首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of a study of the variability of the blazar J0721+7120 carried out on the RATAN-600 based on daily observations from March 5, 2010 to April 30, 2010 at five frequencies from 2.3 to 21.7 GHz are reported. In the same time interval, 13 observing sessions at 37 GHz were carried out on the 14-m radio telescope of the Mets?hovi Radio Astronomy Observatory of the Aalto University School of Technology (Finland). From March 19, 2010 to October 20, 2010, 16 daily sessions at 6.2 cm and five sessions at 3.5 cm were conducted on the 32-m radio telescope of the Zelenchukskaya Observatory (Quasar-KVO complex of the Institute of Applied Astronomy, Russian Academy of Sciences). A powerful flare was detected during the observations, with a time scale of approximately 20 days, derived from an analysis of the light curves and the structure and autocorrelation functions. The flare spectrum has been determined. In five sessions on the 32-m Zelenchukskaya telescope at 6.2 cm, intraday variability with time scales 8-16 h was detected; in four sessions, trends with time scales longer than a day were observed. In three sessions at 3.5 cm, intraday variability with a time scale of approximately 5 h was detected.  相似文献   

2.
We present an analysis of multifrequency light curves of the sources 2223-052 (3C 446), 2230+114 (CTA 102), and 2251+158 (3C 454.3), which had shown evidence of quasiperiodic activity. The analysis made use of data from the University of Michigan Radio Astronomy Observatory (USA) at 4.8, 8, and 14.5 GHz, as well as the Metsahovi Radio Astronomy Observatory (Finland) at 22 and 37 GHz. Application of two different methods (the discrete autocorrelation function and the method of Jurkevich) both revealed evidence for periodicity in the flux variations of these sources at essentially all frequencies. The periods derived for at least two of the sources—2223-052 and 2251+158—are in good agreement with the time interval between the appearance of successive VLBI components. The derived periods for 2251+158 (P = 12.4 yr and 2223-052 (P = 5.8 yr) coincide with the periods found earlier by other authors based on optical light curves.  相似文献   

3.
We have used the RATAN-600 radio telescope to study the spectral characteristics of a uniform sample of 504 radio sources from the NVSS catalog near the North Celestial Pole at six frequencies from 1.1 to 21.7 GHz, with the aim of selecting sources possessing inverted spectra near 22 GHz, to be included in the program of the Radio Astron future space VLBI mission. We found 17 radio sources with the desired spectral characteristics. Data from spectral studies over a wide wavelength range testify that the spectral behavior of our sample differs from that for a complete sample of sources with the same initial parameters but selected at 20 GHz. We find a 6% deficit of inverted-spectrum sources, which can be explained as an effect of the spectral characteristics of “sub-threshold” sources that were not included in the initial sample at 1.4 GHz.  相似文献   

4.
Based on long-term monitoring at five radio frequencies between 4.8 and 37 GHz performed at the Radio Astronomy Laboratory of the Crimean Astrophysical Observatory, the University of Michigan Radio Astronomy Observatory, and the Metsähovi Radio Observatory, we have analyzed two flare events in the blazar S5 0716+714 during the last five years. The time separation between the flares is in agreement with data derived earlier from a spectral analysis of flux variations at the above frequencies, which revealed a periodic component with a period of about four years in the variations. We consider the dynamics of strong flares in 2003 and 2007 and determine the delays between the development of the event at various radio frequencies. Our data can be used to draw conclusions about the kinematic and dynamical properties of the source.  相似文献   

5.
We present the results of observations of a complete sample of radio sources with the RATAN-600 radio telescope at 0.97, 2.3, 3.9, 7.7, 11.1, and 21.7 GHz. The sample was extracted from the GB6 catalog at 4.85 GHz, and contains all the sources at declinations 74°–75° (J2000) with flux densities S 4.85 > 100 mJy. We have obtained optical identifications for 67% of the radio sources with flat spectra and 30% of those with steep spectra.  相似文献   

6.
Results of a study of the variability of the BL Lac object S5 0716+714 are reported. The data were obtained in 150 daily observations on the RATAN-600 radio telescope at six frequencies from 0.97 to 21.7 GHz and 13 day-long sessions at a wavelength of 6.2 cm on the 32 m radio telescopes of the Zelenchukskaya, Svetloe, and Badary observatories (Quasar-KVO complex, Institute of Applied Astronomy, Russian Academy of Sciences). The RATAN-600 observations detected three “anti-flares,” or eclipses, when the flux density decreased from an initially constant level and then returned to this level. The eclipse time scales obtained from an analysis of light curves, structure functions, and autocorrelation functions are 12–20 days; the eclipse spectra were determined. Intraday variability (IDV) with time scales of 10–12 hours was detected in three sessions on the 32-m radio telescopes.  相似文献   

7.
We present the results of long-term radio and optical monitoring of two radio-loud quasars. The aim of the work was to study the objects?? variability on various time scales and search for correlations between the radio and optical emission. The monitoring was performed in 2002?C2010. The radio observations were carried out using the 22-m telescope of the Crimean AstrophysicalObservatory, 26-m telescope of the University of Michigan Radio Astronomy Observatory, and 14-m telescope of the Metsahovi Radio Observatory at 4.8, 8.0, 14.5, 22.2, and 36.8 GHz. The optical observations were obtained in the B, V,R bands using the Zeiss-1000 telescope of the Special Astrophysical Observatory with a CCD photometer. Light curves of the quasars 4C 38.41 (1633+382) and S5 0716+714 are presented. Radio flares of 4C 38.41 with amplitudes of 0.5?C1.0 Jy at 4.8 and 8 GHz and 1?C3 Jy at 22.2 and 36.8 GHz were detected on time scales of about 100 days. The amplitude of the optical brightness variations varied between 0.5 m and 1.5 m over about 200 days. The amplitudes of the flux variations for S5 0716+714 for the period of two months were 0.5?C1.6 Jy at centimeter and 1?C7 Jy at millimeter wavelengths. The amplitudes of flares in the optical reached 2 m in the B and V filters and 2.5 m in the R filter, on time scales of 200 days. The color indices of these objects did not change during the period covered by observations, i.e., the objects did not become bluer when they brightened. The detected delays between the variations atmillimeter and centimeter wavelengths are several days, which is within the interval between observations during the long-term monitoring. The absence of a distinct correlation between the optical and radio brightness variations was probably due to the presence of substantial time delays between the phenomena occurring in these different wavelength ranges.  相似文献   

8.
Flux-density variations of the quasar S0528+134 (Nimfa) are analyzed based on long-term monitoring at five radio frequencies between 4.8 and 37 GHz, performed at the Crimean Astrophysical Observatory, the Metsähovi Radio Observatory of Aalto University, and the University of Michigan Radio Astronomy Observatory. The dynamics of a powerful flare in 1996 are analyzed using gamma-ray (0.1–300 GeV), X-ray (2–10 keV, 15–50 keV), and radio observations. The delays of the flare between different spectral ranges and between different radio wavelengths have been measured. The dependence for the delays at different radio wavelengths relative to the X-ray and optical flares is established based on long-term observations in the X-ray, optical, and radio obtained from 2004 to 2013. Multi-frequency monitoring in the radio is used to estimate the orbital and precession periods in the binary supermassive black hole system S0528+134 and the physical characteristics of this system.  相似文献   

9.
Results of a study of the variability of radio sources on timescales of 3–30 days based on six sets of daily observations on the RATAN-600 radio telescope with durations from 53 to 103 days at six frequencies from 0.97 to 21.7 GHz are reported. The variability timescales and spectra determined from the analysis of light curves, structure functions, and autocorrelation functions for 11 radio sources from a complete sample in the declination range 4°–6° (B1950) are presented.  相似文献   

10.
We present the results of our observations of compact extragalactic radio sources near the north celestial pole (+75° ≤ δ ≤ +88°) obtained on the RATAN-600 radio telescope. Our sample consists of 51 radio sources with spectra that are either flat or inverted (growing toward shorter wavelengths) and with flux densities at 1.4 GHz S ν ≥ 200 mJy. We observed the sources at 1–21.7 GHz. Multi-frequency instantaneous spectra are presented for 1999–2007. We observed 33 of our sample source daily for 30 days in August 2007. As a result, we revealed 15 objects exhibiting rapid variations on time scales of a day. The multi-frequency instantaneous spectra of these sources indicate that radio flux variations on one-day timescales are characteristic of objects of various spectral types. More than half the sources exhibiting rapid variations demonstrate a growth in the variability amplitude with increasing frequency. For some of the objects, the variability amplitude is virtually independent of frequency.  相似文献   

11.
We present optical identifications and radio spectra for ten radio sources from two flux-density-complete samples. Radio variability characteristics are presented for four objects. The observations were obtained on the RATAN-600 radio telescope at 0.97–21.7 GHz and the 2.1 m telescope of the Haro Observatory in Cananea, Mexico at 4200–9000 Å. Among the ten objects studied, three are quasars, four are BL Lac objects, two are radio galaxies, and one is a Sy 1 galaxy. Two of the sources identified with BL Lac objects, 0509+0541 and 0527+0331, show rapid variability on time scales of 7–50 days.  相似文献   

12.
Radio sources detected at 3.94 GHz in RATAN-600 observations made in 1980–1981 (the KHOLOD Survey) have been identified with objects from the NVSS catalog down to 5 mJy at 1.4 GHz, and their spectral indices have been estimated. Of the 1311 NVSS objects in the KHOLOD survey region, 836 are present in both catalogs. The average flux density of the common objects is 40 mJy, and the median flux density is 14 mJy. The average spectral indices of these objects for four flux-density intervals were calculated. The average spectral index grows with flux density. The fraction of objects with inverted spectra is 2–4%, and the average flux density of these sources is about 10 mJy. Optical identifications of the NVS S objects in the KHOLOD survey region have been carried out to R=20.5m using the Palomar plates. About 20% of the radio sources are identified with optical objects in all the radio flux-density intervals.  相似文献   

13.
We present coordinated synchronous observations of Active Galactic Nuclei in the radio and optical, aimed at searching for fast (intraday) flux variations and possible correlations in the flux variations in different wavebands. Our observations were performed with the 22-m radio telescope of the Crimean Astrophysical Observatory at 22.2 and 36.8 GHz and the Zeiss-1000 reflector of the Special Astrophysical Observatory in the R filter, using a CCD photometer. We performed five observing runs of 7–10 nights each in 2004–2006. We obtained radio and optical light curves for the variable extragalactic radio sources DA 55, 1633+382, 2134+004, 2145+067, and 2251+158. We detected short-duration flares of DA 55 and 2134+004 in the R band with variations of 0.2 m within about 15 minutes. The other sources did not show any considerable flux variations. The radio flux variations of DA 55 and 2134+004 reached 1.5 Jy in about 15 minutes, and those of 2145+067 reached 2 Jy in 2 hours. We observed chaotic flux variations in 2251+158, by 2–2.5 Jy in half an hour. We detected no correlation between the radiation in the optical and radio.  相似文献   

14.
A method for searching for new periodic radio sources is described. The method is based on the spectral analysis of data from daily monitoring of the sky on the Large Phased Antenna (LPA) of the Pushchino Radio Astronomy Observatory at 111 MHz in a 2.5-MHz band. The 96-beam directivity pattern of the LPA is used. The signal is received in six 0.42-MHz frequency channels with a sampling rate of 0.1 s. The duration of the processed survey is four months. The particulars of detecting periodic sources with the LPA are considered. In total, 16 such radio sources have been detected, for which equatorial and Galactic coordinates, periods, and dispersion measures are given.  相似文献   

15.
We present classifications, optical identifications, and radio spectra for eight radio sources from three flux-density-complete samples in the following declination ranges: 4°–6° (B1950), S 3.9 > 200 mJy; 10°–12°30′ (J2000), S 4.85 > 200 mJy; 74°?75° (J2000), S 4.85 > 100 mJy. For all these samples, the right ascensions are 0h–24h and the Galactic latitudes, |b| > 15°. Our optical observations at 4000–7500 ° were made with the 6-m telescope of the Special Astrophysical Observatory; we also observed at 0.97–21.7 GHz with the RATAN-600 radio telescope of the Special Astrophysical Observatory. We classify four of the objects as quasars and four as galaxies. Five of the radio sources have power-law spectra at 0.97–21.7 GHz, while two objects have flat spectra. The quasar J2358+0430 virtually did not vary during 23 years.  相似文献   

16.
Optical identifications and an analysis of the radio spectra of eight radio sources from a flux-density-complete sample at declinations 4°–6° (B 1950) are presented. The observations were carried out at 4000–9000 Å on the 6-m telescope of the Special Astrophysical Observatory and at 0.97–21.7 GHz on the RATAN-600 telescope. Five of the eight sources are quasars and three are emission-line radio galaxies.  相似文献   

17.
We have carried out interplanetary-scintillation observations of a sample of compact symmetric objects. Scintillations were recorded in 3 of 34 observed sources; upper estimates of the compact flux density were obtained for the remaining sources. The contribution of halos to the integrated flux densities at low frequencies is considered.  相似文献   

18.
We present classifications, optical identifications, and radio spectra for 19 radio sources from three complete samples, with declinations 4°–6° (B1950, S 3.9 GHz > 200 mJy), 10°–12°30′ (J2000, S 4.85 GHz > 200 mJy), and 74°–75° (J2000, S 4.85 GHz > 100 mJy). We also present corresponding information for the radio source J0527+0331. The right ascensions are 0–24h and the Galactic latitudes |b| > 15° for all the samples. Our observations were obtained with the 6 m telescope from the Special Astrophysical Observatory in the range 4000–9000 Å or 4000–7500 Å and the RATAN-600 radio telescope at frequencies in the range 0.97–21.7 GHz. We obtained flux densities for the radio sources and optical spectra for their optical counterparts. Nine objects were classified as quasars with redshifts from z = 1.029 to 3.212; nine objects are emission-line galaxies with redshifts from 0.172 to 0.546, and one is a galaxy with burstlike star formation at z = 0.156, and one is a BL Lac object with z = 0.509. The spectra of five radio sources were decomposed into extended and compact components. The radio source J0527+0331, identified with a BL Lac object, displays significant variations of time scales from several days to several years. Data on flux variations are presented for 11 radio sources, as well as their spectra at several epochs.  相似文献   

19.
Vol’vach  L. N.  Vol’vach  A.E.  Larionov  M.G.  MacLeod  G. C.  van den Heever  S. P.  Wolak  P.  Olech  M.  Ipatov  A.V.  Ivanov  D.V.  Mikhailov  A. G.  Mel’nikov  A.E.  Menten  K.  Belloche  A.  Weiss  A.  Mazumdar  P.  Schuller  F. 《Astronomy Reports》2019,63(1):49-65
Astronomy Reports - The results of long-term monitoring of the Galactic maser source IRAS 18316–0602 (G25.65+1.05) in the water-vapor line at frequency f = 22.235 GHz (616–523...  相似文献   

20.
The paper presents an analysis of catalogs of discrete radio sources and the results of deep surveys carried out with angular resolutions to 1.5″ and limiting flux densities to 9 μJy at frequencies from 80 MHz to 8.5 GHz using large radio telescopes around the world. We consider the influence on the sensitivity of a radio telescope of the nonthermal noise associated with variations in the total flux due to fluctuations in the number of unresolved sources with fluxes lower than the observed value that fall in the main lobe of the antenna beam when the direction in which the receiver is pointed is changed (the first component), and also due to sources with fluxes higher than the observed value that arrive in the scattering region of the telescope (the second component). With growth in the sensitivity and resolution of a telescope, the second component of this nonthermal noise determines to an appreciable extent the limiting capability of the telescope for carrying out deep surveys. We estimate the number of antenna beams per source that are required to reach a specified sensitivity in deep surveys. The results of our calculations are compared with data derived from catalogs and numerous surveys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号