首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early Palaeozoic kyanite–staurolite‐bearing epidote–amphibolites including foliated epidote–amphibolite (FEA), and nonfoliated leucocratic or melanocratic metagabbros (LMG, MMG), occur in the Fuko Pass metacumulate unit (FPM) of the Oeyama belt, SW Japan. Microtextural relationships and mineral chemistry define three metamorphic stages: relict granulite facies metamorphism (M1), high‐P (HP) epidote–amphibolite facies metamorphism (M2), and retrogression (M3). M1 is preserved as relict Al‐rich diopside (up to 8.5 wt.% Al2O3) and pseudomorphs after spinel and plagioclase in the MMG, suggesting a medium‐P granulite facies condition (0.8–1.3 GPa at > 850 °C). An unusually low‐variance M2 assemblage, Hbl + Czo + Ky ± St + Pg + Rt ± Ab ± Crn, occurs in the matrix of all rock types. The presence of relict plagioclase inclusions in M2 kyanite associated with clinozoisite indicates a hydration reaction to form the kyanite‐bearing M2 assemblage during cooling. The corundum‐bearing phase equilibria constrain a qualitative metamorphic P–T condition of 1.1–1.9 GPa at 550–800 °C for M2. The M2 minerals were locally replaced by M3 margarite, paragonite, plagioclase and/or chlorite. The breakdown of M2 kyanite to produce the M3 assemblage at < 0.5 GPa and 450–500 °C suggests a greenschist facies overprint during decompression. The P–T evolution of the FPM may represent subduction of an oceanic plateau with a granulite facies lower crust and subsequent exhumation in a Pacific‐type orogen.  相似文献   

2.
ABSTRACT The high-grade rocks (metapelite, quartzite, metagabbro) of the Hisøy-Torungen area represent the south-westernmost exposures of granulites in the Proterozoic Bamble sector, south Norway. The area is isoclinally folded and a metamorphic P–T–t path through four successive stages (M1-M4) is recognized. Petrological evidence for a prograde metamorphic event (M1) is obtained from relict staurolite + chlorite + albite, staurolite + hercynite + ilmenite, cordierite + sillimanite, fine-grained felsic material + quartz and hercynite + biotite ± sillimanite within metapelitic garnet. The phase relations are consistent with a pressure of 3.6 ± 0.5 kbar and temperatures up to 750–850°C. M1 is connected to the thermal effect of the gabbroic intrusions prior to the main (M2) Sveconorwegian granulite facies metamorphism. The main M2 granulite facies mineral assemblages (quartz+ plagioclase + K-feldspar + garnet + biotite ± sillimanite) are best preserved in the several-metre-wide Al-rich metapelites, which represent conditions of 5.9–9.1 kbar and 790–884°C. These P–T conditions are consistent with a temperature increase of 80–100°C relative to the adjacent amphibolite facies terranes. No accompanying pressure variations are recorded. Up to 1-mm-wide fine-grained felsic veinlets appear in several units and represent remnants of a former melt formed by the reaction: Bt + Sil + Qtz→Grt + lq. This dehydration reaction, together with the absence of large-scale migmatites in the area, suggests a very reduced water activity in the rocks and XH2O = 0.25 in the C–O–H fluid system was calculated for a metapelitic unit. A low but variable water activity can best explain the presence or absence of fine-grained felsic material representing a former melt in the different granulitic metapelites. The strongly peraluminous composition of the felsic veinlets is due to the reaction: Grt +former melt ± Sil→Crd + Bt ± Qtz + H2O, which has given poorly crystalline cordierite aggregates intergrown with well-crystalline biotite. The cordierite- and biotite-producing reaction constrains a steep first-stage retrograde (relative to M2) uplift path. Decimetre- to metre-wide, strongly banded metapelites (quartz + plagioclase + biotite + garnet ± sillimanite) inter-layered with quartzites are retrograded to (M3) amphibolite facies assemblages. A P–T estimate of 1.7–5.6 kbar, 516–581°C is obtained from geothermobarometry based on rim-rim analyses of garnet–biotite–plagioclase–sillimanite–quartz assemblages, and can be related to the isoclinal folding of the rocks. M4 greenschist facies conditions are most extensively developed in millimetre-wide chlorite-rich, calcite-bearing veins cutting the foliation.  相似文献   

3.
Abstract Portions of three Proterozoic tectonostratigraphic sequences are exposed in the Cimarron Mountains of New Mexico. The Cimarron River tectonic unit has affinities to a convergent margin plutonic/volcanic complex. Igneous hornblende from a quartz diorite stock records an emplacement pressure of 2–2.6 kbar. Rocks within this unit were subsequently deformed during a greenschist facies regional metamorphism at 4–5 kbar and 330 ± 50° C. The Tolby Meadow tectonic unit consists of quartzite and schist. Mineral assemblages are indicative of regional metamorphism at pressures near 4 kbar and temperatures of 520 ± 20° C. A low-angle ductile shear zone separates this succession from gneisses of the structurally underlying Eagle Nest tectonic unit. Gneissic granite yields hornblende pressures of 6–8 kbar. Pelitic gneiss records regional metamorphic conditions of 6–7 kbar and 705 ± 15° C, overprinted by retrogression at 4 kbar and 530 ± 10° C. Comparison of metamorphic and retrograde conditions indicates a P–T path dominated by decompression and cooling. The low-angle ductile shear zone represents an extensional structure which was active during metamorphism. This extension juxtaposed the Tolby Meadow and Eagle Nest units at 4 kbar and 520° C. Both units were later overprinted by folding and low-grade metamorphism, and then were emplaced against the Cimarron River tectonic unit by right-slip movement along the steeply dipping Fowler Pass shear zone. An argon isotope-correlation age obtained from igneous hornblende dates plutonism in the Cimarron River unit at 1678 Ma. Muscovite associated with the greenschist facies metamorphic overprint yields a 40 Ar/39 Ar plateau age of 1350 Ma. By contrast, rocks within the Tolby Meadow and Eagle Nest units yield significantly younger argon cooling ages. Hornblende isotope-correlation ages of 1394–1398 Ma are interpreted to date cooling during middle Proterozoic extension. Muscovite plateau ages of 1267–1257 Ma appear to date cooling from the low-grade metamorphic overprint. The latest ductile movement along the Fowler Pass shear zone post-dated these cooling ages. Argon released from muscovites of the Eagle Nest/Tolby Meadow composite unit, at low experimental temperatures, yields apparent ages of c. 1100 Ma. Similar ages are not obtained north-east of the Fowler Pass shear zone, suggesting movement more recently than 1100 Ma.  相似文献   

4.
The paragenetic relationships between sillimanite, andalusite, kyanite, chlorite, cordierite, biotite, garnet and staurolite in the Early Proterozoic Puolankajärvi Formation (PjF), together with mineral compositions, are used to construct a partial petrogenetic grid for metapelites with significant Mn content (MnO = 0.1–0.5%) by adding a six-phase invariant point over the garnet-absent invariant point for Mn-free AMF-phases.
The grid and textural relations of the PjF are used to construct part of the P–T –deformation path for the PjF. Relatively short deformation pulses and associated flow of oxidizing fluid along shear zones were responsible for the paragenetic and compositional changes during cooling and decompression at 600–500°C and 6.0–2.5 kbar. Oxidation led to decreased Fe2+ and further stressed the importance of Mn (increased Mn/divalent cations).
A tectonothermal evolution of the Kainuu Schist Belt is presented which includes crustal thinning and steepening of a previously established thermal gradient. This was followed by thrusting and folding of the isotherms into a thermal antiform on the western side of the belt.  相似文献   

5.
Metamorphic pressure–temperature (PT) paths derived from 16 growth‐zoned garnets, nine from this study and seven from a previous study, have been combined to construct a detailed composite path for an area in the hinterland of the Cretaceous to early Tertiary Sevier orogenic belt in southern Idaho and north‐west Utah. Samples are from two Proterozoic units in the footwall of the Basin‐Elba thrust: the schist of Mahogany Peaks in the central Albion Mountains, Idaho, and the schist of Stevens Spring in the Basin Creek area of the Grouse Creek Mountains, Utah, ~40 km to the south. The simulated portions of the garnets analysed in this study grew from reactions involving the breakdown of chlorite in the upper greenschist to lower amphibolite facies. Multiple garnets were analysed from three samples. Overlapping segments of PT paths from different garnets in the same sample correlate with respect to slope and garnet Mn concentration. The composite PT path documents three episodes of sharply increasing pressures separated by two episodes of pressure decrease, all during progressively increasing temperatures. The path is interpreted to represent alternating episodes of synconvergent thrusting and extensional exhumation in the hinterland of the Sevier orogen. Burial was probably caused by the Basin‐Elba fault, the only major thrust exposed in the region. Extensional exhumation may have occurred along the Mahogany Peaks or Emigrant Spring faults, or by extensional reactivation of the Basin‐Elba fault. This method of correlating partial PT paths to reveal a more complete composite path provides a powerful tool in unveiling orogenic histories in metamorphic terranes, where evidence of major structures responsible for burial and exhumation is commonly obscured by later events.  相似文献   

6.
Prograde P–T paths recorded by the chemistry of minerals of subduction‐related metamorphic rocks allow inference of tectonic processes at convergent margins. This paper elucidates the changing P–T conditions during garnet growth in pelitic schists of the Sambagawa metamorphic belt, which is a subduction related metamorphic belt in the south‐western part of Japan. Three types of chemical zoning patterns were observed in garnet: Ca‐rich normal zoning, Ca‐poor normal zoning and intrasectoral zoning. Petrological studies indicate that normally‐zoned garnet grains grew keeping surface chemical equilibrium with the matrix, in the stable mineral assemblage of garnet + muscovite + chlorite + plagioclase + paragonite + epidote + quartz ± biotite. Pressure and temperature histories were inversely calculated from the normally‐zoned garnet in this assemblage, applying the differential thermodynamic method (Gibbs' method) with the latest available thermodynamic data set for minerals. The deduced P–T paths indicate slight increase of temperature with increasing pressure throughout garnet growth, having an average dP/dT of 0.4–0.5 GPa/100 °C. Garnet started growing at around 470 °C and 0.6 GPa to achieve the thermal and baric peak condition near the rim (520 °C, 0.9 GPa). The high‐temperature condition at relatively low pressure (for subduction related metamorphism) suggests that heating occurred before or simultaneously with subduction.  相似文献   

7.
High‐pressure basic granulites are widely distributed as enclaves and sheet‐like blocks in the Huaian TTG gneiss terrane in the Sanggan area of the Central Zone of the North China craton. Four stages of the metamorphic history have been recognised in mineral assemblages based on inclusion, exsolution and reaction textures integrated with garnet zonation patterns as revealed by compositional maps and compositional profiles. The P–T conditions for each metamorphic stage were obtained using thermodynamically and experimentally calibrated geothermobarometers. The low‐Ca core of growth‐zoned garnet, along with inclusion minerals, defines a prograde assemblage (M1) of garnet + clinopyroxene + plagioclase + quartz, yielding 700 °C and 10 kbar. The peak of metamorphism at about 750–870 °C and 11–14.5 kbar (M2) is defined by high‐Ca domains in garnet interiors and inclusion minerals of clinopyroxene, plagioclase and quartz. Kelyphites or coronas of orthopyroxene + plagioclase ± magnetite around garnet porphyroblasts indicate garnet breakdown reactions (M3) at conditions around 770–830 °C and 8.5–10.5 kbar. Garnet exsolution lamellae in clinopyroxene and kelyphites of amphibole + plagioclase around garnet formed during the cooling process at about 500–650 °C and 5.5–8 kbar (M4). These results help define a sequential P–T path containing prograde, near‐isothermal decompression (ITD) and near‐isobaric cooling (IBC) stages. The clockwise hybrid ITD and IBC P–T paths of the HP granulites in the Sanggan area imply a model of thickening followed by extension in a collisional environment. Furthermore, the relatively high‐pressures (6–14.5 kbar) of the four metamorphic stages and the geometry of the P–T paths suggest that the HP granulites, together with their host Huaian TTG gneisses, represent the lower plate in a crust thickened during collision. The corresponding upper‐plate might be the tectonically overlying Khondalite series, which was subjected to medium‐ to low‐pressure (MP/LP: 7–4 kbar) granulite facies metamorphism with a clockwise P–T path including an ITD segment. Both the HP and the MP/LP granulite facies events occurred contemporaneously at c. 1.90–1.85 Ga in a collisional environment created by the assembly process of the North China craton.  相似文献   

8.
The late Palaeozoic western Tianshan high‐pressure /low‐temperature belt extends for about 200 km along the south‐central Tianshan suture zone and is composed mainly of blueschist, eclogite and epidote amphibolite/greenschist facies rocks. P–T conditions of mafic garnet omphacite and garnet–omphacite blueschist, which are interlayered with eclogite, were investigated in order to establish an exhumation path for these high‐pressure rocks. Maximum pressure conditions are represented by the assemblage garnet–omphacite–paragonite–phengite–glaucophane–quartz–rutile. Estimated maximum pressures range between 18 and 21 kbar at temperatures between 490 and 570 °C. Decompression caused the destabilization of omphacite, garnet and glaucophane to albite, Ca‐amphibole and chlorite. The post‐eclogite facies metamorphic conditions between 9 and 14 kbar at 480–570 °C suggest an almost isothermal decompression from eclogite to epidote–amphibolite facies conditions. Prograde growth zoning and mineral inclusions in garnet as well as post‐eclogite facies conditions are evidence for a clockwise P–T path. Analysis of phase diagrams constrains the P–T path to more or less isothermal cooling which is well corroborated by the results of geothermobarometry and mineral textures. This implies that the high‐pressure rocks from the western Tianshan Orogen formed in a tectonic regime similar to ‘Alpine‐type’ tectonics. This contradicts previous models which favour ‘Franciscan‐type’ tectonics for the southern Tianshan high‐pressure rocks.  相似文献   

9.
Metanorites from two eclogitized metagabbros of the Hercynian French Massif Central preserve coronitic textures of hornblende, garnet, quartz and/or kyanite produced at the expense of the primary magmatic assemblage orthopyroxene and plagioclase. Using a petrogenetic grid in the CFMASH system, two possible PT evolutions for the origin of the coronas are evaluated. The sequence of reactions involving the formation of Hbl (–Ky) ± Grt and Qtz coronitic assemblages is consistent with an isobaric cooling at high pressure (c. 1–2 GPa) under hydrated conditions. However, this PT path, inferred by using only petrographical observations, is inconsistent with the geochronological constraints: emplacement of the gabbro at 490 Ma and high‐pressure metamorphism at 410 Ma. In order to reconcile petrographical observations with geochronological constraints, we propose a discontinuous two‐stage evolution involving a change in water activity with time. (1) Emplacement and cooling of the norite at low pressure under anhydrous conditions, at 490 Ma. (2) During the Hercynian orogeny, the norite experienced an increase in pressure and temperature under fluid‐present conditions. Adding water to the system implies a dramatic change in the petrogenetic grid topology, restricting the orthopyroxene–plagioclase assemblage only to high temperatures. Therefore, the breakdown of the unstable magmatic assemblage, through apparent retrograde reactions, occurred along the prograde PT path which never crossed the equilibrium boundaries of these reactions.  相似文献   

10.
Calc-silicate rocks occur as elliptical bands and boudins intimately interlayered with eclogites and high-pressure gneisses in the Münchberg gneiss complex of NE Bavaria. Core assemblages of the boudins consist of grossular-rich garnet, diopside, quartz, zoisite, clinozoisite, calcite, rutile and titanite. The polygonal granoblastic texture commonly displays mineral relics and reaction textures such as post kinematic grossular-rich garnet coronas. Reactions between these mineral phases have been modelled in the CaO-Al2O3-SiO2-CO2-H2O system with an internally consistent thermodynamic data base. High-pressure metamorphism in the calc-silicate rocks has been estimated at a minimum pressure of 31 kbar at a temperature of 630d? C with XH2, O ≥ 0.03. Small volumes of a CO2-N2-rich fluid whose composition was buffered on a local scale were present at peak-metamorphic conditions. The P-T conditions for the onset of the amphibolite facies overprint are about 10 kbar at the same temperature. XCo2 of the H2O-rich fluid phase is regarded to have been <0.03 during amphibolite facies conditions. These P-T estimates are interpreted as representing different stages of recrystallization during isothermal decompression. The presence of multiple generations of mineral phases and the preservation of very high-pressure relics in single thin sections preclude pervasive post-peak metamorphic fluid flow as a cause of a re-equilibration within the calc-silicates. The preservation of eclogite facies, very high-pressure relics as well as amphibolite facies reactions textures in the presence of a fluid phase is in agreement with fast, tectonically driven unroofing of these rocks.  相似文献   

11.
Static heating during intrusion of the Makhavinekh Lake Pluton (MLP) caused replacement of garnet in the adjacent country rocks (Tasiuyak Gneiss) by coronal assemblages of orthopyroxene + cordierite. Thermometry based on Al solubility in orthopyroxene, applied to relict garnet and neighbouring orthopyroxene, preserves a temperature gradient from 700 to 900 °C at distances between 5750 and 20 m from the intrusion, reaffirming the robustness of this thermometry technique. Intracrystalline and intergranular variations of Al zoning in orthopyroxene are well‐preserved, suggesting that little diffusional modification of Al growth zoning occurred. Maximum Al2O3 in orthopyroxene ranges from c. 2.0 wt% at 5750 m from the intrusion to a maximum of 4.3 wt% at the contact. Individual orthopyroxene grains show decreasing Al from core to rim in samples < 500 m from the intrusion, while those at greater distances show an increase from core to rim. These features are interpreted with the aid of numerical models for conductive heat flow in the aureole. Coronas in samples close to the intrusion grew at high temperatures and along T‐t paths dominated by cooling, so maximum Al content in orthopyroxene in these samples occurs in the cores of grains that grew during the earliest stages of garnet consumption. In contrast, the corona‐forming reactions in rocks further from the contact proceeded along prograde heating paths, so maximum Al content in orthopyroxene occurs in the rims of grains that grew during the final stages of garnet consumption. These results document the ability of Al‐in‐orthopyroxene thermometry to preserve a detailed record of thermal histories in contact‐metamorphic granulites; they suggest that similar intracrystalline and intergranular variations of Al zoning in orthopyroxene in regional granulites may also preserve portions of both the prograde and peak‐T evolution.  相似文献   

12.
An Al‐rich, SiO2‐deficient sapphirine–garnet‐bearing rock occurs as a metapelitic boudin within granulite facies Proterozoic charnockitic gneisses and migmatites on the island of Hisøy, Bamble Sector, SE Norway. The boudin is made up of peraluminous sapphirine, garnet, corundum, spinel, orthopyroxene, sillimanite, cordierite, staurolite and biotite in a variety of assemblages. Thermobarometric calculations based on coexisting sapphirine–spinel, garnet–corundum–spinel–sillimanite, sapphirine–orthopyroxene, and garnet–orthopyroxene indicate peak‐metamorphic conditions near to 930 °C at 10 kbar. Corundum occurs as single 200 to 3000 micron sized skeletal crystal intergrowths in cores of optically continuous pristine garnet porphyroblasts. Quartz occurs as 5–60 micron‐sized euhedral to lobate inclusions in the corundum where it is in direct contact with the corundum with no evidence of a reaction texture. Some crystal inclusions exhibit growth zoning, which indicates that textural equilibrium was achieved. Electron Back‐Scatter Diffraction (EBSD) studies reveal that the quartz inclusions share a common c‐axis with the host corundum crystal. The origin of the quartz inclusions in corundum is enigmatic as recent experimental studies have confirmed the instability of quartz–corundum over geologically realistic P–T ranges. The combined EBSD and textural observations suggest the presence of a former silica‐bearing proto‐corundum, which underwent exsolution during post‐peak‐metamorphic uplift and cooling. Exsolution of quartz in corundum is probably confined to fluid‐absent conditions where phase transitions by coupled dissolution–precipitation mechanisms are prevented.  相似文献   

13.
Abstract The orthopyroxene-clinopyroxene, garnet-orthopyroxene and garnet-clinopyroxene geothermometers, and the garnet-orthopyroxene-plagioclase, garnet-clinopyroxene-plagioclase and anorthite-ferrosilite-grossular-almandine-quartz geobarometers are applied to metabasites and the garnetplagioclase-sillimanite-quartz geobarometer is applied to a metapelite from the Proterozoic Arendal granulite terrain, Bamble sector, Norway. P–T conditions of metamorphism were 7.3 ± 0.5 kbar and 800 ± 60°C.
This terrain shows a regional gradation from the amphibolite facies, into normal LILE content granulite facies rocks and finally strongly LILE deficient granulite facies gneisses. Neither P nor T vary significantly across the entire transition zone. The change in 'grade'parallels the increasing dominance of CO2 over H2O in the fluid phase.
LILE-depletion is not a pre-condition of granulite facies metamorphism: granulites may have either 'depleted'or 'normal'chemistries. The results presented herein show that LILE-deficiency in granulite facies orthogneisses is not necessarily related to variations in either P or T . The important mechanisms in the Arendal terrain were (a) direct synmetamorphic crystallization from magma, with primary LILE-poor mineralogies imposed by the prevailing fluid regime, and (b) metamorphic depletion, involving scavenging of LILEs during flushing by mantle-derived CO2-rich fluids. The latter process is constrained by U–Pb and Rb–Sr isotopic work to have occurred no later than 50 Ma after intrusion of the acid-intermediate gneisses, and was probably associated with contemporary basic magmatism in a tectonic environment similar to a present day cordilleran continental margin.  相似文献   

14.
Interpretations based on quantitative phase diagrams in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2O indicate that mineral assemblages, zonations and microstructures observed in migmatitic rocks from the Beit Bridge Complex (Messina area, Limpopo Belt) formed along a clockwise P–T path. That path displays a prograde P–T increase from 600 °C/7.0 kbar to 780 °C/9–10 kbar (pressure peak) and 820 °C/8 kbar (thermal peak), followed by a P–T decrease to 600 °C/4 kbar. The data used to construct the P–T path were derived from three samples of migmatitic gneiss from a restricted area, each of which has a distinct bulk composition: (1) a K, Al‐rich garnet–biotite–cordierite–sillimanite–K‐feldspar–plagioclase–quartz–graphite gneiss (2) a K‐poor, Al‐rich garnet–biotite–staurolite–cordierite–kyanite–sillimanite–plagioclase–quartz–rutile gneiss, and (3) a K, Al‐poor, Fe‐rich garnet–orthopyroxene–biotite–chlorite–plagioclase–quartz–rutile–ilmenite gneiss. Preservation of continuous prograde garnet growth zonation demonstrates that the pro‐ and retrograde P–T evolution of the gneisses must have been rapid, occurring during a single orogenic cycle. These petrological findings in combination with existing geochronological and structural data show that granulite facies metamorphism of the Beit Bridge metasedimentary rocks resulted from an orogenic event during the Palaeoproterozoic (c. 2.0 Ga), caused by oblique collision between the Kaapvaal and Zimbabwe Cratons. Abbreviations follow Kretz (1983 ).  相似文献   

15.
Magnesian metapelites of probable Archaean age from Forefinger Point, SW Enderby Land, East Antarctica, contain very-high-temperature granulite facies mineral assemblages, which include orthopyroxene (8–9.5 wt% Al2O3)–sillimanite ± garnet ± quartz ± K-feldspar, that formed at 10 ± 1.5 kbar and 950 ± 50°C. These assemblages are overprinted by symplectite and corona reaction textures involving sapphirine, orthopyroxene (6–7 wt% Al2O3), cordierite and sometimes spinel at the expense of porphyroblastic garnet or earlier orthopyroxene–sillimanite. These textures mainly pre-date the development of coarse biotite at the expense of initial mesoperthite, and the subsequent formation of orthopyroxene (4–6 wt% Al2O3)–cordierite–plagioclase rinds on late biotite.
The early reaction textures indicate a period of near-isothermal decompression at temperatures above 900°C. Decompression from 10 ± 1.5 kbar to 7–8 kbar was succeeded by biotite formation at significantly lower temperatures (800–850°C) and further decompression to 4.5 ± 1 kbar at 700–800°C.
The later parts of this P–T evolution can be ascribed to the overprinting and reworking of the Forefinger Point granulites by the Late-Proterozoic ( c . 1000 Ma) Rayner Complex metamorphism, but the age and timing of the early high-temperature decompression is not known. It is speculated that this initial decompression is of Archaean age and therefore records thinning of the crust of the Napier Complex following crustal thickening by tectonic or magmatic mechanisms and preceding the generally wellpreserved post-deformational near-isobaric cooling history of this terrain.  相似文献   

16.
The El Arenal metagabbros preserve coronitic shells of orthopyroxene ± Fe‐oxide around olivine, as well as three different types of symplectite consisting of amphibole + spinel, clinopyroxene + spinel and, more rarely, orthopyroxene + spinel. The textural features of the metagabbros can be explained by the breakdown of the olivine + plagioclase pair, producing orthopyroxene coronas and clinopyroxene + spinel symplectites, followed by the formation of amphibole + spinel symplectites, reflecting a decrease in temperature and, possibly, an increase in water activity with respect to the previous stage. The metagabbros underwent a complex P–T history consisting of an igneous stage followed by cooling in granulite, amphibolite and greenschist facies conditions. Although the P–T conditions of emplacement of the igneous protolith are still doubtful, the magmatic assemblage suggests that igneous crystallization occurred at a pressure lower than 6 kbar and at 900–1100 °C. Granulitic P–T conditions have been estimated at about 900 °C and 7–8 kbar combining conventional thermobarometry and pseudosection analysis. Pseudosection calculation has also shown that the formation of the amphibole + spinel symplectite could have been favoured by an increase in water activity during the amphibolite stage, as the temperature of formation of this symplectite strongly depends on aH2O (<740 °C for aH2O = 0.5; <790 °C for aH2O = 1). Furthermore, but not pervasive, re‐equilibration under greenschist facies P–T conditions is documented by retrograde epidote and chlorite. The resulting counterclockwise P–T path consists of progressive, nearly isobaric cooling from the igneous stage down to the granulite, amphibolite and greenschist stage.  相似文献   

17.
Calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica, exhibit a sequence of reaction textures that have been used to elucidate their retrograde P–T path. The highest temperature recorded in the calc-silicates is represented by the wollastonite- and scapolite-bearing assemblages which yield at least 760°C at 6 kbar based on experimental results. The calc-silicates have partially re-equilibrated at lower temperatures (down to 450°C) as evidenced by the successive reactions: (1) wollastonite + scapolite + calcite = garnet + CO2, (2) wollastonite + CO2= calcite + quartz, (3) wollastonite + plagioclase = garnet + quartz, (4) scapolite = plagioclase + calcite + quartz, (5) garnet + CO2+ H2O = epidote + calcite + quartz, and (6) clinopyroxene + CO2+ H2O = tremolite + calcite + quartz.
The reaction sequence observed indicates that a CO2 was relatively low in the wollastonite-bearing rocks during peak metamorphic conditions, and may have been further lowered by local infiltration of H2O from the surrounding migmatitic gneisses on cooling. Fluid activities in the Bolingen calc-silicates were probably locally variable during the granulite facies metamorphism, and large-scale CO2 advection did not occur.
A retrograde P–T path, from the sillimanite stability field ( c. 760°C at 6 kbar) into the andalusite stability field ( c. 450°C at <3 kbar), is suggested by the occurrence of secondary andalusite in an adjacent cordierite–sillimanite gneiss in which sillimanite occurs as inclusions in cordierite.  相似文献   

18.
The high grade rocks (metapelites and metabasites) of Clavering Ø represent the easternmost exposures of granulites in the Palaeozoic Caledonian Orogen of East Greenland. Mafic granulites which occur as sheet‐like bodies and lenses within metapelitic migmatites and orthogneiss complexes have experienced migmatisation and mineral equilibria which define a clockwise P–T path incorporating a near‐isothermal decompression segment. Textures demonstrate the existence of early garnet‐clinopyroxene‐melt assemblages which equilibrated at >8–11 kbar and 850915 °C. Subsequently, decompression melting led to formation of orthopyroxene‐plagioclase‐melt assemblages at conditions below >8–11 kbar. Continued syn‐deformational decompression is indicated by a combination of both static and syn‐deformational recrystallization textures which generated finer grained orthopyroxene‐plagioclase assemblages. P–T constraints indicate these assemblages equilibrated at c. 5.0–6.5 kbar at 850–915 °C. These data are consistent with the rocks undergoing a stage of rapid tectonic‐induced exhumation involving some 3.0–4.5 kbar (c.1012 km) uplift as part of a clockwise P–T path in a collisional setting.  相似文献   

19.
The Chinese western Tianshan high-pressure/low-temperature (HP–LT) metamorphic belt, which extends for about 200 km along the South Central Tianshan suture zone, is composed of mainly metabasic blueschists, eclogites and greenschist facies rocks. The metabasic blueschists occur as small discrete blocks, lenses, bands, laminae or thick beds in meta-sedimentary greenschist facies country rocks. Eclogites are intercalated within blueschist layers as lenses, laminae, thick beds or large massive blocks (up to 2 km2 in plan view). Metabasic blueschists consist of mainly garnet, sodic amphibole, phengite, paragonite, clinozoisite, epidote, chlorite, albite, accessory titanite and ilmenite. Eclogites are predominantly composed of garnet, omphacite, sodic–calcic amphibole, clinozoisite, phengite, paragonite, quartz with accessory minerals such as rutile, titanite, ilmenite, calcite and apatite. Garnet in eclogite has a composition of 53–79 mol% almandine, 8.5–30 mol% grossular, 5–24 mol% pyrope and 0.6–13 mol% spessartine. Garnet in blueschists shows similar composition. Sodic amphiboles include glaucophane, ferro-glaucophane and crossite, whereas the sodic–calcic amphiboles mainly comprise barroisite and winchite. The jadeite content of omphacite varies from 35–54 mol%. Peak eclogite facies temperatures are estimated as 480–580 °C for a pressure range of 14–21 kbar. The conditions of pre-peak, epidote–blueschist facies metamorphism are estimated to be 350–450 °C and 8–12 kbar. All rock types have experienced a clockwise PT path through pre-peak lawsonite/epidote-blueschist to eclogite facies conditions. The retrograde part of the PT path is represented by the transition of epidote-blueschist to greenschist facies conditions. The PT path indicates that the high-pressure rocks formed in a B-type subduction zone along the northern margin of the Palaeozoic South Tianshan ocean between the Tarim and Yili-central Tianshan plates.  相似文献   

20.
In the southeastern Reynolds Range, central Australia, a low- P granulite facies metamorphism affected two sedimentary sequences: the Lander Rock Beds and the Reynolds Range Group. In the context of the whole of the Reynolds Range and the adjacent Anmatjira Range, this metamorphism is M3 in a sequence M1–4 that occurred over a period of 250 Ma. In particular, M1 affected the Lander Rock Beds prior to the deposition of the Reynolds Group. M3 has an areally restricted, high-grade area in the southeastern Reynolds Range, affecting both the Reynolds Range Group and the underlying Lander Rock Beds. The effects of M3 are characterized by spinel + quartz-bearing peak metamorphic assemblages in metapelites, which imply peak conditions of ≥750°C and 4.5 ± 1 kbar, and involved isobaric cooling or compression with cooling. It is concluded that one of a series of thermal perturbations caused by thinning of mantle lithosphere contemporaneous with crustal thickening was responsible for M3. In the southeastern Reynolds Range, evidence of both the unconformity between the two rock groups and previous metamorphism/deformation has been completely erased by recrystallization during M3–D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号