首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is shown that for a class of force-free magnetic fields, i.e., ∇ × B = α B with α = constant, the magnetic field cannot be determined uniquely from the observed vertical component of the photospheric magnetic field given in an area of limited extent. Then it is proposed how some functions, the additional knowledge of which permits the magnetic field to be determined uniquely, could be chosen as a first approximation.  相似文献   

2.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
On the basis of observations (Zirin and Tanaka, 1973) inferring the presence of shear in magnetic fields, the amount of extractable energy stored in a class of force-free magnetic fields is evaluated for the flares of August 1972, using the formulations developed by Nakagawa and Raadu (1972). It is shown that the evaluated energy storage could be built up by the proper motions of sunspots in the active region McMath 11976 during July 31 and August 7. Then for the flare of August 7, a detailed analysis is made of the manner of energy release in the post maximum phases deduced from the configuration of flare loops. It is shown that the observed flare loops could be represented closely by the force-free magnetic fields and that the evaluated rate of energy release is consistent with observed rate given by the soft X-ray emission. The results of analysis suggest that the flare of August 1972 could be identified with the relaxation of an energetic force-free magnetic field towards lower energy states. The limitations and possible future extension of this type of analysis are discussed.Visiting scientist from the Tokyo Astronomical Observatory, Mitaka, Tokyo, Japan.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

4.
The presently prevailing theories of solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes to solar flare energy. In this paper, we discuss solar flares from an entirely different point of view, namely in terms of power supply by a dynamo process in the photosphere. By this process, electric currents flowing along the magnetic field lines are generated and the familiar ‘force-free’ fields or the ‘sheared’ magnetic fields are produced. Upward field-aligned currents thus generated are carried by downward streaming electrons; these electrons can excite hydrogen atoms in the chromosphere, causing the optical Hα flares or ‘low temperature flares’. It is thus argued that as the ‘force-free’ fields are being built up for the magnetic energy storage, a flare must already be in progress.  相似文献   

5.
Jiao  Litao  McClymont  A. N.  MikiĆ  Z. 《Solar physics》1997,174(1-2):311-327
Studies of solar flares indicate that the mechanism of flares is magnetic in character and that the coronal magnetic field is a key to understanding solar high-energy phenomena. In our ongoing research we are conducting a systematic study of a large database of observations which includes both coronal structure (from the Soft X-ray Telescope on the Yohkoh spacecraft) and photospheric vector magnetic fields (from the Haleakala Stokes Polarimeter at Mees Solar Observatory). We compare the three-dimensional nonlinear force-free coronal magnetic field, computed from photospheric boundary data, to images of coronal structure. In this paper we outline our techniques and present results for active region AR 7220/7222. We show that the computed force-free coronal magnetic field agrees well with Yohkoh X-ray coronal loops, and we discuss the properties of the coronal magnetic field and the soft X-ray loops.  相似文献   

6.
Energy is stored when the force-free magnetic field in an active region departs from a potential field, the departure showing up as a shear in the field. As soon as the field untwists, energy will be released to produce flares. Based on this idea, we derived an analytical solution of the equation of force-free field under the assumption of a constant force-free factor, and found expressions for seven important quantities for quadrupolar sunspots: the magnetic energy of the twisted field, that of potential field, the extractable free energy ΔM, the magnetic flux, the total current, the force-free factor and the field decay factor, in terms of three observables: the field intensity, the twist angle and the distance between two spots of the same polarity. The expression for ΔM can be useful in solar prediction work. For the active region of August, 1972, we found ΔM up to 6 × 1032 erg, sufficient to supply the energy of the observed flare activity. Observations of this active region are in good general agreement with our theoretical expectations: in the entire twisting of the quadrupolar sunspot group, each spot assumes the form of a complete spiral in the clockwise direction for each of the four spots.  相似文献   

7.
The main theoretical studies of the process involved in solar flares have been made in the two-dimensional approximation. However, the preliminary studies made with three field components suggest that reconnection could take place in the separatrices, the separator (intersection of separatrices) being a privileged location for this process. As a consequence the sites of flare kernels must be located on the intersections of the separatrices with the photosphere. Therefore, in order to understand the role of interacting large-scale structures in solar flares, we have analysed the topology of three-dimensional potential and linear force-free fields. The magnetic field has been modelled by a distribution of charges or dipoles located below the photosphere. This modelling permits us to define the field connectivity by the charges or the dipoles at both ends of every field line.We found that the appearance of a separator above the photosphere is more likely when a parasitic bipole emerges outside the axis that joins the main polarities and when the field lines are characteristic of a field created by dipoles. The separatrices derived in the potential and force-free hypothesis have different shapes. However, in the strong field regions where flares usually occur, the separatrices of the potential and force-free field models become closer. This property makes possible the use of the potential field, as a first estimate, for computing the location in the photosphere of the separatrices and for comparing this location with the position of observed H kernels. Displacements of the separatrices of a force-free field result from modifications of the free energy of the field. Then force-free fields have the further capability of predicting the kernel displacement. In all cases a configuration suitable for prominence support is found above the separator.  相似文献   

8.
Existing methods for calculating nonlinear force-free magnetic fields are slow, and are likely to be inadequate for reconstructing coronal magnetic fields based on high-resolution vector magnetic field data from a new generation of spectro-polarimetric instruments. In this paper a new implementation of the current-field iteration method is presented, which is simple, fast, and accurate. The time taken by the method scales as N 4, for a three-dimensional grid with N 3 points. The method solves the field-updating part of the iteration by exploiting a three-dimensional Fast Fourier Transform solution of Ampere’s law with a current density field constructed to satisfy the required boundary conditions, and uses field line tracing to solve the current-updating part of the iteration. The method is demonstrated in application to a known nonlinear force-free field and to a bipolar test case.  相似文献   

9.
Topology of Magnetic Field and Coronal Heating in Solar Active Regions   总被引:2,自引:0,他引:2  
Force-free magnetic fields can be computed by making use of a new numerical technique, in which the fields are represented by a boundary integral equation based on a specific Green's function. Vector magnetic fields observed on the photospheric surface can be taken as the boundary conditions of this equation. In this numerical computation, the following two points are emphasized: (1) A new method for data reduction is proposed, for removing uncertainties in boundary data and determining the parameter in this Green's function, which is important for solving the boundary integral equation. In this method, the transverse components of the observed boundary field are calibrated with a linear force-free field model without changing their azimuth. (2) The computed 3-D fields satisfy the divergence-free and force-free conditions with high precision. The alignment of these field lines is mostly in agreement with structures in Hα and Yohkoh soft X-ray images. Since the boundary data are calibrated with a linear force-free field model, the computed 3-D magnetic field can be regarded as a quasi-linear force-free field approximation. The reconstruction of 3-D magnetic field in active region NOAA 7321 was taken as an example to quantitatively exhibit the capability of our new numerical technique.  相似文献   

10.
The magnetic field structure of five flares observed by HINOTORI spacecraft is studied. The double source structure of impulsive flares seems to indicate hard X-ray emission from the two footpoints of a flaring loop, but the potential field computation does not reproduce a loop connecting the two sources. Therefore the magnetic field could be in a sheared configuration and the force-free field modeling would be the next step to examine. On the other hand gradual flares are characterized by hard X-ray sources located in the corona, 2–4 x 104 km above the photosphere. The potential field modeling is found to give a reasonable fitting in this type of flares, and the hard X-ray sources are located at the top of the magnetic loop or arcade. This configuration is consistent with the thick-target trap model of the hard X-ray bursts.  相似文献   

11.
Knowledge regarding the coronal magnetic field is important for the understanding of many phenomena, like flares and coronal mass ejections. Because of the low plasma beta in the solar corona, the coronal magnetic field is often assumed to be force-free and we use photospheric vector magnetograph data to extrapolate the magnetic field into the corona with the help of a nonlinear force-free optimization code. Unfortunately, the measurements of the photospheric magnetic field contain inconsistencies and noise. In particular, the transversal components (say B x and B y) of current vector magnetographs have their uncertainties. Furthermore, the magnetic field in the photosphere is not necessarily force free and often not consistent with the assumption of a force-free field above the magnetogram. We develop a preprocessing procedure to drive the observed non–force-free data towards suitable boundary conditions for a force-free extrapolation. As a result, we get a data set which is as close as possible to the measured data and consistent with the force-free assumption.  相似文献   

12.
The active region associated with Mt. Wilson sunspot group 18 935 (McMath, 11 976) which had a central meridian passage on August 4 and 5, 1972 produced a number of flares during transit. These included two importance 3B flares on August 4 and 7 as well as several of importance 1 and 2. Calculations of the total magnetic flux in this region were made during the period July 31 through August 9 using data from six observatories. For the 3B flare on August 4, the total flux changed from about 7.2 × 1022 Mx just before onset to about 5.6 × 1022 Mx two hours after onset. For the 3B flare on August 7, the flux was about 6.4 × 1022 Mx three hours before onset and about 5.2 × 1022 Mx three hours after onset. An importance 2B flare on August 2 had no measurable effect on the flux nor did any of several 1N or 1B flares which also occurred in this region during the period. The flux changes measured for the 3B flares occurred in the umbral and penumbral fields and no significant changes were observed in facular fields.The Aerospace Corporation, P.O. Box 92957, Los Angeles, Calif. 90009, U.S.A.  相似文献   

13.
Y. R. Chou  B. C. Low 《Solar physics》1994,153(1-2):255-285
Three-dimensional, quasi-static evolutions of coronal magnetic fields driven by photospheric flux emergence are modeled by a class of analytic force-free magnetic fields. Our models relate commonly observed photospheric magnetic phenomena, such as the formation and growth of sunspots, the emergence of an X-type separator, and the collision and merging of sunspots, to the three-dimensional magnetic fields in the corona above. By tracking the evolution in terms of a continuous sequence of force-free states, we show that flux emergence and submergence along magnetic neutral lines in the photosphere are essential processes in all these photospheric phenomena. The analytic solutions we present have a parametric regime within which the magnetic energy attained by an evolving force-free field may be of the order of 1030 ergs to several 1031 ergs, depending on the magnetic environment into which an emerging flux intrudes. The commonly used indicators of magnetic shear in magnetogram interpretation are discussed in terms of field connectivity in our models. It is demonstrated that the crossing angle of the photospheric transverse magnetic field with the neutral line may not be a reliable indicator of the magnetic shear in the coronal field above, due to the complexity of three-dimensionality. The poorly understood constraint of magnetic-helicity conservation on the availability of magnetic free energy for a flare is briefly discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
We evaluated the force-free factor α for 18 well-observed proton flare regions during 1967–1972 according to the degree of twist in their neutral line. We found that, on the day of the flare, α ≥ 0.34 for flares of Class 1 or greater and ≥ 0.50 for Class 2 or greater and that α always increased over the one or two days before the flare. We therefore suggest that α can be used in forecasting proton events. We also outline a squeezing force-free field model of large flares which can better explain certain observed facts.  相似文献   

15.
The problem of the accumulation and storage of the energy released in solar flares is discussed; it is proposed that convective energy of the photosphere is transformed into magnetic energy of the chromosphere and corona. The consequences of a large ratio of magnetic pressure to gas pressure are investigated. In this case the field must be approximately force-free. The only suitable force-free fields which allow an analytical treatment are those of cylindrical symmetry. The stability of these fields is studied with the energy principle. It is shown that they are always unstable due to kink type instabilities. The shape of the unstable perturbations is described in detail and an upper limit for their amplitude is estimated. The consequences for the proposed mechanism of energy storage are briefly discussed.  相似文献   

16.
Measurements of magnetic fields and electric currents in the pre-eruptive corona are crucial to the study of solar eruptive phenomena, like flares and coronal mass ejections (CMEs). However, spectro-polarimetric measurements of certain photospheric lines permit a determination of the vector magnetic field only at the photosphere. Therefore, there is considerable interest in accurate modeling of the solar coronal magnetic field using photospheric vector magnetograms as boundary data. In this work, we model the coronal magnetic field above multiple active regions with the help of a potential field and a nonlinear force-free field (NLFFF) extrapolation code over the full solar disk using Helioseismic and Magnetic Imager (SDO/HMI) data as boundary conditions. We compare projections of the resulting magnetic field lines with full-disk coronal images from the Atmospheric Imaging Assembly (SDO/AIA) for both models. This study has found that the NLFFF model reconstructs the magnetic configuration closer to observation than the potential field model for full-disk magnetic field extrapolation. We conclude that many of the trans-equatorial loops connecting the two solar hemispheres are current-free.  相似文献   

17.
Huaning  WANG 《Solar physics》1997,174(1-2):265-279
We extrapolated the 3-D fields above the photosphere, taking the observed photospheric magnetic fields in the active regions NOAA 6659 and 7321 as the boundary conditions of a linear force-free field model, and detected the singular points of the 2-D fields in a plane at the chromospheric level. These singular points can be described with the Poincaré index. Singular points with the index of +1 correspond to concentrations of magnetic flux, and those with the index of -1 to the saddle points in the plane. All of these singular points are connected by the lanes demarcating the 2-D magnetic cells in the plane. It has been confirmed that these saddle points are the intersections between separators and planes intersecting the 3-D fields. From comparisons between kernels of flares occurring in both regions and the saddle points, we found that there is a close morphological relationship between distributions of the saddle points and flare kernels. The main results are as follows: (a) The flare kernels tend to appear in areas with concentrating 2-D saddle points. (b) The morphology of the kernels is exactly confined by the lanes in the plane at chromospheric level. These facts seem favourable for the viewpoint that solar flares are closely related to magnetic separatrices and separators.  相似文献   

18.
Wheatland  M.S.  Farvis  F.J. 《Solar physics》2004,219(1):109-123
Circuit models involving bulk currents and inductances are often used to estimate the energies of coronal magnetic field configurations, in particular configurations associated with solar flares. The accuracy of circuit models is tested by comparing calculated energies of linear force-free fields with specified boundary conditions with corresponding circuit estimates. The circuit models are found to provide reasonable (order of magnitude) estimates for the energies of the non-potential components of the fields, and to reproduce observed functional dependences of the energies. However, substantial departure from the circuit estimates is observed for large values of the force-free parameter, and this is attributed to the influence of the non-potential component of the field on the path taken by the current.  相似文献   

19.
On practical representation of magnetic field   总被引:2,自引:0,他引:2  
Various manners of determination of a magnetic field are reviewed briefly from the standpoint of practicality and uniqueness. Then a practical representation of magnetic fields in terms of a class of force-free magnetic field is described. The proposed scheme is based on the physical consideration that in the chromosphere and lower corona a quasistatic magnetic field must be nearly force-free and that for the class of force-free magnetic field, i.e., ×B=B with = constant, the magnetic field can be determined uniquely from the observed distribution of the vertical component of a magnetic field. The applicability of the representation is demonstrated by examples and the limitations are discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

20.
Wiegelmann  T. 《Solar physics》2004,219(1):87-108
We developed a code for the reconstruction of nonlinear force-free and non-force-free coronal magnetic fields. The 3D magnetic field is computed numerically with the help of an optimization principle. The force-free and non-force-free codes are compiled in one program. The force-free approach needs photospheric vector magnetograms as input. The non-force-free code additionally requires the line-of-sight integrated coronal density distribution in combination with a tomographic inversion code. Previously the optimization approach has been used to compute magnetic fields using all six boundaries of a computational box. Here we extend this method and show how the coronal magnetic field can be reconstructed only from the bottom boundary, where the boundary conditions are measured with vector magnetographs. The program is planed for use within the Stereo mission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号