共查询到20条相似文献,搜索用时 0 毫秒
1.
Tariq Shahbaz 《Journal of Astrophysics and Astronomy》1999,20(3-4):197-210
I review the evidence for stellar mass black holes in the Galaxy. The unique properties of the soft X-ray transient (SXTs)
have provided the first opportunity for detailed studies of the mass-losing star in low-mass X-ray binaries. The large mass
functions of these systems imply that the compact object has a mass greater than the maximum mass of a neutron star, strengthening
the case that they contain black holes. The results and techniques used are discussed. I also review the recent study of a
comparison of the luminosities of black hole and neutron star systems which has yielded compelling evidence for the existence
of event horizons. 相似文献
2.
M. Yu. Piotrovich Yu. N. Gnedin N. A. Silant'ev T. M. Natsvlishvili S. D. Buliga 《Astronomische Nachrichten》2015,336(10):1013-1016
Magnetic fields in an accretion disk around the central black hole can modify the size of the innermost stable circular orbit (ISCO) and can produce a difference to the classical Novikov‐Thorne radius. We estimated the ISCO magnetic field strength from the polarimetric observations of the accretion‐disk radiation. This estimate is obtained taking into account the effect of the Faraday rotation of the polarization plane at the distance of the mean free path of photons between successive electron scattering events. We present the new method for estimating the ISCO radius in the accretion disk, i.e. in the nearest vicinity of a central black hole. Our estimates confirmed the Frolov, Shoom & Tzounis (2014) and Ranea‐Sandoval & Garcia (2015) conclusion that the magnetic field in the accretion disk decreases the size of the innermost stable circular orbit. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
3.
The current paradigm of high energy spectroscopy tells us that light emitted from a wide variety of objects has its origin
close to the black hole event horizon. As such, these photons are subject to general relativistic effects such as light-bending,
gravitational lensing and redshift, time-dilation, etc. These gravitational effects are well-understood from a theoretical
standpoint and therefore, provide a natural mechanism to test the properties of strong gravitational fields. To this end,
we have developed a new (semi-analytic) strong gravity code, capable of describing the contribution of photons that perform
multiple orbits of the hole. We apply this code to a simple Keplerian accretion disk in order to understand the role played
by the angular emissivity, black hole spin and higher order images in forming the line profile. 相似文献
4.
The stability of the innermost disk region orbiting a Kerr black hole is investigated for geometrically thin accretion disks. The infalling matter transports mass and angular momentum into the Kerr hole. This affects the inner disk boundary and leads to runaway instabilities in some cases. 相似文献
5.
We developed an efficient method for determining the surface-density distribution in a self-gravitating disk with an isolated central point mass from a specified angular-velocity distribution in the disk. An upper limit for the galactic-disk mass is shown to exist at a given black-hole mass. This limit significantly depends on the choice of rotation curves. 相似文献
6.
The X‐ray spectra of luminous Seyfert 1 galaxies often appear to be reflection dominated. In a number of Narrow Line Seyfert 1 (NLS1) galaxies and galactic black holes in the very high state, the variability of the continuum and of the iron line are decoupled, the reflected component being often much less variable than the continuum. These properties have been interpreted as effects of gravitational light bending. In this framework, we present detailed Monte‐Carlo simulations of the reflection continuum in the Kerr metric. These calculations confirm that the spectra and variability behaviour of these sources can be reproduced by the light bending model. As an alternative to the light bending model, we show that similar observational properties are expected from radiation pressure dominated discs subject to violent clumping instabilities and, as a result, have a highly inhomogeneous two‐phase structure. In this model, most of the observed spectral and variability features originate from the complex geometrical structure of the inner regions of near‐Eddington accretion flows and are therefore a signature of accretion physics rather than general relativity. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
7.
We offer a simple explanation for the small number of black holes observed in pairs with massive stars. In detached massive binaries, spherically symmetric accretion takes place. This accretion could result in effective energy release in the hard band only if the equipartition of the gravitational and magnetic energy of plasma is established (Shvartsman’s theorem). However, we show that due to the magnetic exhaust effect this equilibrium is virtually never established for the actual magnetic fields observed on massive stars: Shvartsman’s theorem does not work. As a result, it is virtually impossible to detect black holes in detached massive binaries by currently available means (mainly, through X-ray observations). 相似文献
8.
Mitchell C. Begelman Elena M. Rossi † Philip J. Armitage 《Monthly notices of the Royal Astronomical Society》2008,387(4):1649-1659
We study the structure and evolution of 'quasi-stars', accreting black holes embedded within massive hydrostatic gaseous envelopes. These configurations may model the early growth of supermassive black hole seeds. The accretion rate on to the black hole adjusts so that the luminosity carried by the convective envelope equals the Eddington limit for the total mass, M * + M BH ≈ M * . This greatly exceeds the Eddington limit for the black hole mass alone, leading to rapid growth of the black hole. We use analytic models and numerical stellar structure calculations to study the structure and evolution of quasi-stars. We show that the photospheric temperature of the envelope scales as T ph ∝ M −2/5 BH M 7/20 * , and decreases with time while the black hole mass increases. Once T ph < 104 K , the photospheric opacity drops precipitously and T ph hits a limiting value, analogous to the Hayashi track for red giants and protostars, below which no hydrostatic solution for the convective envelope exists. For metal-free (Population III) opacities, this limiting temperature is approximately 4000 K. After a quasi-star reaches this limiting temperature, it is rapidly dispersed by radiation pressure. We find that black hole seeds with masses between 103 and 104 M⊙ could form via this mechanism in less than a few Myr. 相似文献
9.
Observational constraints on growth of massive black holes 总被引:1,自引:0,他引:1
10.
11.
R. S. Nemmen R. G. Bower A. Babul T. Storchi-Bergmann 《Monthly notices of the Royal Astronomical Society》2007,377(4):1652-1662
The power of jets from black holes is expected to depend on both the spin of the black hole and the structure of the accretion disc in the region of the last stable orbit. We investigate these dependencies using two different physical models for the jet power: the classical Blandford–Znajek (BZ) model and a hybrid model developed by Meier. In the BZ case, the jets are powered by magnetic fields directly threading the spinning black hole while in the hybrid model, the jet energy is extracted from both the accretion disc as well as the black hole via magnetic fields anchored to the accretion flow inside and outside the hole's ergosphere. The hybrid model takes advantage of the strengths of both the Blandford–Payne and BZ mechanisms, while avoiding the more controversial features of the latter. We develop these models more fully to account for general relativistic effects and to focus on advection-dominated accretion flows (ADAFs) for which the jet power is expected to be a significant fraction of the accreted rest mass energy.
We apply the models to elliptical galaxies, in order to see if these models can explain the observed correlation between the Bondi accretion rates and the total jet powers. For typical values of the disc viscosity parameter α∼ 0.04 –0.3 and mass accretion rates consistent with ADAF model expectations, we find that the observed correlation requires j ≳ 0.9 ; that is, it implies that the black holes are rapidly spinning. Our results suggest that the central black holes in the cores of clusters of galaxies must be rapidly rotating in order to drive jets powerful enough to heat the intracluster medium and quench cooling flows. 相似文献
We apply the models to elliptical galaxies, in order to see if these models can explain the observed correlation between the Bondi accretion rates and the total jet powers. For typical values of the disc viscosity parameter α∼ 0.04 –0.3 and mass accretion rates consistent with ADAF model expectations, we find that the observed correlation requires j ≳ 0.9 ; that is, it implies that the black holes are rapidly spinning. Our results suggest that the central black holes in the cores of clusters of galaxies must be rapidly rotating in order to drive jets powerful enough to heat the intracluster medium and quench cooling flows. 相似文献
12.
A. A. Shatskii 《Astronomy Letters》2003,29(3):153-157
The structure and magnitude of the electromagnetic field produced by a rotating accretion disk around a black hole were determined. The disk matter is assumed to be a magnetized plasma with a frozenin poloidal magnetic field. The vacuum approximation is used outside the disk. 相似文献
13.
本文在Thorne工作的基础上讨论了吸积盘中黑洞的有关参量的演化,以及由Schwarzschild黑洞吸积盘向Kerr黑洞吸积盘演化过程中对吸积盘辐射通量的影响,最后针对几个典型的辐射过程,分别讨论了黑洞吸积盘在牛顿框架中的温度分布方程与广义相对论的温度分布方程的热不稳定性,并给出此类问题的热不稳定性的判据。 相似文献
14.
A disk-corona model for fitting the low/hard(LH)state of the associated steady jet in black hole X-ray binaries(BHXBs)is proposed based on the large-scale magnetic field configuration that arises from the coexistence of the Blandford-Znajek(BZ)and Blandford-Payne(BP)processes,where the magnetic field configuration for the BP process is determined by the requirement of energy conversion from Poynting energy flux into kinetic energy flux in the jet.It is found that corona current is crucial to guarantee the consistency of the jet launching from the accretion disk.The relative importance of the BZ and BP processes in powering jets from black hole accretion disks is discussed,and the LH state of several BHXBs is fitted based on our model.In addition,we suggest that magnetic field configuration can be regarded as the second parameter for governing the state transition of BHXBs. 相似文献
15.
Martin G. Haehnelt Priyamvada Natarajan & Martin J. Rees 《Monthly notices of the Royal Astronomical Society》1998,300(3):817-827
We demonstrate that the luminosity function of the recently detected population of actively star-forming galaxies at redshift z = 3 and the B -band luminosity function of quasi-stellar objects (QSOs) at the same redshift can both be matched with the mass function of dark matter haloes predicted by standard variants of hierarchical cosmogonies for lifetimes of optically bright QSOs anywhere in the range 106 to 108 yr. There is a strong correlation between the lifetime and the required degree of non-linearity in the relation between black hole and halo mass. We suggest that the mass of supermassive black holes may be limited by the back-reaction of the emitted energy on the accretion flow in a self-gravitating disc. This would imply a relation of black hole to halo mass of the form M bh ∝ v 5 halo ∝ M 5/3 halo and a typical duration of the optically bright QSO phase of a few times 107 yr. The high integrated mass density of black holes inferred from recent black hole mass estimates in nearby galaxies may indicate that the overall efficiency of supermassive black holes for producing blue light is smaller than previously assumed. We discuss three possible accretion modes with low optical emission efficiency: (i) accretion at far above the Eddington rate, (ii) accretion obscured by dust, and (iii) accretion below the critical rate leading to an advection-dominated accretion flow lasting for a Hubble time. We further argue that accretion with low optical efficiency might be closely related to the origin of the hard X-ray background and that the ionizing background might be progressively dominated by stars rather than QSOs at higher redshift. 相似文献
16.
B. Devecchi E. Rasia † M. Dotti M. Volonteri M. Colpi 《Monthly notices of the Royal Astronomical Society》2009,394(2):633-640
Anisotropic gravitational radiation from a coalescing black hole (BH) binary is known to impart recoil velocities of up to ∼1000 km s−1 to the remnant BH. In this context, we study the motion of a recoiling BH inside a galaxy modelled as a Hernquist sphere, and the signature that the hole imprints on the hot gas, using N -body/smoothed particle hydrodynamics simulations. Ejection of the BH results in a sudden expansion of the gas ending with the formation of a gaseous core, similarly to what is seen for the stars. A cometary tail of particles bound to the BH is initially released along its trail. As the BH moves on a return orbit, a nearly spherical swarm of hot gaseous particles forms at every apocentre: this feature can live up to ≈108 years. If the recoil velocity exceeds the sound speed initially, the BH shocks the gas in the form of a Mach cone in density near each supersonic pericentric passage. We find that the X-ray fingerprint of a recoiling BH can be detected in Chandra X-ray maps out to a distance of Virgo. For exceptionally massive BHs, the Mach cone and the wakes can be observed out to a few hundred of milliparsec. The detection of the Mach cone is of twofold importance as it can be a probe of high-velocity recoils, and an assessment of the scatter of the M BH − M bulge relation at large BH masses. 相似文献
17.
We consider the possibility of low-mass primordial black holes being formed in terms of the inflationary theory of the early Universe. We found a condition on the reheating temperature under which the relic remnants of primordial black holes had been formed by now. These relic remnants may account for a part of the dark matter in our Universe. 相似文献
18.
We augment our scenario for the formation of astronomical objects from macroscopic superstrings by the assumption that the central matter keeps its identity in the fragmentation. From the condition that the angular momentum per mass squared of this matter should be less than the Kerr limit G/c, we obtain upper limits for the ratio of the mass of central black holes M(BH) to the mass M of the host object. This limit is M(BH)/M ≈ 0.001, and, expressed in observed quantities, approximately M(BH)/M ≈ σ2/(v · c) where σ is the r.m.s. velocity, v the rotational velocity and c the velocity of light. The valuesM(BH) agree with the observed behaviour both in order of magnitude and in the variation with velocity dispersion. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
19.
J. M. Miller 《Astronomische Nachrichten》2006,327(10):997-1003
In this contribution, I briefly review recent progress in detecting and measuring the properties of relativistic iron lines observed in stellar‐mass black hole systems, and the aspects of these lines that are most relevant to studies of similar lines in Seyfert‐1 AGN. In particular, the lines observed in stellar‐mass black holes are not complicated by complex low‐energy absorption or partial‐covering of the central engine, and strong lines are largely independent of the model used to fit the underlying broad‐band continuum flux. Indeed, relativistic iron lines are the most robust diagnostic of black hole spin that is presently available to observers, with specific advantages over the systematics–plagued disk continuum. If accretion onto stellar‐mass black holes simply scales with mass, then the widespread nature of lines in stellar‐mass black holes may indicate that lines should be common in Seyfert‐1 AGN, though perhaps harder to detect. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
20.
N. R. Sibgatullin 《Astronomy Letters》2001,27(12):799-808
The inclination of low-eccentricity orbits is shown to significantly affect orbital parameters, in particular, the Keplerian, nodal precession, and periastron rotation frequencies, which are interpreted in terms of observable quantities. For the nodal precession and periastron rotation frequencies of low-eccentricity orbits in a Kerr field, we derive a Taylor expansion in terms of the Kerr parameter at arbitrary orbital inclinations to the black-hole spin axis and at arbitrary radial coordinates. The particle radius, energy, and angular momentum in the marginally stable circular orbits are calculated as functions of the Kerr parameter j and parameter s in the form of Taylor expansions in terms of j to within O[j 6]. By analyzing our numerical results, we give compact approximation formulas for the nodal precession frequency of the marginally stable circular orbits at various s in the entire range of the Kerr parameter. 相似文献