首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
基于诊断色素分析的胶州湾浮游藻功能类群研究   总被引:2,自引:0,他引:2  
分析了2003年12月至2004年10月胶州湾18个站位7个航次的浮游藻色素组成(包括叶绿素和类胡萝卜素)。使用岩藻黄素、多甲藻黄素、色素组合(别黄素+19'-丁酰氧基岩藻黄素+19'-己酰氧基岩藻黄素+青绿藻黄素)和玉米黄素作为特定功能类群的诊断色素指标定义了四个浮游藻功能类群(PFTs), 即硅藻、甲藻、微型鞭毛藻和蓝细菌, 并根据各浮游藻功能类群的诊断色素(组合)占诊断色素总量的比例研究了各功能类群在胶州湾的时空分布特点, 结果表明硅藻是胶州湾的优势类群(平均占65.8%), 微型鞭毛藻次之(26.0%), 甲藻和蓝细菌最低(分别为6.3%和1.9%)。基于诊断色素指标的浮游藻功能类群分析是一种简便的判断优势浮游藻类群组成和丰度的方法。  相似文献   

2.
厦门港海水光合色素特征   总被引:4,自引:0,他引:4  
应用反相高效液相色谱(RP-HPLC)方法分析测定了冬季厦门鼓浪屿水文观测站两周内不同潮位海水中的光合色素的组成与含量,包括多甲藻素、19‘-已酰基氧化岩藻黄素、硅甲藻黄素、硅藻黄素、玉米黄素、叶绿素a、脱镁叶绿素a、β-胡萝卜素等。同时还实测了小于藻、金藻、盐藻、甲藻、角毛藻、螺旋藻等多个实验室培养藻种的色素组成。数据表明,不同种类的藻类具有不同的色素组成特征,从海水中光合色素的分析数据可推测其浮游植物主要种类组成情况。潮汐的水动力情况在色素组成变化上有所反映,表明港内外的乳游植物组成分布有梯度存在,且在特征上有所不同。  相似文献   

3.
2010年7月至2011年7月,利用高效液相色谱分离分析技术研究了厦门筼筜湖潟湖表层沉积物的底栖微藻生物量(以叶绿素a计)和光合色素组成,探讨了其与环境因子的关系.结果表明,表层沉积物中检出岩藻黄素、别藻黄素、玉米黄素、叶绿素b四种光合色素,对应的微藻类群包括硅藻、隐藻、蓝藻和绿藻.底层(表层沉积物)与水层(水体)微藻叶绿素a生物量呈显著负相关关系(p<0.05),但底层-水层对应的光合色素不存在显著相关关系,此暗示底层光合色素主要是底栖微藻的贡献,而非来自水层浮游微藻的沉降.底栖微藻生物量随时间变化明显,夏季(6~8月)较低(1.30 mg/m2),冬季(12月至翌年2月)较高(86.16 mg/m2).各测站底栖微藻生物量存在空间差异,随湖区的水深增加而降低,与沉积物表层光辐照度呈显著的正相关关系(p<0.05).岩藻黄素与降雨量呈显著负相关,别藻黄素与水体无机氮含量呈显著正相关,玉米黄素分布主要受温度影响,除玉米黄素外,其他光合色素含量与光辐照度呈正相关.初步估算表明,底栖微藻占该浅水潟湖生态系统水层-底层微藻叶绿素a生物量和固碳量的27.64%和12.56%.  相似文献   

4.
于2013年5月到2014年6月,在大亚湾大鹏澳牡蛎区及邻近海域开展了为期14个月的采样调查,利用高效液相色谱(HPLC)法对表层水体中微微型浮游植物(0.7—2.7μm)光合色素进行测定,并应用色素化学分类软件CHEMTAX对自养微微型浮游生物(aototrophicpicoplankton,APP)功能类群进行分析。结果表明,该海域APP中共检出了15种光合色素,其中青绿藻素(Pras)和玉米黄素(Zea)是微微型色素中浓度最高的2种特征色素,均具有明显的季节变化特征:Pras主要出现在低温季节(牡蛎养殖期),而Zea主要出现在高温季节(非牡蛎养殖期)。CHEMTAX分析表明,大鹏澳海域APP最主要的类群是硅藻、蓝藻和青绿藻,而甲藻、隐藻、定鞭金藻、绿藻和金藻生物量较低。温度和营养盐浓度是影响大鹏澳海域APP的时空分布的重要因素,青绿藻主要出现在低温季节(主要在冬季牡蛎养殖期间),且其生物量与溶解无机氮呈显著正相关;而蓝藻则主要出现在高温季节,与温度呈显著正相关。另外,贝类养殖也是能够影响APP空间分布的重要因素,在大鹏澳海域牡蛎养殖期间,青绿藻生物量在养殖区明显高于非养殖海域。  相似文献   

5.
利用光合色素的生物标志性可以在"纲"水平上表征浮游植物群落结构。依托大洋科学考察第20航次和21航次,通过对西赤道太平洋不同区域5个站位的HPLC藻类色素分析及CHEMTAX程序因子分析,获取了暖池区光合色素及浮游植物群落的垂直分布信息。结果显示在寡营养的暖池区,玉米黄素(Zeaxanthin)及乙二烯叶绿素a(DV Chl a)与叶绿素a浓度呈显著的正相关,浮游植物群落结构以蓝细菌、原绿球藻及定鞭金藻为优势藻纲,按对生物量的贡献率原绿球藻大于蓝细菌大于定鞭金藻的。蓝细菌和原绿球藻分布在真光层不同深度,而在营养盐丰富的次表层优势浮游藻类为定鞭金藻。  相似文献   

6.
海洋浮游植物在海洋生态、环境和全球气候变化中担当着非常重要的角色,也是测量水质的指示生物。黄渤海地理位置独特,研究黄渤海的浮游植物种群分布特征对我国海洋生态的研究有重要意义。本研究利用2015年8月对黄海、渤海海域浮游植物数据进行调查取样,经HPLC技术进行色素分析,通过CHEMTAX软件对获取的色素数据进行统计分析,由此获取浮游植物群落结构信息。研究发现,首先,从海域的角度来看,2015年夏季渤海表层浮游植物的生物量高于黄海,而北黄海表层的浮游植物生物量又高于南黄海。其次,从浮游植物优势种的角度看,黄渤海表层的浮游植物优势种为硅藻、定鞭金藻和绿藻,三类优势种占比分别为55.76%、14.56%、14.55%,其中硅藻占绝对优势。  相似文献   

7.
球形棕囊藻(Phaeocystisglobosa)是我国南方沿海近年来主要的赤潮原因种之一,由球形棕囊藻形成的赤潮对海水养殖业发展和海域生态环境构成了严重威胁。棕囊藻通常以囊状群体形式形成赤潮,很难获取其丰度数据,以往研究中多以19′-己酰氧基岩藻黄素(Hex-fuco)或19′-丁酰氧基岩藻黄素(But-fuco)作为其特征色素,利用化学分类软件CHEMTAX计算其生物量。为了解我国近海球形棕囊藻的色素组成特征,本文采用高效液相色谱方法,分析了6株球形棕囊藻的色素组成与含量状况,其中5株分离自我国近海。结果表明, 6株球形棕囊藻均以岩藻黄素和叶绿素a为主要色素,但其特征色素Hex-fuco却存在显著的株系间差异,即便是分离自相同海域的不同球形棕囊藻藻株也存在差别。对比棕囊藻游离细胞和囊状群体的色素组成,可以看出两者在色素组成上基本一致,但囊状群体中捕光色素(Light-harvesting pigment)含量低于游离细胞,而光保护色素(Photoprotective pigment)则高于游离细胞,可能与不同存在形态的棕囊藻对光照的适应特征差异有关。以上研究表明,在以CHEMTAX方法计算球形棕囊藻生物量时,需要充分调查海域棕囊藻的特征色素组成情况,获取其特征色素信息,构建合理色素比例初始矩阵,为球形棕囊藻赤潮监测奠定基础。  相似文献   

8.
为剖析长江口邻近海域春季硅藻藻华后期藻类沉降与底层水体缺氧现象之间的关系,作者于2011年春季,在长江口南部赤潮区采集了表层沉积物样品,并通过高效液相色谱法(HPLC),对浮游植物色素进行了分析。结果表明,硅藻藻华发生后,表层沉积物中叶绿素a(Chl a)、岩藻黄素(Fuco)和19’-丁酰氧基岩藻黄素(But-Fuco)含量有显著增加,高值区主要分布在调查海域东南侧50 m等深线外侧,与底层低氧水体分布区基本吻合。因此,硅藻藻华后沉降的藻类对于该海域夏季缺氧区的形成应具有一定作用,其具体过程和机制仍有待于研究。  相似文献   

9.
枯水期钦州湾浮游植物群落结构组成与分布特征   总被引:3,自引:2,他引:3  
应用浮游植物特征光合色素的分析方法,研究了2011年枯水期钦州湾浮游植物的结构组成与分布特征。结果表明:枯水期含量较高的浮游植物光合色素按含量高低依次为叶绿素a、岩藻黄素、叶绿素b、青绿素和多甲藻素,其他特征光合色素的含量很低。经CHEMTAX对光合色素转化计算,枯水期普遍检出的浮游植物类群为硅藻、青绿藻和甲藻,是枯水期浮游植物的优势类群,其生物量的平均值(±标准差)分别为(2.36±2.38)μg/L、(0.87±0.53)μg/L、(0.13±0.14)μg/L,变化范围为0.18~7.45μg/L、0.10~1.80μg/L和0.02~0.60μg/L。硅藻、青绿藻和甲藻占枯水期浮游植物生物量比例的平均值(±标准差)分别为59%±21%、30%±16%、6%±4%,占比变化范围为29%~96%、1%~53%和0.4%~14%,其他藻类所占比例很低。河口和外湾靠外海域两个区域以硅藻为优势类群,内湾及外湾近岸硅藻和青绿藻共同为优势类群。河流营养盐输入量和比例的不同决定了钦州湾河口海区浮游植物群落结构的差异,大面积贝类养殖导致了内湾至外湾近岸海区硅藻比例的降低,而外湾水温的增加引起暖水性硅藻大量增长成为优势类群,在温度进一步增加和营养盐持续输入等条件下存在会发生硅藻赤潮的风险。  相似文献   

10.
于2013年12月3日清晨、正午、傍晚采集了大亚湾大鹏澳海域3个站位的微表层和次表层水样,经过三级分级过滤(小型:20μm;微型:2.7~20μm;微微型:2.7μm)后,对其进行高效液相色谱(HPLC)色素分析,通过藻类色素化学分类法(CHEMTAX)分析不同浮游植物对Chl a的贡献,研究了微表层及次表层光合色素粒径特征及浮游植物群落结构差异。结果表明,冬季大亚湾海域水体中存在的浮游植物光合色素主要有17种,以岩藻黄素和Chl a含量较高。微表层总Chl a平均浓度为0.797μg/L,略高于次表层的0.714μg/L,不存在显著性差异(P0.05);微表层和次表层Chl a含量清晨最高,傍晚次之,正午最低。微表层不同粒径浮游植物对Chl a的贡献率从大到小依次为小型、微型、微微型浮游植物,分别为80.7%,10.1%和9.2%。CHEMTAX分析结果得出,冬季该海域硅藻占绝对优势,甲藻、定鞭藻、青绿藻、蓝藻、隐藻所占比重相差不大。微表层中定鞭藻、青绿藻和蓝藻等较小粒径浮游植物种群所占比重高于次表层,说明相对于次表层,微表层中的浮游植物群落有小型化趋势。  相似文献   

11.
The spatial variations of phytoplankton community structure in the Xiamen Western Bay during the summer and autumn cruises in 2001 were investigated based on HPLC analysis of photosynthetic pigments in algal cells and CHEMTAX processing of pigment data.The Chl a concentration reached 18.9 μg/L in the summer and declined to 0.28-2.17 in the autumn,respectively,consistent with the observation of diatom blooms in June.Among the accessory pigments,fucoxanthin was consistently the most abundant,ranging from 0.172 to 8.46 μg/L,with the maximum concentrations in June.19'-hexfucoxanthin and alloxanthin were the other two abundant pigments in the summer and autumn.In addition,19'-butanoyloxyfucoxanthin or peridinin was also important in late autumn.Generally the biomass of all the phytoplankton or each group was higher in the inner part than the mouth of this bay,represented by Chl a.CHEMTAX processing revealed the dominance of diatoms with their contribution of 14.6%-52.5% to the total Chl a,but its importance decreased in the autumn.Cryptophytes and Haptophytes,with an average contribution of 16.9%-31.4% and 12.1%-26.3%,were the other two important groups,especially in the autumn.On the contrary,Dinoflagellates and Chlorophytes were the minor groups,but the former became important sporadically in the autumn.It was suggested that there was distinctive variation in both the phytoplankton community structure and biomass between summer and autumn in the Xiamen Western Bay and the latter was coupled to the changes in temperature and dissolved oxygen.However,the spatial variation of the phytoplankton community structure was not as clear as the trend in the biomass of phytoplankton among all the sites in this bay.  相似文献   

12.
南流江河口区春季浮游植物群落结构组成与分布特征   总被引:1,自引:0,他引:1  
叶又茵  项鹏  王磊  杨燕燕  王雨  林茂  蓝文陆 《海洋学报》2017,39(10):111-123
通过2016年3月底现场航次11个站点的调查,应用反相高效液色谱(RP-HPLC)并结合二极管阵列检测器分析技术,分析了春季广西南流江河口区浮游植物光合色素组成,进而由CHEMTAX软件估算全粒级浮游植物的群落结构。结果表明:春季含量较高的浮游植物特征光合色素含量以叶绿素b最高,其次为岩黄藻素;浮游植物的优势类群为隐藻,其次为绿藻和硅藻,它们分别平均占据了浮游植物生物量的54.95%、23.36%和17.37%,其他藻类所占比例很低。南流江河口区浮游植物群落结构东西部入海分支有较大差异:东部分支营养盐较西部分支低,隐藻所占生物量比例最高,其次为绿藻和硅藻,浮游植物群结构与分布受营养盐因素影响较大;西部分支营养盐含量明显比东部分支高,绿藻和硅藻的所占比例有所提升,隐藻的生物量所占比则有所下降,浮游植物群落结构与分布受非营养盐因素的影响较大。南流江河口区浮游植物生物量和群落结构除了受营养盐影响外,还与浊度、盐度等密切相关,表明南流江浊度增加已明显影响着生态系统结构与功能,需要密切关注和进一步研究。  相似文献   

13.
Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.  相似文献   

14.
CHEMTAX analysis of high-performance liquid chromatography(HPLC) pigment was conducted to study phytoplankton community structure in the northern Bering Sea shelf, where a seasonal subsurface cold pool emerges. The results showed that fucoxanthin(Fuco) and chlorophyll a(Chl a) were the most abundant diagnostic pigments, with the integrated water column values ranging from 141 to 2 160 μg/m2 and 477 to 5 535 μg/m2, respectively. Moreover, a diatom bloom was identified at Sta. BB06 with the standing stock of Fuco up to 9 214 μg/m3. The results of CHEMTAX suggested that the phytoplankton community in the northern Bering Sea shelf was dominated by diatoms and chrysophytes with an average relative contribution to Chl a of 80% and 12%, respectively, followed by chlorophytes, dinoflagellates, and cryptophytes. Diatoms were the absolutely dominant algae in the subsurface cold pool with a relative contribution exceeding 90%, while the contribution of chrysophytes was generally higher in oligotrophic upper water. Additionally, the presence of a cold pool would tend to favor accumulation of diatom biomass and a bloom that occurred beneath the halocline would be beneficial to organic matter sinks, which suggests that a large part of the phytoplankton biomass would settle to the seabed and support a rich benthic biomass.  相似文献   

15.
Water samples were collected in order to study the spatial variation of photosynthetic pigments and phytoplankton community composition in the Lembeh Strait(Indonesia) and the Kelantan River Estuary(Malaysia)during July and August 2016, respectively. Phytoplankton photosynthetic pigments were detected using high performance liquid chromatography combining with the CHEMTAX software to confirm the Chl a biomass and community composition. The Chl a concentration was low at surface in the Lembeh Strait, which it was 0.580–0.682 μg/L, with the average(0.620±0.039) μg/L. Nevertheless, the Chl a concentration fluctuated violently at surface in the Kelantan River Estuary, in which the biomass was 0.299–3.988 μg/L, with the average(0.922±0.992) μg/L. The biomass at bottom water was higher than at surface in the Kelantan River Estuary, in which the Chl a concentration was 0.704–2.352 μg/L, with the average(1.493±0.571) μg/L. Chl b, zeaxanthin and fucoxanthin were three most abundant pigments in the Lembeh Strait. As a consequence, phytoplankton community composition was different in the two study areas. In the Lembeh Strait, prasinophytes(26.48%±0.83%) and Synechococcus(25.73%±4.13%) occupied ~50% of the Chl a biomass, followed by diatoms(20.49%±2.34%) and haptophytes T8(15.13%±2.42%). At surface water in the Kelantan River Estuary, diatoms(58.53%±18.44%)dominated more than half of the phytoplankton biomass, followed by Synechococcus(27.27%±14.84%) and prasinophytes(7.00%±4.39%). It showed the similar status at the bottom water in the Kelantan River Estuary,where diatoms, Synechococcus and prasinophytes contributed 64.89%±15.29%, 16.23%±9.98% and 8.91%±2.62%,respectively. The different phytoplankton community composition between the two regions implied that the bottom up control affected the phytoplankton biomass in the Lembeh Strait where the oligotrophic water derived from the West Pacific Ocean. The terrigenous nutrients supplied the diatoms growing, and pico-phytoplankton was grazed through top down control in the Kelantan River Estuary.  相似文献   

16.
Temporal variations in water mass properties and the composition of phytoplankton pigments in the central part of Sagami Bay were investigated by monthly observations from June 2002 to May 2004. Eleven pigments were quantified using high-performance liquid chromatography (HPLC) from 100%, 20%, and 5% light depths relative to the surface; the class-specific composition of phytoplankton community was then obtained by CHEMTAX analysis. The study area was influenced by the Kuroshio water for most of the observation period. The mean contribution of diatoms in all samples was relatively low (29%), while that of flagellates, mainly chlorophytes or cryptophytes, was quite high (60%). The phytoplankton composition at the three depths was uniform throughout the observation period, indicating that the vertical structure of the phytoplankton community did not develop significantly over time. A distinct temporal pattern was observed: flagellates dominated during the summer of 2002 and the winters of 2002–2003 and 2003–2004, while diatoms dominated during the summer of 2003. This pattern was associated with water mass changes. The community in the summer of 2003 was influenced by coastal water. While no distinct spring bloom of phytoplankton was observed, a weak increase in chlorophyll a was observed during the spring of 2004. Ocean color satellite data showed that fluctuations in chlorophyll a concentrations at time scales much shorter than a month occurred during the spring of 2003 and that the elevations in chlorophyll a levels were not continuous. The fluctuations were probably associated with rapid flushing by the Kuroshio water, which has low chlorophyll a content.  相似文献   

17.
In order to study the factors controlling the phytoplankton distribution across the Antarctic Polar Frontal Region (PFR), surface pigment samples were collected during austral summer (January/February 1998) near 170°W. Both the Polar Front (PF) and the Southern Antarctic Circumpolar Current Front (SACCF) were regions of enhanced accumulation of phytoplankton pigments. The mesoscale survey across the PF revealed two distinct phytoplankton assemblages on either side of the front. The phytoplankton community was dominated by diatoms south of the PF and by nanoflagellates (primarily by prymnesiophytes) to the north. Surprisingly, chlorophyll a concentrations did not correlate with mixed-layer depths. However, an increase of the dominance of diatoms over prymnesiophytes was observed with decreasing mixed-layer depths. Despite this relationship, we conclude that the average light availability in the mixed layer was not an important factor influencing the shift in phytoplankton composition across the PF. Although no correlation was found between the surface distribution of the major phytoplankton taxa and dissolved iron or silicic acid concentrations, the location of the strongest vertical gradient in silicic acid and iron concentration coincides with the maximum abundance of diatoms. We conclude that the difference in taxonomic composition is a result of increased silicic acid and iron flux to the upper mixed layer as a result of the increased vertical gradient of these key nutrients south of the front.  相似文献   

18.
The relationships between the spatiotemporal variation in phytoplankton community structure and environmental variables were investigated in the Kuroshio Extension (KE) region from winter to spring by analysing biomarker pigments. In winter, when the mixed layer was deep, phytoplankton communities were characterised by low biomass and a relatively high dominance of cryptophytes, followed by chlorophytes and pelagophytes. In spring, phytoplankton biomass generally increased with shoaling of the mixed layer. In April, when nitrate was not exhausted, chlorophytes became the most dominant group throughout the KE region, followed by cryptophytes. In May, in the south of the KE, phytoplankton biomass decreased with the depletion of nitrate and cyanobacteria dominated, whereas at the northern edge of the KE, phytoplankton biomass remained high. A predominance of diatoms occurred sporadically at the northern edge of the first ridge with a shallow mixed layer and an elevated nutricline. In contrast, the contribution of diatoms was low at the northern edge of the second ridge, despite high levels of nitrate and silicic acid, suggesting that factors other than macronutrient depletion limited diatom production. In general, the contribution of diatoms to the total phytoplankton biomass in the KE region was small in both winter (2.9%) and spring (16%). This study showed that the phytoplankton communities in the KE region during the spring bloom were generally composed of non-diatom phytoplankton groups, chlorophytes, cryptophytes, and prasinophytes. It is necessary to identify the roles of non-diatoms in grazing food chains to more accurately evaluate the KE as a nursery area for pelagic fish.  相似文献   

19.
In the upper Schelde estuary in 2002, phytoplankton biomass and community composition were studied using microscopic and pigment analyses. Chlorophyll a concentration was a good predictor of phytoplankton biomass estimated from cell counts and biovolume measurements. The phytoplankton carbon to chlorophyll a ratio, however, was often unrealistically low (<10). CHEMTAX was used to estimate the contribution of the major algal groups to total chlorophyll a. The dominant algal groups were diatoms and chlorophytes. While diatom equivalents in chlorophyll a predicted diatom biomass relatively well, chlorophyte equivalents in chlorophyll a were only weakly related to chlorophyte biomass. The pigment-based approach to study phytoplankton overestimated phytoplankton biomass in general and chlorophyte biomass in particular in late autumn and winter, when phytoplankton biomass was low. A possible explanation for this overestimation may be the presence of large amounts of vascular plant detritus in the upper Schelde estuary. Residual chlorophyll a, chlorophyll b and lutein in this detritus may result in an overestimation of total phytoplankton and chlorophyte biomass when the contribution of phytoplankton to total particulate organic matter is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号