigar, and Braldu valleys, to elucidate the spatio-temporal scale dependencies of surface processes active in the region. These valleys were examined using geomorphic field methods, remote sensing, geomorphometry, and terrestrial cosmogenic nuclides (TCNs) surface exposure dating. The glaciers in this region have oscillated considerably throughout the Late Quaternary, and four glacial stages have been recognized including at least six glacial advances. Surface processes readjusted after glacier retreat, and ubiquitous mass movements and catastrophic landsliding transported material from steep slopes to valley bottoms, while glaciofluvial meltwater and glacier outburst floods redistributed sediment down valley. Glacier geochronology and late Holocene ages of the outburst flood deposits indicate that landscape evolution has been dominated by glaciation and paraglaciation during the late Quaternary.  相似文献   

5.
Qiao Liu  ShiYin Liu 《寒旱区科学》2010,2(1):0051-0058
Englacial and subglacial drainage systems of temperate glaciers have a strong influence on glacier dynamics, glacier-induced floods, glacier-weathering processes, and runoff from glacierized drainage basins. Proglacial discharge is partly controlled by the geometry of the glacial drainage network and by the process of producing meltwater. The glacial-drainage system of some alpine glaciers has been characterized using a model based on proglacial discharge analysis. In this paper, we apply cross-correlation analysis to hourly hydro-climatic data collected from China's Hailuogou Glacier, a typical temperate glacier in Mt. Gongga, to study the seasonal status changes of the englacial and subglacial drainage systems by discharge-temperature (Q-T) time lag analy-sis. During early ablation season (April-May) of 2003, 2004 and 2005, the change of englacial and subglacial drainage system usually leads several outburst flood events, which are also substantiated by observing the leakage of supraglacial pond and cre-vasses pond water during field works in April, 2008. At the end of ablation season (October-December), the glacial-drainage net-works become less hydro-efficient. Those events are evidenced by hourly hydro-process near the terminus of Hailuogou Glacier, and the analysis of Q-T time lags also can be a good indicator of those changes. However, more detailed observations or experi-ments, e.g. dye-tracing experiment and recording borehole water level variations, are necessary to describe the evolutionary status and processes of englacial and subglacial drainage systems evolution during ablation season.  相似文献   

6.
刘鸽  张威  贺明月 《云南地理环境研究》2012,24(4):104-110,F0004
哈巴雪山(5 396 m)位于横断山脉中北段,与玉龙雪山(5 596 m)以金沙江相隔,受西南季风影响强烈。在哈巴雪山3 100 m以上保存第四纪冰川侵蚀与堆积地貌,主要沿哈巴雪山西北脊两侧分布。应用相对地貌法,对比邻近山地尤其是玉龙雪山,将哈巴雪山冰期系列初步划分为:倒数第二次冰期、末次冰期早期和末次冰盛期(LGM)。以哈巴雪山哈巴河谷的冰碛物为研究对象,其末端海拔高度在倒数第二次冰期、末次冰期早期、末次冰盛期分别约为3 100 m、3 500 m、3 900 m。应用TSAM法、MEIM法、CF法计算得出哈巴雪山古雪线高度在倒数第二次冰期、末次冰期早期、末次冰盛期分别为3 675 m、4 000 m、4 200 m。  相似文献   

7.
In southern South America, the maximum areal extent of ice during the Quaternary Period, the Greatest Patagonian Glaciation (GPG, [Mercer, J.H., 1983. Cenozoic glaciation in the southern hemisphere. Annual Reviews of Earth and Planetary Science 11, 99–132.]), occurred at 1.1 Ma and subsequent glaciations were overall less extensive. The GPG preceded global minimum temperatures and maximal volume of ice, which occurred in the last ~ 800 kyr, as recorded in the marine δ18O record. Significant modification of the drainage morphology of the southern Andes from a non-glaciated to glaciated landscape occurred throughout the Quaternary Period. We infer a non-climatic relationship between glacial modification of the mountains and the decreasing extent of ice and we discuss processes of landscape development that could have caused the trend. Specifically, these include modification of valleys, such as development from a V- to a U-shape, and lowering of mass-accumulation areas. Such changes would strongly affect glacial dynamics, the mass balance profile and mass-flux during succeeding glaciations, especially for low-gradient outlet glaciers occupying low areas. Other areas around Earth (at least where ice has been warm-based) also may exhibit a non-random trend of decreasing extent of ice with time, ultimately because of glacial erosion in the Quaternary Period.  相似文献   

8.
张威  刘锐  刘亮 《地理科学进展》2015,34(7):871-882
东亚季风气候控制下的山地与岛屿冰期历史、冰川规模及其分布规律对深入探讨中国第四纪冰川的发生机制以及全球变化具有重要的科学意义。最新的绝对年代结果显示,中国东部及东亚沿海岛屿山地(包括中国台湾岛,日本本州岛、北海道,朝鲜盖马高原,俄罗斯远东山地等)的冰期启动与消亡时间存在显著差异,但均严格控制在末次冰期范围之内,相当于深海氧同位素阶段(MIS)4至2,冰川的发育规模在末次冰期早中期(MIS3/4)大于末次冰盛期(MIS2)。对研究区各山地和岛屿末次冰期冰川发育的基本特点进行比较后,明确了影响东亚季风影响区冰川作用的主要控制性因素有:气候因素、构造因素、纬度因素和海陆位置等,它们控制着末次冰期冰川的发生、分布与期次。在此控制性因素影响下,东亚低海拔山地不会出现比末次冰期更早的冰川作用。  相似文献   

9.
Abstract Small glaciers have short response times to climate change and therefore offer a powerful means of climate monitoring. Glacier responses to climate, or their mass change, may be suggested by a change in the Equilibrium Line Altitude (ELA). However, regional climatic reconstructions have repeatedly neglected the importance of local variations in ELAs in preference for regional trends. For small glaciers close to the glaciation level, ignoring the importance of local topographic components in mass balance estimates may lead to erroneous climatic reconstructions. Of 510 small valley and cirque glaciers digitised across northern Scandinavia, 284 were objectively deemed suitable for inferring an ELA. The inferred ELA was derived from the median elevation and several local topographic variables using regression analysis. The glacier elevation, area, slope and aspect parameters were found to be the best predictors of the local ELA. ELA estimations improved from 77% up to 94% accuracy when topographic parameters for every grid‐cell within rasters representing glacier surfaces were computed rather than using subjective measurements from topographic maps. Regional ELA trend surfaces, interpolated between the local ELA values, differed in effectively representing the local variability, depending upon the distribution and accuracy of the local ELA values. A second‐order polynomial trend surface most accurately represented ELA variations across the study area, within the initial local measurement accuracy of ±100 m. It is concluded that current subjective topographic map‐based analyses are unlikely to be sufficiently accurate for predicting the regional ELA of small, sensitive and marginal glaciers, unless CIS‐based spatial analyses are made at a reasonable resolution.  相似文献   

10.
The glacial buzzsaw hypothesis suggests that efficient erosion limits topographic elevations in extensively glaciated orogens. Studies to date have largely focussed on regions where large glaciers (tens of kilometres long) have been active. In light of recent studies emphasising the importance of lateral glacial erosion in lowering peaks and ridgelines, we examine the effectiveness of small glaciers in limiting topography under both relatively slow and rapid rock uplift conditions. Four ranges in the northern Basin and Range, Idaho, Montana, and Wyoming, USA, were chosen for this analysis. Estimates of maximum Pleistocene slip rates along normal faults bounding the Beaverhead–Bitterroot Mountains (~ 0.14 mm y− 1), Lemhi Range (~ 0.3 mm y− 1) and Lost River Range (~ 0.3 mm y− 1) are an order of magnitude lower than those on the Teton Fault (~ 2 mm y− 1). We compare the distribution of glacial erosion (estimated from cirque floor elevations and last glacial maximum (LGM) equilibrium line altitude (ELA) reconstructions) and fault slip rate with three metrics of topography in each range: the along-strike maximum elevation swath profile, hypsometry, and slope-elevation profiles. In the slowly uplifting Beaverhead–Bitterroot Mountains, and Lemhi and Lost River Ranges, trends in maximum elevation parallel ELAs, independent of variations in fault slip rate. Maximum elevations are offset ~ 500 m from LGM ELAs in the Lost River Range, Lemhi Range, and northern Beaverhead–Bitterroot Mountains, and by ~ 350 m in the southern Beaverhead–Bitterroot Mountains, where glacial extents were less. The offset between maximum topography and mean Quaternary ELAs, inferred from cirque floor elevations, is ~ 350 m in the Lost River and Lemhi Ranges, and 200–250 m in the Beaverhead–Bitterroot Mountains. Additionally, slope-elevation profiles are flattened and hypsometry profiles show a peak in surface areas close to the ELA in the Lemhi Range and Beaverhead–Bitterroot Mountains, suggesting that small glaciers efficiently limit topography. The situation in the Lost River Range is less clear as a glacial signature is not apparent in either slope-elevation profiles or the hypsometry. In the rapidly uplifting Teton Range, the distribution of ELAs appears superficially to correspond to maximum topography, hypsometry, and slope-elevations profiles, with regression lines on maximum elevations offset by ~ 700 and ~ 350 m from the LGM and mean Quaternary ELA respectively. However, Grand Teton and Mt. Moran represent high-elevation “Teflon Peaks” that appear impervious to glacial erosion, formed in the hard crystalline bedrock at the core of the range. Glacier size and drainage density, rock uplift rate, and bedrock lithology are all important considerations when assessing the ability of glaciers to limit mountain range topography. In the northern Basin and Range, it is only under exceptional circumstances in the Teton Range that small glaciers appear to be incapable of imposing a fully efficient glacial buzzsaw, emphasising that high peaks represent an important caveat to the glacial buzzsaw hypothesis.  相似文献   

11.
Ice surface topography of a late Pleistocene glacier complex, herein named the Taylor River Glacier Complex (TRGC), was reconstructed on the basis of detailed mapping of glacial landforms combined with analyses of aerial photos and topographic maps. During the last glacial maximum (LGM), the TRGC covered an area of 215 km2 and consisted of five valley or outlet glaciers that were nourished by accumulation in cirques basins and/or upland ice fields.Equilibrium-line altitudes (ELAs) for the glaciers of the TRGC were estimated using the accumulation-area ratio method, assuming that ratio to be 0.65 ± 0.05. ELAs thus derived ranged from about 3275 to 3400 m, with a mean of 3340 ± 60 m. A degree-day model (DDM) was used to infer the climatic significance of the LGM ELA. With no appreciable differences in precipitation with respect to modern climate, the ELA implies that mean summer temperatures during the LGM were 7.6 °C cooler than today. The DDM was also used to determine the temperatures required to maintain steady-state mass balances for each of the reconstructed glaciers. The required reductions in summer temperature vary little about a mean of 7.1 °C. The sensitivity of these results to slight (± 25%) changes assumed for LGM precipitation are less than ± 0.5 °C. Even under an LGM climate in which precipitation is assumed to be substantially different (± 50%) than the present, mean summer temperatures must be on the order of 7.0 to 8.5 °C lower to depress equilibrium lines to LGM altitudes. The greater sensitivity of the ELA to changes in temperature suggests that glaciation in the region was driven more by decreases in summer temperature rather than increases in precipitation.  相似文献   

12.
13.
1 IntroductionIthas been accepted thatthe glacialextentin the early stage w as largerthan thatin the late stagein Eastern A sia during the Last G laciation and w as different from Europe and N orth A m erica(Li, 1992; Cui et al., 2000). M any scholars hav…  相似文献   

14.
New dates for last glacial cycle in Tibetan bordering mountains and in East Asia show the glacial extent during the early/middle (MIS3-4) stage is larger than that of the late stage (MIS2) in last glacial cycle. It is asynchronous with the Northern Hemisphere ice sheets maximum and changes in oceanic circulation that predominately control global climate. In research areas, three seasonal precipitation patterns control the accumulation and ablation of glaciers. The modes of the westerlies and the East Asian mountains/islands in and along the Pacific Ocean are favorable to glacier advance with mainly winter precipitation accumulation. There was a global temperature-decreasing phase in the middle stage (MIS3b, 54-44 ka BP), when the glacier extent was larger than that in Last Glaciation Maximum due to the low temperature combined with high moisture. It is revealed that the Quaternary glaciers not only evolved with localization, but also maybe with globalization. The latest studies show a fact that the developmental characteristics of glaciers in high mountains or islands along the western Pacific Ocean are not in accord with those inland areas. Therefore, it can be concluded that glacier development exhibits regional differences. The study validates the reasonableness of the asynchronous advance theory, and ascertains that both the synchronous and asynchronous advance/retreat of glaciers existed from 30 ka BP to 10 ka BP. It is not suitable to emphasize the synchronicity between global ice-volume and glacier change.  相似文献   

15.
云南千湖山第四纪冰川发育特点与环境变化   总被引:2,自引:0,他引:2  
千湖山(4249 m) 是横断山脉中段保存确切第四纪冰川遗迹的山地,受西南季风影响强烈。对于研究青藏高原边缘山地冰川发育与气候和构造之间的耦合关系具有十分重要的科学意义。在千湖山海拔3500 m以上保存着古冰川侵蚀与堆积地貌,冰川发育依托海拔4000~4200 m的夷平面及其支谷地形。冰川形态类型为小型的冰帽以及由冰帽边缘溢流进入山谷的山谷冰川。应用相对地貌法,光释光(OSL) 年代测试,本文确定千湖山地区的冰进系列:末次冰盛期(LGM,22.2±1.9 ka BP)、末次冰期中期(MIS3b,37.3±3.7 ka BP、45.6±4.3 ka BP45.6±4.3 ka BP)、末次冰期早期(MIS4)。千湖山冰川前进规模是MIS3b 阶段大于末次冰盛期,主要原因是末次冰期中期(MIS3b) 时本区气候相对湿润,而在末次冰盛期(MIS2) 时气候条件比较干燥。在总体相似的气候背景下,与横断山其它存在多期次冰川作用的山地相比,千湖山只发育末次冰期的冰川作用,其差异性说明该地区冰川发育主要受山体构造抬升控制。  相似文献   

16.
This paper explores how, and to what extent, a phase of relief-rejuvenation modifies the mode of surface erosion in an approximately 63 km2 drainage basin located at the northern border of the Swiss Alps (Luzern area). In the study area, the retreat of the Alpine glaciers at the end of the Last Glacial Maximum (LGM) caused base level to lower by approximately 80 m. The fluvial system adapted to the lowered base level by headward erosion. This is indicated by knickzones in the longitudinal stream profiles and by the continuous upstream narrowing of the width of the valley floor towards these knickzones. In the headwaters above these knickzones, processes are still to a significant extent controlled by the higher base level of the LGM. There, frequent exposure of bedrock in channels and especially on hillslopes implies that sediment flux is to a large extent limited by weathering rates. In the knickzones, however, exposure of bedrock in channels implies that sediment flux is supply-limited, and that erosion rates are controlled by stream power.The morphometric analysis reveals the existence of length scales in the topography that result from distinct geomorphic processes. Along the tributaries where the upstream sizes of the drainage basins exceed 100,000–200,000 m2, the mode of sediment transport and erosion changes from predominantly hillslope processes (i.e., landsliding, creep of regolith, rock avalanches and to some extent debris flows) to processes in channels (fluvial processes and debris flows). This length scale reflects the minimum size of the contributing area for channelized processes to take over in the geomorphic development (i.e., threshold size of drainage basin). This threshold size depends on the ratio between production rates of sediment on hillslopes, and export rates of sediment by processes in channels. Consequently, in the headwaters, erosion rates and sediment flux, and hence landscape evolution rates, are to a large extent limited by weathering processes. In contrast, in the lower portion of the drainage basin that adjusts to the lowered base-level, rates of channelized erosion and relief formation are controlled mainly by stream power. Hence, this paper shows that base-level lowering, headward erosion and establishment of knickzones separate drainage basins in two segments with different controls on rates of surface erosion, sediment flux and relief formation.  相似文献   

17.
We present a glaciological and climatic reconstruction of a former glacier in Coire Breac, an isolated cirque within the Eastern Grampian plateau of Scotland, 5 km from the Highland edge. Published glacier reconstructions of presumed Younger Dryas‐age glaciers in this area show that equilibrium line altitudes decreased steeply towards the east coast, implying a arctic maritime glacial environment. Extrapolation of the ELA trend surface implies that glaciers should have existed in suitable locations on the plateau, a landscape little modified by glaciation. In Coire Breac, a 0.35 km2 cirque glacier existed with an equilibrium line altitude of 487 ± 15 m above present sea level. The equilibrium line altitude matches closely the extrapolated regional equilibrium line altitude trend surface for Younger Dryas Stadial glaciers. The mean glacier thickness of 24 m gives an ice volume of 7.8 × 106 m3, and a maximum basal shear stress of c. 100 kPa?1. Ablation gradient was c. –0.0055 m m?1, with a mean July temperature at the equilibrium line altitude of c. 5.1°C. The reconstruction implies an arctic maritime climate of low precipitation with local accumulation enhanced by blown snow, which may explain the absence of other contemporary glaciers nearby. Reconstructed ice flow lines show zones of flow concentration around the lower ice margin which help to explain the distribution of depositional facies associated with a former debris cover which may have delayed eventual glacier retreat. No moraines in the area have been dated, so palaeoclimatic interpretations remain provisional, and a pre‐Lateglacial Interstadial age cannot be ruled out.  相似文献   

18.
Relative size of fluvial and glaciated valleys in central Idaho   总被引:2,自引:1,他引:1  
Quantitative comparisons of the morphometry of glaciated and fluvial valleys in central Idaho were used to investigate the differences in valley relief and width in otherwise similar geologic and geomorphic settings. The local relief, width, and cross-sectional area of valleys were measured using GIS software to extract information from USGS digital elevation models. Hillslope gradients were also measured using GIS software. Power-law relationships for local valley relief, width, and cross-sectional area as a function of drainage area were developed. Local valley relief in glaciated valleys relates to drainage area with a power-law exponent similar to fluvial valleys, but glaciated valleys are deeper for a given drainage area. Local valley width in glaciated valleys is greater than in fluvial valleys, but the exponent of the power-law relationship to drainage area is similar in both valley types. Local valley cross-sectional area in glaciated valleys increases with drainage area with a power-law exponent similar to fluvial valleys, however, glacial valleys have roughly 80% greater cross-sectional area. Steep valley walls in glaciated basins increase the potential for bedrock landsliding relative to fluvial basins. Both the Olympic Mountains of Washington and valleys in central Idaho show relationships in which glaciated valleys are up to 30% deeper than fluvial valleys despite differences in lithology, tectonic setting, and climate.  相似文献   

19.
东亚沿海山地末次冰期冰川与环境   总被引:1,自引:0,他引:1  
对东亚沿海山地末次冰期冰川发育的气候条件、构造背景、冰进时序、发育规模等研究表明,台湾山地保存着3期冰川作用遗迹,冰川的最大前进规模发生在MIS3b阶段,其规模大于MIS2阶段;日本山地冰期系列齐全,包含了末次冰期的早(MIS4)、中(MIS3)、晚(MIS2)3个阶段的冰进,其规模是MIS4/3阶段大于MIS2阶段;而长白山存在2期冰川作用的遗迹,即末次冰盛期(MIS2)和晚冰期.在相似的冬雨(雪)型季风影响区,冰川发育的时序与规模也有一定不同,反映出在大气候背景下的区域性差异,在东亚季风影响范围内,末次冰期的环流变化在各地也很不一致.最新推算的现代理论雪线自北(日本)向南(台湾)依次递增,范围是2750~4245 m,除日本北部的高纬地区雪线降低值400 m之外,末次冰盛期(LGM)的雪线降低值在800~1300 m之间,平均值1000 m左右.东亚沿海山地冰川发育与新构造运动密切相关,更新世山体的快速抬升为冰川发育的内因,如台湾山地在末次冰期的MIS3b阶段,山体的抬升量约为250 m,对山体的高度和雪线变化有很大影响.  相似文献   

20.
ABSTRACT. Geomorphological and sedimentological evidence of former glaciation in the Bizzle valley in the Cheviot Hills of northern England and southern Scotland was used to reconstruct the dimensions of a small topographically constrained glacier with an equilibrium line altitude (ELA) of 535 m. This was interpreted as having formed during Younger Dryas cooling; this is the only glacier to have been described from the area and is the most easterly site of Younger Dryas glaciation in the British Isles. Whilst glaciation at this time was extensive in the Lake District to the southwest, the restricted nature of Cheviot ice cover suggests that a steep west–east precipitation gradient existed in this region during the Younger Dryas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号