首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of a geothermal area is primarily dependent on volume and temperature of the reservoir and adequacy of fluid supply. Inadequate fluid supply may be a more common limiting factor than inadequate heat supply, for heat stored in the upper 10,000 ft of many hot spring systems is 1,000 to 10,000 times their annual natural heat flow. Except in very porous reservoirs, most of this heat is stored in rocks rather than in pore fluids. Geothermal fields can be classified as hot spring systems or as deep insulated reservoirs with little surface expression; gradations also exist. Hot spring systems have high near-surface permeability, at least locally on faults and fractures, permitting fluids to escape at high rates. Owing to vigorous circulation and escaping fluids and heat, near-surface temperatures are high, but temperatures deep in the system are lower than would prevail with inhibited escape. Deep reservoirs with little surface expression require permeable reservoir rocks capped by insulating rocks of low permeability. Larderello, Italy, and Salton Sea, California, have slight leakage, but others may have no leakage. Liquid water, which can be at temperatures far above 100° C because of existing pressures, is generally the dominant fluid. Steam can form by boiling as hot water rises to levels of lower pressure. However, in several explored systems the heat supply is so high and rate of discharge of water so low that steam exists even deep in the system. Dry steam areas are probably rare. About 30 areas in the United States have been explored for geothermal energy, but dry steam has been proved only at « The Geysers ». Extensive utilisation of geothermal energy must therefore depend largely upon steam « flashed » from hot water with decrease in pressure. Problems that confront broad utilisation of geothermal energy include: 1) discovery of reservoirs with adequate supply of energy and natural fluids; 2) deposition of CaCO; or SiO2; 3) chemical corrosion; 4) objectionable chemicals in some effluents; and 5) inapplicability of existing public laws. The optimum environment for a geothermal reservoir includes:
  1. 1.
    Potent source of heat, such as a magma chamber. A depth of at least two miles provides enough pressure to insure water of high temperature; 5 miles may be too deep for effective transfer of heat to circulating water. Such heat sources are most likely to occur in regions of late Cenozoic volcanism.  相似文献   

2.
The western Sichuan hydrothermal area is located at the northeastern margin of the eastern syntaxis of the Qinghai-Tibet Plateau, which is also the eastern end of the Mediterranean-Himalayan geothermal activity zone. There are 248 warm or hot springs in this area, and 11 have temperatures beyond the local boiling temperature. Most of these hot springs are distributed along the Jinshajiang, Dege-Xiangcheng, Ganzi-Litang, and Xianshuihe faults, forming a NW-SE hydrothermal belt. A geothermal analysis of this high-temperature hydrothermal area is an important basis for understanding the deep geodynamic process of the eastern syntaxis of the Qinghai-Tibet Plateau. In addition, this study offers an a priori view to utilize geothermal resources, which is important in both scientific research and application. We use gravity, magnetic, seismic, and helium isotope data to analyze the crust-mantle heat flow ratio and deep geothermal structure. The results show that the background terrestrial heat flow descends from southwest to northeast. The crustal heat ratio is not more than 60%. The high temperature hydrothermal active is related to crustal dynamics processes. Along the Batang-Litang-Kangding line, the Moho depth increases eastward, which is consistent with the changing Qc/Qm(crustal/mantle heat flow) ratio trend. The geoid in the hydrothermal zone is 4–6 km higher than the surroundings, forming a local "platform". The NW-SE striking local tensile stress zone and uplift structure in the upper and middle crust corresponds with the surface hydrothermal active zone. There is an average Curie Point Depth(CPD) of 19.5–22.5 km in Batang, Litang, and Kangding. The local shear-wave(S-wave) velocity is relatively low in the middle and lower crust. The S-wave shows a low velocity trap(Vs3.2 km s.1) at 15–30 km, which is considered a high-temperature partial melting magma, the crustal source of the hydrothermal active zone. We conclude that the hydrothermal system in this area can be divided into Batang-type and Kangding-type, both of which rely on a crustal heating cycle of atmospheric precipitation and surface water along the fracture zone. The heat is derived from the middle and lower crust: groundwater penetrates the deep faults bringing geothermal energy back to the surface and forming high-temperature springs.  相似文献   

3.
秦岭北缘断裂带温泉水渗流特征与地震活动水平研究   总被引:1,自引:0,他引:1  
前人对秦岭北缘断裂带出露温泉水的氢氧同位素、He同位素和SiO2含量进行了计算,得到了温泉水的热储温度和循环深度。在此基础上,运用温度场作用下的热水垂向运移数学模型演算了循环深度和断层带渗透性之间的关系。根据1970~2008年的区域台网资料,对断裂带进行了分段地震活动多参数组合方法分析,并结合历史中强地震(公元前781年~公元2008年)的空间分布特点,分析总结了断层带不同区段渗透特征和地震活动的关系。最后对秦岭北缘断裂带的渗透性成因进行了解释。  相似文献   

4.
The formation of the hydrothermal system in the Valley of Geysers is shown to be governed by a structure of radial and circular faults of above-intrusion zone of a partially melted magmatic body with an epicenter near the Upper-Geyser Field, while the hydrothermal system is shown to receive its water from elevations of +500 to +900 m abs (according to isotopic data). The catastrophic landslide of June 3, 2007, was just a stage in the general scenario of the gradual hydrothermal transformation of the inclined Geyser unit (Q 3 4 grn), building up the roof of the hydrothermal reservoir, with a gradual decline of slide resistance. The slide was triggered by the increased pressure in the hydrothermal and magmatic systems and the saturation of the Geyser unit by moisture during spring flood. According to the data of continuous regime thermohydrodynamic observations carried out in the Valley of Geysers with the use of HOBO-loggers of temperature and pressure since July 2007 to April 2010, the mean time between eruptions of Velikan geyser was 348 minutes. The intensification of precipitation input directly into the geyser pool causes a short-time increase in the time between eruptions (up to the maximum of 32 h). According to observations at the “Plotina” gage, the total estimated mean annual discharge of thermal springs (by chlorine ion) in the Valley of Geysers is 263 kg/s; the discharge of thermal springs is governed by the level of Poldprudnoe Lake and its seasonal variations exceed 40%.  相似文献   

5.
Natural hot spring waters ascending rapidly to the surface become supersaturated with respect to quartz because of rapid cooling, separation of steam and sluggish deposition of quartz and other crystallineSiO 2 phases. Large amounts of silica are likely to be deposited in hot spring systems only after the solubility of amorphous silica has been exceeded. Cristobalite and chaleedony probably form in hot spring systems only by the crystallization of previously deposited silica gel rather than by direct deposition from solution. Experimental data indicate that the solubilit of quartz in water rises with increasing temperature along the vapor pressure curve to a maximum value of 725 ppm at 330°C. However, the maximum amount of silica likely, to occur in hot spring systems where quartz precipitates at depth is appreciably greater. Steam formation during adiabatic cooling of a water quickly brought to the surface from 330°C at depth might leave the silica in the remaining liquid concentrated to about 1150 to 1400 ppm. Under such conditions, amorphous silica might precipitate (probably as a colloidal suspension) after the water cooled below about 200°C to 250°C. Waters initially in equilibrium with quartz at a temperature less than 210°C probably will precipitate amorphous silica in channelways underground only when and where large quantities of steam separate from the waters as a result of sudden decreases in pressure or hydrostatic head. Above 150° to 200°C amorphous silica and volcanic glass can contribute very large quantities of silica to the solution. However, at these temperatures in natural systems they are eventually converted to crystalline phases. Thus, control of dissolved silica at depth is likely to be relatively short lived in respect to the ages of most hot spring systems. The dissolved-silica content of 90 hot spring waters from Yellowstone National Park was measured colorimetrically in the field immediately after collection. Comparison with laboratory studies on the solubility of amorphous silica indicates that many waters in «alkaline» springs are markedly undersaturated with silica with respect to amorphous silica at the temperatures of the pools. Thus, the dissolved silica content of these waters cannot be accounted for by equilibria with amorphous silica. Rather, silica appears to be controlled by the dissolution, deposition, or alteration of other silica-bearing phases at depth. Furthermore, many springs now have compositions essentially identical (with respect to all components) to those determined in 1888, indicating that either equilibrium or steady state conditions have prevailed at depth for a long time. Veins of fine-grained quartz were found in drill core from the Upper Basin, and it is reasonable to assume that quartz controlled the quantity of silica in solution in those places of deposition. Possibly the silica content of the surface waters might allow an estimate of the temperatures at which these waters were last in equilibrium with quartz at depth. Assuming adiabatic cooling along the vapor pressure curve and correcting for steam formation, quartz solubility data compared with natural water analyses suggests that underground temperatures approach 205°C in the Upper Geyser Basin of Yellowstone. In the Norris Geyser Basin, underground temperatures of 245°C are suggested.  相似文献   

6.
A geochemical study of thermal and cold springs, stream waters and gas emissions has been carried out in the Mt. Amiata geothermal region.The cold springs and stream waters do not seem to have received significant contribution from hot deep fluids. On the contrary, the thermal springs present complex and not clearly quantifiable interactions with the hot fluids of the main geothermal reservoir.The liquid-dominated systems in the Mt. Amiata area, like most of the high-enthalpy geothermal fields in the world, are characterized by saline, NaCl fluids. The nature of the reservoir rock (carbonatic and anhydritic), and its widespread occurrence in central Italy, favor a regional circulation of “Ca-sulfate” thermal waters, which discharge from its outcrop areas. Waters of this kind, which have been considered recharge waters of the known geothermal fields, dilute, disperse and react with the deep geothermal fluids in the Mt. Amiata area, preventing the use of the main chemical geothermometers for prospecting purposes. The temperatures obtained from the chemical geothermometers vary widely and are generally cooler than temperatures measured in producing wells.Other thermal anomalies in central Italy, apart from those already known, might be masked by the above-mentioned circulation. A better knowledge of deep-fluid chemistry could contribute to the calibration of specific geothermometers for waters from reservoirs in carbonatic rocks.  相似文献   

7.
The Imperial Valley is a major rift valley characterized by unusually high heat flow and large quantities of water in storage in the thick fill of alluvium provided by the sediments of the delta of the Colorado River. The inventory of hot water appears to be sufliciently large that if used for water desalination it might add several million acreleet of new water to the resources of the lower Colorado River basin. This distilled water would serve to lower river salinity and provide extra water to help meet the U. S. — Mexico treaty commitments. A major fraction of water desalination costs lie in the cost of energy and are related to desalination technology which is directly related to water chemistry. The discovery of low salinity geothermal waters in the Imperial Valley opened th possibility for a major breakthrough in lowered water desalination costs. We have tried to develop a broad understanding of the origins of the waters of the Imperial Valley and how natural recharge occurs. The chemical composition of the waters of the central portion of Imperial Valley basin waters, while not that of present surface flow of the rivers, nevertheless does have a close affinity to Colorado River water. No sea water seems to be present in the valley although marine sediments appear to occur on basement on West Mesa and on basement to the east in Arizona south of Yuma. Low salinity waters dominate the basin hydrology and waters as saline or more saline than sea water appear to be restricted to the immediate area of the Salton Sea. The isotope work of T. Coplen makes it possible to determine the relative contribution of precipitation runoff from California watersheds and from Colorado River water. Both sources are significant. The Colorado River water in aquifers from 100–400 m appears to have been entrapped from a relatively homogeneous basin which was subject to substantial evaporation. Its original source was snow melt water from the Colorado River. Five types of waters, none of them sea water, were recognized by their salt geochemistry. Bromide/chloride data are particularly effective in resolving different types of water masses. The bromide/chloride data agree with the isotope data and identify rainfall and precipitation runoff from the high mountains to the west. Modern Colorado River water is easily recognized by its salts and two types of ancient Colorado River waters from previous lake stage are proposed on the basis of the bromide/chloride data. One old lake occurring during the pluvial stage associated with the last Ice Age is proposed to account for much of the water in artesian aquifers. Another younger lake stage, possibly with Lake Cahuilla affinities is also suggested. Mountain runoff waters can be distinguished in the subsurface by their relatively lower salinity and high bicarbonate concentration, and their heavy isotopic composition. Revised fluid reserve calculations based on additional porosity data continue to show that the low salinity water resources of the Imperial Valley may exceed two billion acre-feet. The oceanic plate tectonic model is modified in the Imperial Valley by the evidence of a series of complex blocks with the generation of both tensional and compressional features in the valley. Major strike slip faults dominate the tectonic fabric but conjugate features increase complexity by a large degree and a major amount of work will be needed before any geologically sound structural models can be generated. Xenoliths within the obsidians at the volcanoes at the south end of the Salton Sea provide samples of the basement under the Imperial Valley. These xenoliths include partially remelted granitic rocks, fragments of basalt, greenschist, and baked shale and sandstone. This is taken as evidence that the basement in the valley consists in part of partially remelted granite. This would render basement plastic and readily deformed. The source of the heat is suggested to be derived from basalt that comes into the basement and deeper sediments from below. This upward movement of basalt along a spreading zone is the continental equivalent to a sea floor spreading area. In the continental case the insulating blanket of wet sediment retains the heat and appears to produce a major geothermal resource. The geothermal resources of the Imperial Valley are the aggregate of the thermal energy of the large inventory of subsurface water heated by the complex mix of intrusive phenomena. The net result is to generate a polygenetic geothermal resource of very large dimensions.  相似文献   

8.
9.
 The purpose of this work was to study jointly the volcanic-hydrothermal system of the high-risk volcano La Soufrière, in the southern part of Basse-Terre, and the geothermal area of Bouillante, on its western coast, to derive an all-embracing and coherent conceptual geochemical model that provides the necessary basis for adequate volcanic surveillance and further geothermal exploration. The active andesitic dome of La Soufrière has erupted eight times since 1660, most recently in 1976–1977. All these historic eruptions have been phreatic. High-salinity, Na–Cl geothermal liquids circulate in the Bouillante geothermal reservoir, at temperatures close to 250  °C. These Na–Cl solutions rise toward the surface, undergo boiling and mixing with groundwater and/or seawater, and feed most Na–Cl thermal springs in the central Bouillante area. The Na–Cl thermal springs are surrounded by Na–HCO3 thermal springs and by the Na–Cl thermal spring of Anse à la Barque (a groundwater slightly mixed with seawater), which are all heated through conductive transfer. The two main fumarolic fields of La Soufrière area discharge vapors formed through boiling of hydrothermal aqueous solutions at temperatures of 190–215  °C below the "Ty" fault area and close to 260  °C below the dome summit. The boiling liquid producing the vapors of the Ty fault area has δD and δ18O values relatively similar to those of the Na–Cl liquids of the Bouillante geothermal reservoir, whereas the liquid originating the vapors of the summit fumaroles is strongly enriched in 18O, due to input of magmatic fluids from below. This process is also responsible for the paucity of CH4 in the fumaroles. The thermal features around La Soufrière dome include: (a) Ca–SO4 springs, produced through absorption of hydrothermal vapors in shallow groundwaters; (b) conductively heated, Ca–Na–HCO3 springs; and (c) two Ca–Na–Cl springs produced through mixing of shallow Ca–SO4 waters and deep Na–Cl hydrothermal liquids. The geographical distribution of the different thermal features of La Soufrière area indicates the presence of: (a) a central zone dominated by the ascent of steam, which either discharges at the surface in the fumarolic fields or is absorbed in shallow groundwaters; and (b) an outer zone, where the shallow groundwaters are heated through conduction or addition of Na–Cl liquids coming from hydrothermal aquifer(s). Received: 9 November 1998 / Accepted: 15 July 1999  相似文献   

10.
During two expeditions in the Danakil depression (Ethiopia), water samples were collected from: (a) hot springs in Dallol, Salt Plain, in the north of the depression; (b) cold and hot springs around Lake Giulietti; and c) Lake Giulietti.The isotopic results indicate: the water from Dallol hot springs is enriched in18O by isotopic exchange with the rocks as has been observed in many other geothermal areas of the world; b) the isotopic composition of the Lake Giulietti water changes with depth, probably as a consequence of a seasonal stratification; c) the springs in the Lake Giulietti region contain waters which result from the mixing of local meteoric water with a brine, or with lake waters.  相似文献   

11.
12.
Application of various chemical geothermometers and mixing models indicate underground temperatures of 260°C, 280°C and 265°C in the Geysir, Hveravellir and Landmannalaugar geothermal fields in Iceland, respectively. Mixing of the hot water with cold water occurs in the upflow zones of all these geothermal systems. Linear relations between chloride, boron and δ18O constitute the main evidence for mixing, which is further substantiated by chloride, silica and sulphate relations in the Geysir and Hveravellir fields.A new carbonate-silica mixing model is proposed which is useful in distinguishing boiled and non-boiled geothermal waters. This model can also be used to estimate underground temperatures using data from warm springs. This model, as well as the chloride-enthalpy model and the Na-Li, and CO2-gas geothermometers, invariably yield similar results as the quartz geothermometer sometimes also does. By contrast, the Na-K and the Na-K-Ca geothermometers yield low values in the case of boiling hot springs, largely due to loss of potassium from solution in the upflow. The results of these geothermometers are unreliable for mixed waters due to leaching subsequent to mixing.  相似文献   

13.
The South Poroto–Rungwe geothermal field, in the northern part of the Malawi rift, Tanzania divides in two main areas. The relatively high altitude northern area around the main Ngozi, Rungwe, Tukuyu and Kyejo volcanoes, is characterised by cold and gas-rich springs. In contrast, hot springs occur in the southern and low-altitude area between the Kyela and Livingstone faults. The isotopic signature of the almost stagnant, cold springs of the Northern district is clearly influenced by H2O–CO2(g) exchange as evidenced from negative oxygen-shifts in the order of few deltas permil. In contrast, the isotopic signature of waters discharged from the hot springs of the Southern district is markedly less affected by the H2O–CO2(g) interaction. This evidence is interpreted as an effect of the large, permanent outflow of these springs, which supports the hypothesis of a regional-scale recharge of the major thermal springs. Measurements of carbon isotope variations of the dissolved inorganic carbon of waters and CO2(g) from the Northern and Southern springs support a model of CO2(g)-driven reactivity all over the investigated area. Our combined chemical and isotopic results show that the composition of hot springs is consistent with a mixing between (i) cold surface fresh (SFW) and (ii) Deep Hot Mineralised (DHMW) Water, indicating that the deep-originated fluids also supply most of the aqueous species dissolved in the surface waters used as local potable water. Based on geothermometric approaches, the temperature of the deep hydrothermal system has been estimated to be higher than 110 °C up to 185 °C, in agreement with the geological and thermal setting of the Malawi rift basin. Geochemical data point to (i) a major upflow zone of geothermal fluids mixed with shallow meteoric waters in the Southern part of the province, and (ii) gas absorption phenomena in the small, perched aquifers of the Northern volcanic highlands.  相似文献   

14.
Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of the convective geothermal reservoir. Variations in porosity and matrix permeability observed in the Y-5 and Y-8 cores are primarily controlled by lithology. Y-8 intersects three distinct lithologies: volcaniclastic sandstone, perlitic rhyolitic lava, and non-welded pumiceous ash-flow tuff. The sandstone typically has high permeability and porosity, and the tuff has very high porosity and moderate permeability, while the perlitic lava has very low porosity and is essentially impermeable. Hydrothermal self-sealing appears to have generated localized permeability barriers within the reservoir. Changes in pressure and temperature in Y-8 correspond to a zone of silicification in the volcaniclastic sandstone just above the contact with the perlitic rhyolite; this silicification has significantly reduced porosity and permeability. In rocks with inherently low matrix permeability (such as densely welded ash-flow tuff), fluid flow is controlled by the fracture network. The Y-5 core hole penetrates a thick intracaldera section of the 0.6-Ma Lava Creek ash-flow tuff. In this core, the degree of welding appears to be responsible for most of the variations in porosity, matrix permeability, and the frequency of fractures and veins. Fractures are most abundant within the more densely welded sections of the tuff. However, the most prominent zones of fracturing and mineralization are associated with hydrothermal breccias within densely welded portions of the tuff. These breccia zones represent transient conduits of high fluid flow that formed by the explosive release of overpressure in the underlying geothermal reservoir and that were subsequently sealed by supersaturated geothermal fluids. In addition to this fracture sealing, hydrothermal alteration at Yellowstone appears generally to reduce matrix permeability and focus flow along fractures, where multiple pulses of fluid flow and self-sealing have occurred.  相似文献   

15.
New data are reported relating to the presence and relative concentrations of organic compounds of medium volatility in samples from the water of hot springs and in the condensate of a steam–water mixture from wells drilled in the Mutnovskii geothermal area and from a well and springs in the Uzon caldera. The Mutnovskii area was found to contain 95 compounds belonging to 16 homologous series, with 71 compounds (12 series) in the Uzon caldera. Among these we found homologous series of biologically important compounds: carbonic acids, alcohols, ethers, aldehydes, ketones, and others. Evidence was obtained for a contribution of the abiogenic component in organic matter from sterile condensates of an overheated steam–water mixture from wells (alkanes, aromatic hydrocarbons, ketones, alcohols, and others) and in thermal water from natural discharges (in particular, alkanes and chlorine-containing hydrocarbons). The results of this study can be used for the preparation and conduction of laboratory experiments in prebiological chemistry under conditions that simulate a hydrothermal environment.  相似文献   

16.
Studies of the geology, geochemistry of thermal waters, and of one exploratory geothermal well show that two related hot spring systems discharge in Canõn de San Diego at Soda Dam (48°C) and Jemez Springs (72°C). The hot springs discharge from separate strands of the Jemez fault zone which trends northeastward towards the center of Valles Caldera. Exploration drilling to Precambrian basement beneath Jemez Springs encountered a hot aquifer (68°C) at the top of Paleozoic limestone of appropriate temperature and composition to be the local source of the fluids in the surface hot springs at Jemez Springs. Comparisons of the soluble elements Na, Li, Cl, and B, arguments based on isotopic evidence, and chemical geothermometry indicate that the hot spring fluids are derivatives of the deep geothermal fluid within Valles Caldera. No hot aquifer was discovered in or on top of Precambrian basement. It appears that low- to moderate-temperature geothermal reservoirs (< 100°C) of small volume are localized along the Jemez fault zone between Jemez Springs and the margin of Valles Caldera.  相似文献   

17.
The Mt. Amiata volcano in central Italy is intimately related to the post-orogenic magmatic activity which started in Pliocene times. Major, trace elements, and isotopic composition of thermal and cold spring waters and gas manifestations indicate the occurrence of three main reservoir of the thermal and cold waters in the Mt. Amiata region. The deepest one is located in an extensive carbonate reservoir buried by thick sequences of low-permeability allochthonous and neo-autochthonous formations. Thermal spring waters discharging from this aquifer have a neutral Ca-SO4 composition due to the presence of anhydrite layers at the base of the carbonate series and, possibly, to absorption of deep-derived H2S with subsequent oxidation to SO42− in a system where pH is buffered by the calcite–anhydrite pair (Marini and Chiodini, 1994). Isotopic signature of these springs and N2-rich composition of associated gas phases suggest a clear local meteoric origin of the feeding waters, and atmospheric O2 may be responsible for the oxidation of H2S. The two shallower aquifers have different chemical features. One is Ca-HCO3 in composition and located in several sedimentary formations above the Mesozoic carbonates. The other one has a Na-Cl composition and is hosted in marine sediments filling many post-orogenic NW–SE-trending basins. Strontium, Ba, F, and Br contents have been used to group waters associated with each aquifer. Although circulating to some extent in the same carbonate reservoir, the deep geothermal fluids at Latera and Mt. Amiata and thermal springs discharging from their outcropping areas have different composition: Na-Cl and Ca-SO4 type, respectively. Considering the high permeability of the reservoir rock, the meteoric origin of thermal springs and the two different composition of the thermal waters, self-sealed barriers must be present at the boundaries of the geothermal systems. The complex hydrology of the reservoir rocks greatly affects the reliability of geothermometers in liquid phase, which understimate the real temperatures of the discovered geothermal fields. More reliable temperatures are envisaged by using gas composition-based geothermometers. Bulk composition of the 67 gas samples studied seems to be the result of a continuous mixing between a N2-rich component of meteoric origin related to the Ca-SO4 aquifer and a deep CO2-rich component rising largely along the boundaries of the geothermal systems. Nitrogen-rich gas samples have nearly atmospheric N2/Ar (=83) and

/

(δ=0‰) ratios whereas CO2-rich samples show anomalously high

values (up to +6.13 ‰), likely related to N2 from metamorphic schists lying below the carbonate formations. On the basis of average

/

isotopic ratio (

around 0‰), CO2 seems to originate mainly from thermometamorphic reactions in the carbonate reservoir and/or in carbonate layers embedded in the underlying metamorphic basement. Distribution of

/

isotopic ratios indicates a radiogenic origin of helium in a tectonic environment that, in spite of the presence of many post-orogenic basins and mantle-derived magmatics, can presently be considered in a compressive phase.  相似文献   

18.
Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines.Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors.To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called “reactivation of platform” with large-scale faulting and magmatism.Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then several experimental power stations using thermal water have been set up in Fengshun (Fungshun),  相似文献   

19.
Unzen volcano is situated on Shimabara Peninsula, western Kyushu, Japan. On the flank of the volcano, the Obama, Unzen and Shimabara hot springs are aligned in a direction from the southwest to the northeast across the peak. At Obama and Shimabara, heat is transferred mainly by water flow. But at Unzen heat is transferred by the discharge of natural steam and by conduction as well as water flow. In order to estimate the heat discharge by mechanisms other than water flow, infrared measurements by a helicopter-borne thermocamera were conducted over the Unzen hot spring area. The heat discharge was calculated from the thermal image by a method based on heat balance of the ground surface resulting in a value of 1.9 × 106 cal/s (7.9 MW). The heat discharged by all mechanisms including that by water flow is estimated to be 5.0 × 106 cal/s (21 MW). Similar preliminary estimates have been made for heat discharge at the Obama and Shimabara hot springs giving values of about 1.2 × 107 cal/s (50 MW) and 1.0 × 105 cal/s (0.4 MW), respectively. These values indicate that the heat discharge decreases with distance from the southwest to the northeast direction across the volcano. The total heat discharge from three hot spring areas on Unzen volcano is about 1.7 × 107 cal/s (71 MW).The heat balance method appears useful for quantitative analysis of regional trends but its accuracy may not be always sufficient for detailed surveys. Several methods of determining heat flow, including the heat balance method, were compared at a test field in the Unzen hot spring area. The values obtained by the heat balance method coincide roughly with the other results but more detailed analysis is necessary to improve the accuracy of current methods of geothermal measurements.  相似文献   

20.
王道 《内陆地震》1990,4(1):33-43
根据地球内部热状况及震源热力学理论,分析了全球地热带与地震活动带之间的密切关系。指出我国1966年—1988年强震(Ms≥7.0)多发生在地热异常区的边缘(两端和两侧)及两个相近热区之间的地热梯度带。认为区域热流动态的分布特征是地震危险区的重要判别指标之一,与构造活动断裂有关的深井,温泉的温度变化可能是地热异常显示的灵敏“窗口”。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号