首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
2019年8月2日河北省唐山市路南区某矿井区发生ML2.4巷道塌陷,基于塌陷周边台站观测到的短周期瑞雷波,提取面波基阶群速度频散曲线,并利用迭代反演方法得到研究区域地下10 km深度范围内的一维剪切波速度结构,用于精定位分析。速度分析结果表明,研究区域浅表剪切波速度约为2.46 km/s;深度为2 km时,塌陷周边存在小范围的低速区,速度约为2.57 km/s;深度约为4 km时,剪切波速度达3.47 km/s;深度为5~9 km时,唐山东部沉积盆地内存在1个剪切波低速层。精定位分析结果表明,增加浅层速度模型有助于提高深度较小的地震定位精度;塌陷周边的低速区向下延伸近20 km,为地震多发区。  相似文献   

2.
The Yellowstone volcano is one of the largest active volcanoes in the world, and its potential hazards demand detailed seismological and geodetic studies. Previous studies with travel time tomography and receiver functions have revealed a low-velocity layer in the crust beneath the Yellowstone volcano, suggesting the presence of a magma chamber at depth. We use ambient seismic noise from regional seismic stations to retrieve short-period surface waves and then study the shallow shear velocity structure of the Yellowstone region by surface wave dispersion analysis. We first obtained a crustal model of the area outside of the Yellowstone volcano and then constructed an absolute shear wave velocity structure in combination with receiver function results for the crust beneath the Yellowstone volcano. The velocity model shows a low-velocity layer with shear velocity at around 1.3 km/s, suggesting that a large-scale magma chamber exists at shallow levels within the crust of the Yellowstone volcanic region.  相似文献   

3.
It is well established that the Earth's uppermost mantle is anisotropic, but observations of anisotropy in the deeper mantle have been more ambiguous. Radial anisotropy, the discrepancy between Love and Rayleigh waves, was included in the top 220 km of PREM, but there is no consensus whether anisotropy is present below that depth. Fundamental mode surface waves, for commonly used periods up to 200 s, are sensitive to structure in the first few hundred kilometers and therefore do not provide information on anisotropy below. Higher mode surface waves, however, have sensitivities that extend to and below the transition zone and should thus give insight about anisotropy at greater depths, but they are very difficult to measure. We previously developed a new technique to measure higher mode surface wave phase velocities with consistent uncertainties. These data are used here to construct probability density functions of a radially anisotropic Earth model down to approximately 1500 km. In the uppermost mantle, we obtain a high probability of faster horizontally polarized shear wave speed, likely to be related to plate motion. In the asthenosphere and transition zone, however, we find a high probability of faster vertically polarized shear wave speed. To a depth of 1500 km in the lower mantle, we see no significant shear wave anisotropy. This is consistent with results from laboratory measurements which show that lower mantle minerals are anisotropic but LPO is unlikely to develop in the pressure–temperature conditions present in the mid-mantle.  相似文献   

4.
The Turkish plate is covered by hundreds of accelerometer and broadband seismic stations with less than 50 km inter-station distance providing high-quality earthquake recordings within the last decade. We utilize part of these stations to extract the fundamental mode Rayleigh and Love surface wave phase and group velocity data in the period range 5–20 s to determine the crust structure beneath the Aegean region in southwest Turkey. The observed surface wave signals are interpreted using both single-station and two-station techniques. A tomographic inversion technique is employed to obtain the two-dimensional group velocity maps from the single-station group velocities. One-dimensional velocity–depth profiles under each two-dimensional mesh point, which are jointly interpreted to acquire the three-dimensional image of the shear-wave velocities underneath the study area, are attained by utilizing the least-squares inversion technique, which is repeated for both Rayleigh and Love surface waves. The isotropic crust structure cannot jointly invert the observed Rayleigh and Love surface waves where the radial anisotropic crust better describes the observed surface wave data. The intrusive magmatic activity related to the northward subducting African plate under the Turkish plate results the crust structure deformations, which we think, causing the observed radial anisotropy throughout complex pattern of dykes and sills. The magma flow resulting in the mineral alignment within dykes and sills contributes to the observed anisotropy. Due to the existence of dykes, the radial anisotropy in the upper crust is generally negative, i.e., vertically polarized S-waves (Vsv) are faster than horizontally polarized S-waves (Vsh). Due to the existence of sills, the radial anisotropy in the middle-to-lower crust is generally positive, i.e., horizontally polarized S-waves (Vsh) are faster than vertically polarized S-waves (Vsv). Similar radial anisotropic results to those of the single-station analyses are obtained by the two-station analyses utilizing the cross-correlograms. The widespread volcanic and plutonic rocks in the region are consistent with the current seismic interpretations of the crustal deformations.  相似文献   

5.
Shear waves can today be generated and observed, though not with the flexibility and the technical standard of compressional waves, and they can be identified in seismograms by various means. Their potential lies not so much in their lower velocity (corresponding—for the same frequency—to shorter wavelength and higher resolution) but in the fact that they probe the earth with stresses and strains that differ from those of compressional waves. Full utilization of the information potential of shear waves, therefore, requires combined use of P-and S-waves. Complications in the combined use of different wave types should be regarded as opportunities to obtain additional information. A typical example is the observation that the depth of one and the same interface estimated on the bases of P- and SH-reflections, respectively, can differ significantly. This discrepancy may be due to the anisotropy of a finely layered medium. Under favorable circumstances some of the parameters describing this anisotropy can be deduced from the different depth estimates and the curvature of the squared-offset/squared-time representation of the different reflections. Since in anisotropic media vertically polarized shear waves are significantly different from horizontally polarized ones, the combined observation of all three waves opens up additional possibilities.  相似文献   

6.
The paper intends to study the propagation of horizontally polarized shear waves in an elastic medium with void pores constrained between a vertically inhomogeneous and an anisotropic magnetoelastic semi-infinite media. Elasto-dynamical equations of elastic medium with void pores and magnetoelastic solid have been employed to investigate the shear wave propagation in the proposed three-layered earth model. Method of separation of variables has been incorporated to deduce the dispersion relation. All possible special cases have been envisaged and they fairly comply with the corresponding results for classical cases. The role of inhomogeneity parameter, thickness of layer, angle with which the wave crosses the magnetic field and anisotropic magnetoelastic coupling parameter for three different materials has been elucidated and represented by graphs using MATHEMATICA.  相似文献   

7.
长白山火山区地壳S波速度结构的背景噪声成像   总被引:1,自引:0,他引:1       下载免费PDF全文
王武  陈棋福 《地球物理学报》2017,60(8):3080-3095
利用探测深俯冲的中国东北地震台阵NECsaids的60个流动台与固定地震台2010年7月至2014年12月的垂向连续波形数据,采用地震背景噪声成像方法获得了研究区6~40 s周期的瑞雷波相速度分布,并通过相速度频散反演得到了研究区下方0~50 km的三维S波速度结构.结果表明:研究区下方地壳S波速度结构存在明显的横向和纵向不均匀性,浅部速度结构与浅表地质构造单元有较好的对应,深部速度结构较好地反映了区域火山活动及深部热物质作用的结构特征;在长白山火山下方9~30 km深度范围内存在明显低速区并有向下延伸的趋势,推测可能为长白山火山地壳岩浆囊;在龙岗火山下方12~30 km深度范围内发现较弱的低速区,可能代表火山喷发后的残留物,而在镜泊湖火山下方没有明显的低速异常,说明镜泊湖火山地壳内可能不存在部分熔融的岩浆物质.  相似文献   

8.
A detailed study of P and S waves from earthquakes located along the Hellenic arc and recorded by the Greek seismological network, shows an abnormal distribution of the seismic waves in the central Aegean Sea. The data indicate a zone of anomalously high seismic wave attenuation in the Upper Mantle beneath the Cyclades plateau and the inner part of the volcanic arc. Several independent observations suggest the presence of magma beneath the Cyclades massif.In addition, geophysical data indicate the presence of low-density and rigidity material. Theoretical consideration of the propagation of elastic waves corroborate the observed absence of shear waves.  相似文献   

9.
The January 18, 2010, shallow earthquake in the Corinth Gulf, Greece (M w  5.3) generated unusually strong long-period waves (periods 4–8 s) between the P and S wave arrival. These periods, being significantly longer than the source duration, indicated a structural effect. The waves were observed in epicentral distances 40–250 km and were significant on radial and vertical component. None of existing velocity models of the studied region provided explanation of the waves. By inverting complete waveforms, we obtained an 1-D crustal model explaining the observation. The most significant feature of the best-fitting model (as well as the whole suite of models almost equally well fitting the waveforms) is a strong velocity step at depth about 4 km. In the obtained velocity model, the fast long-period wave was modeled by modal summation and identified as a superposition of several leaking modes. In this sense, the wave is qualitatively similar to P long or Pnl waves, which however are usually reported in larger epicentral distances. The main innovation of this paper is emphasis to smaller epicentral distances. We studied properties of the wave using synthetic seismograms. The wave has a normal dispersion. Azimuthal and distance dependence of the wave partially explains its presence at 46 stations of 70 examined. Depth dependence shows that the studied earthquake was very efficient in the excitation of these waves just due to its shallow centroid depth (4.5 km).  相似文献   

10.
Exceptionally high ground motions (horizontal peak ground acceleration (PGA) of 1.82g) were recorded at the Tarzana Station during the main shock of the 1994 Northridge earthquake (moment magnitude 6.7 at an epicentral distance of 6 km). At the time of the main shock, the instrument was located near the edge of a 21 m-high ridge with side slopes ranging from 3H:1V to 15H:1V. The ridge is underlain by shallow fill and soft rocks of Medelo Formation.

The objectives of this study were to (1) identify the relative contributions of various factors such as local geology, topography, source mechanism, and travel path on the large ground motions recorded at Tarzana Station and (2) develop an analytical model that could adequately predict observed ground motions at the Tarzana site during the Northridge earthquake and at similar sites during future earthquakes. This study is an integral part of a series of inter-related studies referred to as the ROSRINE research (Resolution of Site Response Issues during Northridge Earthquake) project.

The PGA at the surface of competent bedrock (1 km/s shear wave velocity found about 100 m below ground surface) is estimated by Silva [ROSRINE Study (2000)] at 0.46 gravity (g). To identify the source of ground motion amplification, one-dimensional ( ), two-dimensional (TELDYN and SASSI), and three-dimensional (SASSI) analyses were conducted using both recorded aftershock data and an estimated ground acceleration time histories at a 100 m depth.

The results of the analyses indicate that (1) local geology and topography could only partially account for the observed ground motion amplification, and (2) the PGA and response spectra at a point near the edge of the ridge (the location of the instrument at the time of the main shock) is in good agreement with recorded values when the angle of incident of shear waves (SV waves) at 100 m depth is assumed at 30° from vertical. Considering the local geology and variation of shear wave velocity with depth, the 30° incident angle at 100 m depth corresponds to an 8° incident angle of shear waves at the ground surface. This observation is, in general, consistent with the incident angles of shear waves reported from study of the recorded aftershock data.  相似文献   


11.
冀战波  王宝善 《地球物理学报》1954,63(11):4097-4113
2015年8月12日天津滨海新区发生的强烈化学品爆炸造成了巨大的经济损失和社会影响.天津爆炸产生了清晰的大振幅面波信号,分析结果表明这组信号由基阶和高阶面波组成,可以追踪到约135 km外的远处台站.利用这组面波信号分别开展了以下研究:(1)利用附近三个台站记录的四个单频基阶Rayleigh波信号对爆破事件的绝对位置进行了网格搜索,结果与利用GPS测量的位置相差仅0.498 km;(2)分别利用网格搜索和主事件定位法,对两次子事件的相对位置进行了确定,距离约75 m左右,与前人研究结果吻合;(3)从面波记录中测量到36条基阶Rayleigh波、49条第一高阶Rayleigh波、9条基阶Love波和29条第一高阶Love波的频散曲线,并进一步反演获得研究区域地下4 km内的S波速度结构.反演结果显示地表处S波速度低至0.375 km·s-1,在小于1 km的浅地表速度梯度较大,符合典型的盆地结构特征.本文的研究结果为类似爆炸等突发事件快速定位提供了新的思路,有助于灾后救援的迅速展开;同时得到天津滨海新区及周边浅层精细的速度结构,对于地震灾害评估有很大帮助.  相似文献   

12.
As part of a joint Sino-U.S. research project to study the deep structure of the Tibetan Plateau, 11 broadband digital seismic recorders were deployed on the Plateau for one year of passive seismic recording. In this report we use teleseimic P waveforms to study the seismic velocity structure of crust and upper mantle under three stations by receiver function inversion. The receiver function is obtained by first rotating two horizontal components of seismic records into radial and tangential components and then deconvolving the vertical component from them. The receiver function depends only on the structure near the station because the source and path effects have been removed by the deconvolution. To suppress noise, receiver functions calculated from events clustered in a small range of back-azimuths and epicentral distances are stacked. Using a matrix formalism describing the propagation of elastic waves in laterally homogeneous stratified medium, a synthetic receiver function and differential receiver functions for the parameters in each layer can be calculated to establish a linearized inversion for one-dimensional velocity structure. Preliminary results of three stations, Wen-quan, Golmud and Xigatze (Coded as WNDO, TUNL and XIGA), located in central, northern and southern Plateau are given in this paper. The receiver functions of all three stations show clear P-S converted phases. The time delays of these converted phases relative to direct P arrivals are: WNDO 7.9s (for NE direction) and 8.3s (for SE direction), TUNL 8.2s, XIGA 9.0s. Such long time delays indicate the great thickness of crust under the Plateau. The differences between receiver function of these three station shows the tectonic difference between southern and north-central Plateau. The waveforms of the receiver functions for WNDO and TUNL are very simple, while the receiver function of XIGA has an additional midcrustal converted phase. The S wave velocity structures at these three stations are estimated from inversions of the receiver function. The crustal shear wave velocities at WNDO and TUNL are vertically homogeneous, with value between 3.5–3.6 km/s down to Moho. This value in the lower crust is lower than the normal value for the lower crust of continents, which is consistent with the observed strong Sn attenuation in this region. The velocity structure at XIGA shows a velocity discontinuity at depth of 20 km and high velocity value of 4.0 km/s in the midcrust between 20–30 km depth. Similar results are obtained from a DSS profile in southern Tibet. The velocity under XIGA decreases below a depth of 30 km, reaching the lowest value of 3.2 km/s between 50–55 km. depth. This may imply that the Indian crust underthrusts the low part of Tibetan crust in the southern Plateau, forming a “double crust”. The crustal thickness at each of these sites is: WNDO, 68 km; TUNL, 70 km; XI-GA, 80 km. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 581–592, 1992.  相似文献   

13.
新疆北天山中东段呼图壁地区震源深度的重新测定   总被引:2,自引:1,他引:1  
联合Hyposat法、PTD法和gCAP矩张量反演法,重新测定新疆北天山中东段呼图壁地区2010—2017年502个地震的震源深度,并对震源深度剖面进行初步分析。结果表明,重新测定的震源深度优势分布为15—20km,平均震源深度为16km,呼图壁MS 6.2地震的震源深度为20km;研究区南部和中部的震源深度集中分布在20km左右,与北天山壳内低速体的层位相当,可能是上地壳和下地壳之间的韧性剪切带存在的部位,起到滑脱层的作用,研究区北部的震源深度则向浅部扩展;呼图壁MS 6.2地震的发震断裂可能在清水河子断裂下方的1条隐伏反冲断层上,可能是霍尔果斯断裂向前沿断坡冲断受阻而在相反方向上发育分支反冲断层的结果。  相似文献   

14.
江淮地区地震精定位及b值随深度的变化研究   总被引:1,自引:0,他引:1  
使用双差地震定位法,利用安徽及邻省50个地震台站记录的1976年到2008年的551次M_L≥2.3地震,其中初始定位有205个无深度数据,包括数字化资料和传统的模拟资料,共5464条P波走时资料。经重新定位后得到其中468次地震的基本参数。重新定位结果显示了本地区较精细的震中分布图像和震源深度剖面图像,震源深度优势分布在6—10km,平均深度为10km,部分震中位置与震源深度变化较大的地震向断裂带靠近。基于地震精确定位结果,系统地计算了不同深度段的b值,发现研究区b值随震源深度的增加具有系统减小的趋势,且在地壳10km左右的减小趋势最为突出。表明江淮地区的地壳分层结构相对明显,在地壳浅部(0—10km)以小震为主,大地震较少,故b值高;而在深处(10—25km),大地震相对较多,b值减小。这一现象的背后物理机制可以从地壳介质复杂程度与应力状态的变化得以解释,破裂易于在地壳介质相对均匀、岩石静压力较高的地壳深处成核形成大地震。推测江淮地区未来强震多发生在10km以下的地壳深部。  相似文献   

15.
垂向不均匀介质中波传播特点的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文由波传播问题的变分原理导出了垂向不均匀介质中的弹性波波动方程及纵波和横波波动方程。在不同的假设条件下得到了纵、横波波动方程的几种简化形式,其中包括地震勘探中常用的变系数波动方程。利用有限单元法,求得了垂向不均匀介质中波动方程的数值解。通过数值结果对纵、横波之间的耦合程度以及介质的不均匀性对波的衰减作用进行了讨论。  相似文献   

16.
利用西沙琛航岛流动地震台站和永兴岛固定地震台站的资料,提取了远震P波接收函数,结合正演和反演方法模拟了台站下方的地壳结构.模拟结果显示:西沙群岛地壳顶部存在2 km厚的新生代低速沉积层,横波速度只有2.0~2.2 km/s;上地壳为一速度梯度带,横波速度由2 km处的3.4 km/s逐渐增加到12 km深度时的3.8 ...  相似文献   

17.
This paper presents a numerical model for the prediction of free field vibrations due to vibratory and impact pile driving. As the focus is on the response in the far field where deformations are relatively small, a linear elastic constitutive behaviour is assumed for the soil. The free field vibrations are calculated by means of a coupled FE–BE model based on a subdomain formulation. First, the case of vibratory pile driving is considered, where the contributions of different types of waves are investigated for several penetration depths. In the near field, the soil response is dominated by a vertically polarized shear wave, whereas in the far field, body waves are importantly attenuated and Rayleigh waves dominate the ground vibration. Second, the case of impact pile driving is considered. A linear wave equation model is used to estimate the impact force during the driving process. Apart from the response of a homogeneous halfspace, it is also investigated how the soil stratification influences the ground vibration for the case of a soft layer on a stiffer halfspace. When the penetration depth is smaller than the layer thickness, the layered medium has no significant influence on ground vibrations. However, when the penetration depth is larger than the layer thickness, the influence of the layered medium becomes more significant. The computed ground vibrations are finally compared with field measurements reported in the literature.  相似文献   

18.
Campi Flegrei is a caldera complex located west of Naples, Italy. The last eruption occurred in 1538, although the volcano has produced unrest episodes since then, involving rapid and large ground movements (up to 2 m vertical in two years), accompanied by intense seismic activity. Surface ground displacements detected by various techniques (mainly InSAR and levelling) for the 1970 to 1996 period can be modelled by a shallow point source in an elastic half-space, however the source depth is not compatible with seismic and drill hole observations, which suggest a magma chamber just below 4 km depth. This apparent paradox has been explained by the presence of boundary fractures marking the caldera collapse. We present here the first full 3-D modelling for the unrest of 1982–1985 including the effect of caldera bordering fractures and the topography. To model the presence of topography and of the complex caldera rim discontinuities, we used a mixed boundary elements method. The a priori caldera geometry is determined initially from gravimetric modelling results and refined by inversion. The presence of the caldera discontinuities allows a fit to the 1982–1985 levelling data as good as, or better than, in the continuous half-space case, with quite a different source depth which fits the actual magma chamber position as seen from seismic waves. These results show the importance of volcanic structures, and mainly of caldera collapses, in ground deformation episodes.  相似文献   

19.
A preliminary finite elements model of the ground deformations observed at Phlegraean Fields is proposed. The model assumes an oblate-spheroid magma chamber at the depth of 5.4 km with major semiaxis of 1.5 km and minor semiaxis of 0.75 km. The dimensions of the magma chamber have been evaluated by using a thermal model based on the assumptions that a progressively cooling huge magmatic body is responsible for the volcanic activity at Phlegraean Fields in the last 35,000 years. Surface deformations caused by an over-pressure of 30 MPa in the magma chamber have been calculated. Constant, and temperature-dependent elastic parameters of the surrounding medium have been considered. Vertical displacements of the order of those presently observed at Phlegraean Fields can be obtained only with temperature-dependent elastic properties of the medium.  相似文献   

20.
A total of 11 earthquakes with 15 Rayleigh wave paths, recorded at 11 broadband digital PASSCAL seismometers installed in the Tibet Plateau by the Sino-U.S. joint research group, were used to determine the phase velocity and attenuation coefficient of surface waves in periods of 10–130 s. The average shear wave velocity and quality factor {ie271-1} structures in the crust and upper mantle were obtained in this region. The result shows the average {ie271-2} is low and there exists a high attenuation ({ie271-3}=93–141) layer in the crust. The depth range of the low {ie271-4} value layer (16–42 km) is consistent with the range of low velocity layer (21–51 km) in the crust. Below 63 km in the lower crust, {ie271-5} decreases with depth from 114 to 34 at depth of 180 km. The low shear wave velocity and low value of {ie271-6} at the same depth range in the crust indicate that the rocks in the range is probably melted or partially melted. According to the shear wave velocity structure, the average thickness of the crust is about 71 km and a clear velocity discontiniuty appears at the depth of 51 km. The low-velocity zone (4. 26 km/s) at depth of 96–180 km may be corresponding to the asthenosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号