首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that the Hubble curvem(z) for galaxies and quasars averaged over a large volume of data forms in the first approximation a single continuous curve in the interval of red shifts 10–2.5z4.5, which is satisfactorily described by the dependence .A large deviation of the observed mean dependence from the theoretical one predicted by the standard cosmology is explained by the evolution of the galaxy and especially quasar luminosity. The corresponding mid-statistical function of the absolute luminosity variation for the last 4/5 times of existence in the Universe is equal toM(z)M(z 0)=logz/z 0+2z–0.4z 2.The luminosity of the most far distant from the observed quasars on the average by 5–6 stellar magnitudes high than the luminosity of near galaxies and quasars. It is obtained that even the most far distant quasars atz5 are in the maximum of luminosity, or their extinction has just began, thus the quasar formation should be expected forz>(5–6). The relative rate of the luminosity decrease of galaxies and near quasars is rather accurately amounts in the recent epoch 7% per 109 years. The obtained average Hubble curve of galaxies and quasars is evidently the main cause of their evolution in the Universe.  相似文献   

2.
We report three new or updated techniques for probing the parameters of active galaxies based on the masses of their central black holes MBH). First, we derived a near-IR analog of the bulge luminosity versus MBH relationship. The low scatter makes it a promising new tool to study the black hole demographics. Next, we present relations between MBH and the10 μm and 2-10 keV nuclear luminosity. They may help to study the MBH evolution over wide redshift ranges. Finally, we measured MBH in quasars from z ∼ 3.4 to z ∼ 0.3 to search directly for MBH growth. Surprisingly, we found no evidence for growth implying that the majority of quasar host galaxies have undergone their last major merger at z ≥ 3. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
We investigate the formation by accretion of massive primordial protostars in the range 10 to 300 M . The high accretion rate used in the models (M = 4.4 x 10-3 M yr-1) causes the structure and evolution to differ significantly from those of both present-day protostars and primordial zero-age main sequence stars. The stellar surface is not visible throughout most of the main accretion phase, since a photosphere is formed in the in falling envelope. Significant nuclear burning does not take place until a protostellar mass of about 80 M . As the interior luminosity approaches the Eddington luminosity, the protostellar radius rapidly expands owing to the radiation pressure. Eventually, a final swelling occurs when the stellar mass reaches about 300 M . This expansion is likely to signal the end of the main accretion phase, thus setting an upper limit to the protostellar mass formed in these conditions. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

4.
We analyze the properties of galaxy clusters in the region of the Leo supercluster using observational data from the SDSS and 2MASS catalogs. We have selected 14 galaxy clusters with a total dynamical mass of 1.77 × 1015 M in the supercluster region 130 by 60 Mpc in the plane of the sky (z ≃ 0.037). The composite luminosity function of the supercluster is described by a Schechter function with parameters that, within the error limits, correspond to field galaxies and does not differ from the luminosity function of the richer Ursa Major (UMa) supercluster for the same luminosity range (the bright end). The luminosity functions of early-type and late-type galaxies in Leo at the faint end are characterized by a sharp decrease (α = −0.60±0.08) and a steep increase (α = −1.44± 0.10) in the number of galaxies, respectively. In the virialized cluster regions, the fraction of early-type galaxies selected by the u-r color, bulge contribution, and concentration index among the galaxies brighter than M K * + 1 is, on average, 62%. This fraction is smaller than that in the UMa supercluster at a 2–3σ level. The near-infrared luminosities of galaxy clusters down to a fixed absolute magnitude correlate with their masses almost in the same way as for other samples of galaxy clusters (L 200,K M 2000.63±0.11)).  相似文献   

5.
We investigated the properties of galaxy clusters in the region of the Hercules supercluster using observational data from the SDSS and 2MASS catalogs and the NED. We have selected 13 galaxy clusters with a total dynamical mass of 4.82 × 1015 M in a 100 × 45 Mpc supercluster region in the plane of the sky (0.030 < z < 0.041). In addition, our sample includes eight clusters from the immediate neighborhoods of the superclusters and ten field clusters at the same z. The derived properties of the rich Hercules supercluster are shown in comparison with the data for the poor Leo supercluster. The main parameters of the virialized galaxy cluster regions in the near infrared (K s ) for the Hercules supercluster differ from those for the Leo supercluster: the number of galaxies and the total luminosity (to a limiting magnitude of ?21 · m 5) increase with cluster mass (L K,200M 200 0.91±0.07 and N 200M 200 0.94±0.07 ), but the dependences are steeper by 0.28 and 0.22. In the virialized cluster regions, the fraction of early-type galaxies selected by the bulge contribution, concentration index, and u t= r color is, on average, 66% (60% in Leo, 70% in the field) among the galaxies brighter than ?23 · m 3 and 54% (51% in Leo, 61% in the field) among the galaxies brighter than ?22 · m 3. The fraction of early-type galaxies in the superclusters does not change with galaxy cluster mass and luminosity. The composite luminosity function of the rich Hercules supercluster is described by a Schechter function and does not differ from the luminosity function of the poor Leo supercluster for the luminosity interval [?26 m , ?21 · m 5] but differs from the field luminosity function at the same z determined from ten galaxy clusters.  相似文献   

6.
The integrated magnitudes of 221 Galactic open clusters have been used to derive the luminosity function. The completeness of the data has also been discussed. In the luminosity distribution the maximum frequency of clusters occurs nearI (Mv) = −3 m . 5, and some plausible reasons for a sharp cut-off atI (Mv) = −2m. 0 have been discussed. It is concluded that the paucity of the clusters fainter thanI (M v) = −2 m .0 is not purely due to selection effects. The surface density of the clusters for different magnitude intervals has. been obtained using the completeness radius estimated from the logN- logd plots. A relation betweenI (Mv) and surface density has been obtained which yields a steeper slope than that obtained by van den Bergh & Lafontaine (1984).  相似文献   

7.
It is known that the correlation between the observed visible luminositym(z), angular dimension (z) of galaxies on the red shiftz and theoretical relations of the standard cosmology is possible only under the assumption that the luminosity and object dimension evolution are equal toL(z) =L 0(z + 1)3.2 andl(z) =l 0(z + 1)–2, respectively. This evolution is hypothetical, since it is defined by a theory which is not confirmed by experience. In order to solve the problem on the reality of the Universe expansion, it is sufficient to prove or disprove these conclusions using methods of measurement independent of the theory. One of these methods consists of defining the dependence of the radiation spectra of galaxies and quasars onz which evidently is proportional to the spectrum of absolute luminosityL(, z). It has subsequently been shown that the spectrum form is practically independent of the red shift - i.e., it remains constant during the lifetime of galaxies and quasars. Consequently, to explain the luminosity increase required by the standard cosmology, it is necessary to admit a completely unreal entity (at all wavelengths of the optical spectrum increase) of the radiation spectral density of (z + 1)3.2 times. We can conclude that in reality the luminosity evolution is either absent or its power index is smaller at least by an order of magnitude. It is likely, therefore, that the established is the result of an inadequate standard in cosmology.Another method is the use of the observed relations between the parameters ofL andl galaxies. A number of measurements made by different authors gives the relationlL a , where 0.33a1.6. It then follows thatl(z)(z + 1)3.2a . This dependence of the galaxy dimension is inverse to the dependence predicted by the standard cosmology. Besides, in order to make a correlation between thel(z)(z + 1)3.2a and measurements of (z), it is necessary that indices of the degree of luminosity evolution should be smaller by an order of magnitude.Thus, the luminosity increase and simultaneous decrease of galaxy and quasar dimensions predicted by the standard cosmolog are not confirmed by the direct astrophysical measurements. This discrepancy is the consequence of an incorrect hypothesis of Universe expansion and the relativistic cosmology based on it.  相似文献   

8.
We study the variations of the properties of groups of galaxies with dynamical masses of 1013 M <M 200<1014 M , represented by two samples: one has redshifts of z < 0.027 and is located in the vicinity of the Coma cluster, the other has z > 0.027, and is located in the regions of the following superclusters of galaxies: Hercules, Leo, Bootes, Ursa Major, and Corona Borealis. Using the archived data of the SDSS and 2MASX catalogs, we determined the concentration of galaxies in the systems by measuring it as the inner density of the group within the distance of the fifth closest galaxy from the center brighter than M K = ?23. m 3. We also measured the magnitude gap between the first and the fourth brightest galaxies ΔM 14 located within one half of the selected radius R 200, the fraction of early-type galaxies, and the ratio of bright dwarf galaxies (Mr = [?18. m 5,?16. m 5]) to giant galaxies (M r < ?18. m 5) (DGR) within the radius R 200. The main aim of the investigation is to find among these characteristics the ones that reflect the evolution of groups of galaxies.We determined that the ratio of bright dwarf galaxies to early-type giant galaxies on the red sequence depends only on the x-ray luminosity: the DGR increases with luminosity. The fraction of early-type galaxies in the considered systems is equal, on average, to 0.65 ± 0.01, and varies significantly for galaxies with σ200 < 300 kms?1. Based on the luminosity of the brightest galaxy, the magnitude gap between the first and the fourth brightest galaxies in the groups, and on model computations of these parameters, we selected four fossil group candidates: AWM4, NGC0533, NGC0741, and NGC6098 (where the brightest galaxy is a double).We observe no increase in the number of faint galaxies (the α parameter of the Schechter function is less than 1) in our composite luminosity function (LF) for galaxy systems with z < 0.027 in the M K = [?26m,?21. m 5] range, whereas earlier we obtained α > 1 for the LF of the Hercules and Leo superclusters of galaxies.  相似文献   

9.
Samples of spiral galaxies from two catalogues of 21 cm line observations and a catalogue of near-infrared observations of nearby galaxies have been used in conjunction with Infrared Astronomical Satellite data to study correlations involving MG, the dynamic mass of the galaxies, the luminosities in theH band (1.6Μm), the blue band and the far infrared bands and the mass of atomic hydrogen, it is found that both the blue and the far-IR luminosities which are indicators of star formation averaged over ∼3 × l09 and ∼107 years respectively, have a linear dependence onM G On the other hand, theH luminosity which is a measure of star formation averaged over the lifetime of galaxies, has a steeper power law dependence onM G. The correlations observed do not have significant dependence on the morophological type of the galaxies There is a poor correlation between the far-infrared luminosity and the mass of atomic hydrogen. The mass of atomic hydrogen has a dependence of the formM G. Because of the decrease in the mean mass for later morphological types and due to differences in power law dependences of luminosities in different bands onM G, the mean value of luminosity-to-mass ratio is a constant for blue and far-IR bands, decreases for theH band and the gas-to-mass ratio increases as morphological type increases.  相似文献   

10.
We present results of an investigation of clustering evolution of field galaxies between a redshift of z ∼ 1 and the present epoch. The current analysis relies on a sample of ∼ 14000 galaxies in two fields of the COMBO 17 survey. The redshift distribution extends to z ∼ 1. The amplitude of the three-dimensional correlation function can be estimated by means of the projected correlation function w(r p ). The validity of the deprojection was tested on the Las Campanas Redshift Survey (LCRS). In a flat cosmology with non-zero cosmological constant for bright galaxies (M B ≤-18) the clustering growth is proportional to (1+z) -2. However, the measured clustering evolution clearly depends on Hubble type. While locally the clustering strength of early type galaxies is equal to that of the bright galaxies, at high redshifts they are much stronger clustered, and thus the clustering has to evolve much more slowly. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
We present the first results of our X‐shooter observations for a sample of dwarf (–17 < MB < –15) galaxies in nearby (0.04 < z < 0.07) galaxy clusters. This luminosity range is fundamental to trace the evolution of higher‐z star‐forming cluster galaxies down to the present day, and to explore the galaxy scaling relations of early‐type galaxies over a broad mass range. Thanks to high resolution and availability of several lines we can derive the velocity dispersion of the galaxies in this range of luminosities and we begin the construction of the fundamental plane of faint early‐type galaxies (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We present two new luminous blue variable (LBV) candidate stars discovered in the M33 galaxy. We identified these stars as massive star candidates at the final stages of evolution, presumably with a notable interstellar extinction. The candidates were selected from the Massey et al. catalog based on the following criteria: emission in H α , V<18./m 5 and 0.m 35 < (B - V) < 1.m 2. The spectra of both stars reveal a broad and strong H α emission with extended wings (770 and 1000 kms−1). Based on the spectra we estimated the main parameters of the stars. Object N45901 has a bolometric luminosity log(L/L) = 6.0–6.2 with the value of interstellar extinction A V = 2.3 ± 0.1. The temperature of the star’s photosphere is estimated as T⋆ ∼ 13000–15000 K, its probable mass on the Zero Age Main Sequence is M∼ 60–80 M. The infrared excess in N 45901 corresponds to the emission of warm dust with the temperature Twarm ∼ 1000 K, and amounts to 0.1%of the bolometric luminosity. A comparison of stellar magnitude estimates from different catalogs points to the probable variability of the object N45901. Bolometric luminosity of the second object, N125093, is log(L/L) = 6.3 − 6.6, the value of interstellar extinction is A V = 2.75 ± 0.15. We estimate its photosphere’s temperature as T⋆∼ 13000–16000K, the initial mass as M ∼ 90–120 M. The infrared excess in N125093 amounts to 5–6% of the bolometric luminosity. Its spectral energy distribution reveals two thermal components with the temperatures Twarm ∼ 1000K and Tcold ∼ 480 K. The [Ca II] λλ7291, 7323 lines, observed in LBV-like stars Var A and N93351 in M33 are also present in the spectrum of N 125093. These lines indicate relatively recent gas eruptions and dust activity linked with them. High bolometric luminosity of these stars and broad H α emissions allow classifying the studied objects as LBV candidates.  相似文献   

13.
We explore the evolution of the early-type galaxy population in the rich cluster Abell 2390 at z=0.23. For this purpose, we have obtained spectroscopic data of 51 elliptical and lenticular galaxies with MOSCA at the 3.5 m telescope on Calar Alto Observatory. As our investigation spans both a broad range in luminosity (–22.3≤MB≤–:19.3)and a wide field of view (10′×10′), the environmental dependence of different formation scenarios can be analysed in detail as a function of radius from the cluster center. In this paper, we present first results on the Faber-Jackson relation and, for a subsample of 14 galaxies with morphological and structural parameters from HST, we also investigate the evolution of the Kormendy relation and the Fundamental Plane. We find a mild luminosity evolution of the early-type galaxies in Abell 2390: our objects are on average brighter by m B∼0.4 mag. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A new sample of M51-type galaxies consisting of 46 systems is used to estimate the B-band luminosity function. The luminosity function for the primary components of the systems can be described by a Schechter function with the parameters * = (1.4±0.3)×10-5 Mpc-3, = -1.3+0.4 -0.3, and M * = -20.3+0.2 -0.1. The values of the latter two parameters are comparable to those for isolated galactic pairs. The resulting estimate of the average density of M51-type galaxies is (4±3)% of the average density of isolated pairs for luminosities in the range -22m.0<M<-16m.0  相似文献   

15.
We summarize our modelling of galaxy photometric evolution (the GRASIL code). By including the effects of dust grains and PAH molecules in a two-phase clumpy medium, where clumps are associated with star-forming regions, we reproduce the observed UV to radio SEDs of galaxies with star formation rates from zero to several hundred M yr-1.GRASIL is a powerful tool for investigating star formation, the initial mass function and the supernova rate in nearby starbursts and normal galaxies, as well as for predicting the evolution of luminosity functions of different types of galaxies at wavelengths covering six decades. It may be interfaced with any device to provide the star formation and metallicity histories of a galaxy. As an application, we have investigated the properties of early-type galaxies in the HDF, tracking the contribution of this population to the cosmic star formation history, which has a broad peak between z = 1.5 and 4.To explain the absence of objects at z ≳ 1.3, we suggest a sequence of dust-enshrouded merger-driven starbursts in the first few Gyr of galaxy lifetimes. We are at present working on a complementary sample of late-type objects selected in a similar way. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The variation of radio luminosity with redshift and its effect on the analysis of the angular size-redshift (z) relation for a bright radio source sample (s 178 10Jy) has been investigated. By assuming a power law dependence of luminosity on redshift of the formP (1 +z), it was found that 4.4 (with correlation coefficientr 0.99) for at leastz 0.3. Correction for such a strongP – (1 +z) correlation when considering thez data for the sample led to a steeperz slope. This could be explained by assuming linear size evolution of the formD (1 +z)n withn = 2.8 – 3.3 consistent with both theoretical results and those obtained for more homogeneous source samples.  相似文献   

17.
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6), we have explored the difference of the environmental dependence of u-, g-, r-, i-, and z-band luminosities between galaxies above and below the value of M r*. It turns out that in the luminous volume-limited sample, all the five band luminosities strongly correlate with local environments. Because the u-band luminosity of galaxies still strongly depends on local environments in the faint volumelimited sample, we conclude that M r* is not an important characteristic parameter for the environmental dependence of the u-band luminosity. It is worth noting that for the u-band, the subsample at low density has a higher proportion of luminous galaxies and a lower proportion of faint galaxies than the one at high density, which is opposite to widely accepted conclusion: luminous galaxies exist preferentially in the densest regions of the universe, but faint galaxies are located preferentially in low density regions. Our results show that the environmental dependence of luminosity is not a single trend in different luminosity regions and for different bands.  相似文献   

18.
Optical quasar candidate counts in the far reaching radio surveys B2 and 5C are consistent either with a luminosity function containing a high percentage of low luminosity objects and a cut off in quasar density or, more probably, with a normal number of quasars at high redshifts and a less steep luminosity function. The absence of high redshifted objects in currently available samples is to be expected of q0 ≈︂ o and if some of the few quasars observed at z>2.2 are exceptionally bright intrinsically and not typical for the bulk.  相似文献   

19.
The study of X-ray clusters of galaxies, started 30 years ago, has revealed an increasing complexity in the thermodynamics of the X-ray emitting intracluster medium (ICM) as long as the sensitivity and the resolution of the X-ray satellites increased. At the same time, deep surveysdetected several, unexpected, high-z clusters. Here we focus on the Chandra observations of the most distant X-ray selected clusters (0.3 < z < 1.3), in order to constrain their thermodynamic evolution. The X-ray scaling properties show hints of negative evolution in the luminosity–temperature and M gas–temperature relations, and a positive evolution in the entropy–temperature relation. We find that the mean iron abundance at 〈z〉 = 0.8 is Z Fe = 0.25+0.04 −0.06 Z , and at 〈z〉 ∼ 1.2 is Z Fe = 0.35+0.06 −0.05 Z , both measures consistent with no evolution with respect to the local value Z Fe≃ 0.3 Z . These results can provide interesting constraints on the thermodynamics of the ICM at large look back times, pointing towards a redshift z ≳ 2 for the onset of non-gravitational processes.  相似文献   

20.
The implications of the intrinsic luminosity evolution with cosmological epoch on the value of the density parameter () and evolution of radio sizes of extragalactic radio sources have been considered. It is shown that a power law evolution model of the sortP (1 +z) can be used to contrain the value of . In the presence of a strong luminosity evolution, the model yields an upper limit of 0.5.It is also shown that the angular diameter redshift ( – z) relation for quasars can be interpreted in terms of the assumed luminosity evolution combined with a luminosity-linear size correlation with little or no linear size evolution required. On the other hand, strong linear size evolution is needed to explain the – z data for radio galaxies independent of luminosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号