首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Landslide susceptibility assessment is a major research topic in geo-disaster management. In recent days, various landslide susceptibility and landslide hazard assessment methodologies have been introduced with diverse thoughts of assessment and validation method. Fundamentally, in landslide susceptibility zonation mapping, the susceptibility predictions are generally made in terms of likelihoods and probabilities. An overview of landslide susceptibility zoning practices in the last few years reveals that susceptibility maps have been prepared to have different accuracies and reliabilities. To address this issue, the work in this paper focuses on extreme event-based landslide susceptibility zonation mapping and its evaluation. An ideal terrain of northern Shikoku, Japan, was selected in this study for modeling and event-based landslide susceptibility mapping. Both bivariate and multivariate approaches were considered for the zonation mapping. Two event-based landslide databases were used for the susceptibility analysis, while a relatively new third event landslide database was used in validation. Different event-based susceptibility zonation maps were merged and rectified to prepare a final susceptibility zonation map, which was found to have an accuracy of more than 77 %. The multivariate approach was ascertained to yield a better prediction rate. From this study, it is understood that rectification of susceptibility zonation map is appropriate and reliable when multiple event-based landslide database is available for the same area. The analytical results lead to a significant understanding of improvement in bivariate and multivariate approaches as well as the success rate and prediction rate of the susceptibility maps.  相似文献   

2.
A rainfall-induced shallow landslide is a major hazard in mountainous terrain, but a time-space based approach is still an unsettled issue for mapping rainfall-induced shallow landslide hazards. Rain induces a rise of the groundwater level and an increase in pore water pressure that results in slope failures. In this study, an integrated infinite slope analysis model has been developed to evaluate the influence of infiltration on surficial stability of slopes by the limit equilibrium method. Based on this new integrated infinite slope analysis model, a time-space based approach has been implemented to map the distributed landslide hazard in a GIS (Geographic Information Systems) and to evaluate the shallow slope failure induced by a particular rainfall event that accounts for the rainfall intensity and duration. The case study results in a comprehensive time-space landslide hazard map that illustrates the change of the safety factor and the depth of the wetting front over time.  相似文献   

3.
滑坡灾害空间预测支持向量机模型及其应用   总被引:5,自引:1,他引:4  
戴福初  姚鑫  谭国焕 《地学前缘》2007,14(6):153-159
随着GIS技术在滑坡灾害空间预测研究中的广泛应用,滑坡灾害空间预测模型成为研究的热点问题。在总结滑坡灾害空间预测研究现状的基础上,简要介绍了两类和单类支持向量机的基本原理。以香港自然滑坡空间预测为例,采用两类和单类支持向量机进行滑坡灾害空间预测,并与Logistic回归模型进行了比较。结果表明,两类支持向量机模型优于Logistic回归模型,而Logistic回归模型优于单类支持向量机模型。  相似文献   

4.
Landslides are one of the most frequent and common natural hazards in Malaysia. Preparation of landslide susceptibility maps is one of the first and most important steps in the landslide hazard mitigation. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. For this reason, a number of different approaches have been used, including direct and indirect heuristic approaches, deterministic, probabilistic, statistical, and data mining approaches. Moreover, these landslides can be systematically assessed and mapped through a traditional mapping framework using geoinformation technologies. Since the early 1990s, several mathematical models have been developed and applied to landslide hazard mapping using geographic information system (GIS). Among various approaches, fuzzy logic relation for mapping landslide susceptibility is one of the techniques that allows to describe the role of each predisposing factor (landslide-conditioning parameters) and their optimal combination. This paper presents a new attempt at landslide susceptibility mapping using fuzzy logic relations and their cross application of membership values to three study areas in Malaysia using a GIS. The possibility of capturing the judgment and the modeling of conditioning factors are the main advantages of using fuzzy logic. These models are capable to capture the conditioning factors directly affecting the landslides and also the inter-relationship among them. In the first stage of the study, a landslide inventory was complied for each of the three study areas using both field surveys and airphoto studies. Using total 12 topographic and lithological variables, landslide susceptibility models were developed using the fuzzy logic approach. Then the landslide inventory and the parameter maps were analyzed together using the fuzzy relations and the landslide susceptibility maps produced. Finally, the prediction performance of the susceptibility maps was checked by considering field-verified landslide locations in the studied areas. Further, the susceptibility maps were validated using the receiver-operating characteristics (ROC) success rate curves. The ROC curve technique is based on plotting model sensitivity—true positive fraction values calculated for different threshold values versus model specificity—true negative fraction values on a graph. The ROC curves were calculated for the landslide susceptibility maps obtained from the application and cross application of fuzzy logic relations. Qualitatively, the produced landslide susceptibility maps showed greater than 82% landslide susceptibility in all nine cases. The results indicated that, when compared with the landslide susceptibility maps, the landslides identified in the study areas were found to be located in the very high and high susceptibility zones. This shows that as far as the performance of the fuzzy logic relation approach is concerned, the results appeared to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.  相似文献   

5.
Super typhoon Haiyan, considered as one of the most powerful storms recorded in 2013, devastated the central Philippines region on 8 November 2013 with damage amounting to more than USD 2 billion. Hardest hit is the province of Leyte which is located in central Philippines. Rehabilitation of the areas that were devastated requires detailed hazard maps as a basis for well-planned reconstruction. Along with severe wind, storm surge, and flood hazard maps, detailed landslide susceptibility maps for the cities and municipalities of Leyte (7246.7 km2) province are necessary. In order to rapidly assess and delineate areas susceptible to rainfall-induced shallow landslides, Stability INdex MAPping (SINMAP) software was used over a 5-m Interferometric Synthetic Aperture Radar (InSAR)-derived digital terrain model (DTM) grid. Topographic, soil strength, and hydrologic parameters were used for each pixel of a given DTM grid to compute for the corresponding factor of safety. The landslide maps generated using SINMAP are highly consistent with the landslide inventory derived from high-resolution satellite imagery from 2002 to 2014 with a detection percentage of 97.5 % and missing factor of 0.025. These demonstrate that SINMAP performs well despite the lack of an extensive geotechnical and hydrological database in the study area. The detailed landslide susceptibility classification is useful to identify safe and unsafe areas for reconstruction and rehabilitation efforts. These maps complement the debris flow and structurally controlled landslide hazard maps that are also being prepared for rebuilding Haiyan’s devastated areas.  相似文献   

6.
Optical remote sensing was used to provide scientific information to support environmental management in the Gulf of Gabes that is located in the southeastern coast of Tunisia. This region is characterized by shallow continental shelf subjected to semi-diurnal tides. Industrial activities in this area since the early 1970s may have contributed to the degradation of the biodiversity of the ecosystem with eutrophication problems and disappearance of benthic and planktonic species. To assess the long-term effect of anthropogenic and natural discharges on the Gulf of Gabes, the optical environment of the coastal waters is assessed from in situ measurements of total suspended matter concentration (TSM), Secchi depth and turbidity (TU). This monitoring requires regular seaborne measurements (monthly), which is very expensive and difficult to obtain. The objective of the present study is the evaluation of the Moderate Resolution Imaging Spectrometer (MODIS) AQUA data compared with two sampling campaigns realized at the study area. To map turbidity data from MODIS images, a semi-empirical algorithm was applied at band 667 nm. This bio-optical algorithm has already been calibrated and validated on the Belgian coast. The validation of this algorithm on the Gulf of Gabes using in situ measurements of turbidity and remotely sensed turbidity obtained from MODIS imagery shows a correlation coefficient of 68.9%. Seasonal and annual average maps for TSM and TU were then computed over the Gulf of Gabes using MODIS imagery. The obtained results of TSM and TU from remotely sensed data are conformable with those obtained through the analysis of in situ measurements. Therefore, remote sensing techniques offer a better and efficient tool for mapping and monitoring turbidity over the whole region.  相似文献   

7.
Pathways for adaptive and integrated disaster resilience   总被引:7,自引:2,他引:5  
The GIS-multicriteria decision analysis (GIS-MCDA) technique is increasingly used for landslide hazard mapping and zonation. It enables the integration of different data layers with different levels of uncertainty. In this study, three different GIS-MCDA methods were applied to landslide susceptibility mapping for the Urmia lake basin in northwest Iran. Nine landslide causal factors were used, whereby parameters were extracted from an associated spatial database. These factors were evaluated, and then, the respective factor weight and class weight were assigned to each of the associated factors. The landslide susceptibility maps were produced based on weighted overly techniques including analytic hierarchy process (AHP), weighted linear combination (WLC) and ordered weighted average (OWA). An existing inventory of known landslides within the case study area was compared with the resulting susceptibility maps. Respectively, Dempster-Shafer Theory was used to carry out uncertainty analysis of GIS-MCDA results. Result of research indicated the AHP performed best in the landslide susceptibility mapping closely followed by the OWA method while the WLC method delivered significantly poorer results. The resulting figures are generally very high for this area, but it could be proved that the choice of method significantly influences the results.  相似文献   

8.
Landslide susceptibility assessment forms the basis of any hazard mapping, which is one of the essential parts of quantitative risk mapping. For the same study area, different susceptibility maps can be achieved depending on the type of susceptibility mapping methods, mapping unit, and scale. Although there are various methods of obtaining susceptibility maps, the efficiency and performance of each method should be evaluated. In this study the effect of mapping unit and susceptibility mapping method on landslide susceptibility assessment is investigated. When analyzing the effect of susceptibility mapping method, logistic regression (LR) which is widely used in landslide susceptibility mapping and, spatial regression (SR), which have not been used for landslide susceptibility mapping, are selected. The susceptibility maps with logistic and spatial regression models are obtained using two different mapping units namely slope unit-based and grid-based mapping units. The procedure for investigation of effect of mapping unit on different susceptibility mapping methods is applied to Kumluca watershed, in Bartin Province of Western Black Sea Region, Turkey. 18 factor maps are prepared for landslide susceptibility assessment in the study region. Geographic information systems and remote sensing techniques are used to create the landslide factor maps, to obtain susceptibility maps and to compare the results. The relative operating characteristics (ROC) curve is used to compare the predictive abilities of each model and mapping unit and also the accuracy is evaluated depending on the observations made during field surveys. By analyzing the area under the ROC curve for grid-based and slope unit-based mapping units, it can be concluded that SR model provide better predictive performance (0.774 in grids and 0.898 in slope units) as compared to the LR model (0.744 in grids and 0.820 in slope units). This result is also supported by the accuracy analysis. For both mapping units, the SR model provides more accurate result (0.55 for grids and 0.57 for slope units) than the LR model (0.50 for grids and 0.48 for slopes). The main reason for this better performance is that the spatial correlations between the mapping units are incorporated into the model in SR while this fact is not considered in LR model.  相似文献   

9.
Landslide susceptibility mapping is among the useful tools applied in disaster management and planning development activities in mountainous areas. The susceptibility maps prepared in this research provide valuable information for landslide hazard management in Lashgarak region of Tehran. This study was conducted to, first, prepare landslide susceptibility maps for Lashgarak region and evaluate landslide effect on mainlines and, second, to analyze the main factors affecting landslide hazard increase in the study area in order to propose efficient strategies for landslide hazard mitigation. A GIS-based multi-criteria decision analysis model (fuzzy logic) is used in the present work for scientific evaluation of landslide susceptible areas in Lashgarak region. To this end, ArcGIS, PCIGeomatica, and IDIRISI software packages were used. Eight information layers were selected for information analysis: ground strength class, slope angle, terrain roughness, normalized difference moisture index, normalized difference vegetation index, distance from fault, distance from the river, and distance from the road. Next, eight different scenarios were created to determine landslide susceptibility of the study area using different operators (intersection (AND), union (OR), algebraic sum (SUM), multiplication (PRODUCT), and different fuzzy gamma values) of fuzzy overlay approach. After that, the performance of various fuzzy operators in landslide susceptibility mapping was empirically compared. The results revealed the excellent consistency of landslide susceptibility map prepared using the fuzzy union (OR) operator with landslide distribution map in the study area. Eventually, the accuracy of landslide susceptibility map prepared using the fuzzy union (OR) operator was evaluated using the frequency ratio diagram. The results showed that frequency values of the landslides gradually increase from “low susceptibility” to high “susceptibility” as 88.34% of the landslides are categorized into two “high” and “very high” susceptibility classes, implying the satisfactory consistency between the landslide susceptibility map prepared using fuzzy union (OR) operator and landslide distribution map.  相似文献   

10.
Xie  Mowen  Esaki  Tetsuro  Zhou  Guoyun 《Natural Hazards》2004,33(2):265-282
Based on a new Geographic Information Systems (GIS) grid-basedthree-dimensional (3-D) deterministic model and taking the slopeunit as the mapping unit, this study maps landslide hazard usingthe 3-D safety factor index and failure probability. Assuming theinitial slip to be the lower part of an ellipsoid, the 3-D critical slipsurface in the 3-D slope stability analysis is located by minimizingthe 3-D safety factor using the Monte Carlo random simulation.The failure probability of the landslide is calculated using anapproximate method in which the distributions of c, andthe 3-D safety factor are assumed to be in normal distribution.The method has been applied to a case study on three-dimensionallyand probabilistically mapping landslide hazard.  相似文献   

11.
The increased socio-economic significance of landslides has resulted in the application of statistical methods to assess their hazard, particularly at medium scales. These models evaluate where, when and what size landslides are expected. The method presented in this study evaluates the landslide hazard on the basis of homogenous susceptible units (HSU). HSU are derived from a landslide susceptibility map that is a combination of landslide occurrences and geo-environmental factors, using an automated segmentation procedure. To divide the landslide susceptibility map into HSU, we apply a region-growing segmentation algorithm that results in segments with statistically independent spatial probability values. Independence is tested using Moran’s I and a weighted variance method. For each HSU, we obtain the landslide frequency from the multi-temporal data. Temporal and size probabilities are calculated using a Poisson model and an inverse-gamma model, respectively. The methodology is tested in a landslide-prone national highway corridor in the northern Himalayas, India. Our study demonstrates that HSU can replace the commonly used terrain mapping units for combining three probabilities for landslide hazard assessment. A quantitative estimate of landslide hazard is obtained as a joint probability of landslide size, of landslide temporal occurrence for each HSU for different time periods and for different sizes.  相似文献   

12.
Landslides are a significant hazard in many parts of the world and exhibit a high, and often underestimated, damage potential. Deploying landslide early warning systems is one risk management strategy that, amongst others, can be used to protect local communities. In geotechnical applications, slope stability models play an important role in predicting slope behaviour as a result of external influences; however, they are only rarely incorporated into landslide early warning systems. In this study, the physically based slope stability model CHASM (Combined Hydrology and Stability Model) was initially applied to a reactivated landslide in the Swabian Alb to assess stability conditions and was subsequently integrated into a prototype of a semi-automated landslide early warning system. The results of the CHASM application demonstrate that for several potential shear surfaces the Factor of Safety is relatively low, and subsequent rainfall events could cause instability. To integrate and automate CHASM within an early warning system, international geospatial standards were employed to ensure the interoperability of system components and the transferability of the implemented system as a whole. The CHASM algorithm is automatically run as a web processing service, utilising fixed, predetermined input data, and variable input data including hydrological monitoring data and quantitative rainfall forecasts. Once pre-defined modelling or monitoring thresholds are exceeded, a web notification service distributes SMS and email messages to relevant experts, who then determine whether to issue an early warning to local and regional stakeholders, as well as providing appropriate action advice. This study successfully demonstrated the potential of this new approach to landslide early warning. To move from demonstration to active issuance of early warnings demands the future acquisition of high-quality data on mechanical properties and distributed pore water pressure regimes.  相似文献   

13.
Different models were developed for evaluating the probabilistic three-dimensional (3-D) stability analysis of earth slopes and embankments under earthquake loading using both the safety factor and the displacement criteria of slope failure.The probabilistic models evaluate the probability of failure under seismic loading considering the different sources of uncertainties involved in the problem. The models also take into consideration the spatial variabilities and correlations of soil properties. The developed models are incorporated in a computer program PTDDSSA.These analysis/design procedures are incorporated within a code named SARETL developed in this study for stability analysis and remediation of earthquake triggered landslides. In addition to the dynamic inertia forces, the system takes into consideration local site effects.The code is capable of assessing the landslide hazard affecting major transportation routes in the event of earthquakes and preparing earthquake induced landslide hazard maps (i.e., maps showing expected displacements and probability of slope/embankments failure) for different earthquake magnitudes and environmental conditions. It can also beused for proposing a mitigation strategy against landslides.  相似文献   

14.
The main objective of this study is to investigate potential application of frequency ratio (FR), weights of evidence (WoE), and statistical index (SI) models for landslide susceptibility mapping in a part of Mazandaran Province, Iran. First, a landslide inventory map was constructed from various sources. The landslide inventory map was then randomly divided in a ratio of 70/30 for training and validation of the models, respectively. Second, 13 landslide conditioning factors including slope degree, slope aspect, altitude, plan curvature, stream power index, topographic wetness index, sediment transport index, topographic roughness index, lithology, distance from streams, faults, roads, and land use type were prepared, and the relationships between these factors and the landslide inventory map were extracted by using the mentioned models. Subsequently, the multi-class weighted factors were used to generate landslide susceptibility maps. Finally, the susceptibility maps were verified and compared using several methods including receiver operating characteristic curve with the areas under the curve (AUC), landslide density, and spatially agreed area analyses. The success rate curve showed that the AUC for FR, WoE, and SI models was 81.51, 79.43, and 81.27, respectively. The prediction rate curve demonstrated that the AUC achieved by the three models was 80.44, 77.94, and 79.55, respectively. Although the sensitivity analysis using the FR model revealed that the modeling process was sensitive to input factors, the accuracy results suggest that the three models used in this study can be effective approaches for landslide susceptibility mapping in Mazandaran Province, and the resultant susceptibility maps are trustworthy for hazard mitigation strategies.  相似文献   

15.
Using detailed field mapping, an analysis of landslide risk has been undertaken in the flysch highlands of the Outer Western Carpathians. The standardized Czech methodology of expert derived susceptibility zonation widely used for land development planning purposes and deterministic modeling of shallow landslides was used to separately assess the susceptibility of different landslide types. The two susceptibility zonation maps were used to define landslide hazard using information about landslide reactivation and the return periods of precipitation that triggered the respective landslide types. A risk matrix was then used to qualitatively analyze the landslide risk to selected assets. The monetary value of these assets, according to actual market prices, was calculated and analyzed with respect to the risk classification. Since the study area is an important residential and recreational area, the practical application of the derived results was checked through a series of interviews conducted with personnel of the local government planning and construction office. This demonstrated a willingness to apply the landslide hazard maps as well as restraints of its successful application. The main one is the absence of legally binding regulations to enforce the spatial planers to use this information.  相似文献   

16.
The landslide studies can be categorized as pre- and postdisaster studies. The predisaster studies include spatial prediction of potential landslide zones known as landslide susceptibility zonation (LSZ) mapping to identify the areas/locales susceptible to landslide hazard. The LSZ maps provide an assessment of the safety of existing habitations and infrastructural/functional elements and help plan further developmental activities in the hilly regions. Landslides are one of the natural geohazards that affect at least 15% of land area of India. Different types of landslides occur frequently in geodynamical active domains of the Himalayas. In India, various techniques have been developed and adopted for LSZ mapping of different regions. However, the technique for LSZ mapping is not yet standardized. The present research is an attempt in this direction only. In our earlier work (Kanungo et al. 2006), a detailed study on conventional, artificial neural network (ANN)- black box-, fuzzy set-based and combined neural and fuzzy weighting techniques for LSZ mapping in Darjeeling Himalayas has been documented. In this paper, other techniques such as combined neural and certainty factor concept along with combined neural and likelihood ratio techniques have been assessed in comparison with combined neural and fuzzy technique for the preparation of LSZ maps of the same study area in parts of Darjeeling Himalayas. It is observed from the present study that the LSZ map produced using combined neural and fuzzy approach appears to be the most accurate one as in this case only 2.3% of the total area is found to be categorized as very high susceptibility zone and contains 30.1% of the existing landslide area. This approach can serve as one of the key objective approaches for spatial prediction of landslide hazards in hilly terrain.  相似文献   

17.
This paper provides an overview of the history and current status of landslide susceptibility and hazard mapping for land-use zoning in Australia. It also describes a case study of landslide hazard mapping in a medium density, coastal, suburban residential area of metropolitan Sydney, New South Wales, Australia, with relatively steep terrain. Issues covered include identification and mapping of existing and potential landslides, and susceptibility and hazard zoning for regulatory management and land-use planning. The method involves application of the principles contained within the AGS (2000) guideline, and as updated by the AGS (2007 a,b,c,d,e) suite of guidelines.  相似文献   

18.
In many regions, the absence of a landslide inventory hampers the production of susceptibility or hazard maps. Therefore, a method combining a procedure for sampling of landslide-affected and landslide-free grid cells from a limited landslide inventory and logistic regression modelling was tested for susceptibility mapping of slide- and flow-type landslides on a European scale. Landslide inventories were available for Norway, Campania (Italy), and the Barcelonnette Basin (France), and from each inventory, a random subsample was extracted. In addition, a landslide dataset was produced from the analysis of Google Earth images in combination with the extraction of landslide locations reported in scientific publications. Attention was paid to have a representative distribution of landslides over Europe. In total, the landslide-affected sample contained 1,340 landslides. Then a procedure to select landslide-free grid cells was designed taking account of the incompleteness of the landslide inventory and the high proportion of flat areas in Europe. Using stepwise logistic regression, a model including slope gradient, standard deviation of slope gradient, lithology, soil, and land cover type was calibrated. The classified susceptibility map produced from the model was then validated by visual comparison with national landslide inventory or susceptibility maps available from literature. A quantitative validation was only possible for Norway, Spain, and two regions in Italy. The first results are promising and suggest that, with regard to preparedness for and response to landslide disasters, the method can be used for urgently required landslide susceptibility mapping in regions where currently only sparse landslide inventory data are available.  相似文献   

19.
In this paper, a multi-method approach for the assessment of the stability of natural slopes and landslide hazard mapping applied to the Dakar coastal region is presented. This approach is based on the effective combination of geotechnical field and laboratory works, of GIS, and of mechanical (deterministic and numerical) stability analysis. By using this approach, valuable results were gained regarding instability factors, landslide kinematics, simulation of slope failure and coastal erosion. This led to a thorough assessment and strong reduction in the subjectivity of the slope stability and hazard assessment and to the development of an objective landslide danger map of the SW coast of Dakar. Analysis of the results shows that the slides were influenced by the geotechnical properties of the soil, the weathering, the hydrogeological situation, and the erosion by waves. The landslide susceptibility assessment based on this methodological approach has allowed for an appropriate and adequate consideration of the multiple factors affecting the stability and the optimization of planning and investment for land development in the city.  相似文献   

20.
For the socio-economic development of a country, the highway network plays a pivotal role. It has therefore become an imperative to have landslide hazard assessment along these roads to provide safety. The current study presents landslide hazard zonation maps, based on the information value method and frequency ratio method using GIS on 1:50,000 scale by generating the information about the landslide influencing factors. The study was carried out in the year 2017 on a part of Ravi river catchment along one of the landslide-prone Chamba to Bharmour road corridor of NH-154A in Himachal Pradesh, India. A number of landslide triggering geo-environmental factors like “slope, aspect, relative relief, soil, curvature, Land Use and Land Cover (LULC), lithology, drainage density, and lineament density” were selected for landslide hazard mapping based on landslide inventory. The landslide inventory has been developed using satellite imagery, Google earth and by doing exhaustive field surveys. A digital elevation model was used to generate slope gradient, slope aspect, curvature, and relative relief map of the study area. The other information, i.e., soil maps, geological maps, and toposheets, have been collected from various departments. The landslide hazard zonation map was categorized namely “very high hazard, high hazard, medium hazard, low hazard, and very low hazard.” The results from these two methods have been validated using area under curve (AUC) method. It has been found that hazard zonation map prepared using frequency ratio model had a prediction rate of 75.37% while map prepared using information value method had prediction rate of 78.87%. Hence, on the basis of prediction rate, the landslide hazard zonation map, obtained using information value method, was experienced to be more suitable for the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号