首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
本文用单台多重滤波方法测定了经过青藏高原地区瑞利波群速度频散曲线。所得基阶瑞利波的观测周期为5.0—56.0秒,速度标准偏差为0.08—0.15公里/秒,一阶瑞利波的观测周期范围为10—16秒,速度标准偏差为0.05—0.13公里/秒。利用广义线性反演方法对频散曲线进行反演,可得出一个由五层构成的地震横波速度地壳模型。在27—40公里之间存在低速层,其横波速度为3.29公里/秒,比上一层低0.21公里/秒。  相似文献   

2.
3.
利用中国大陆东部21个台站的43条面波大圆路径上瑞利面波记录的双台资料,计算出双台间地震面波相速度频散,采用Tarantola概率反演的方法求得相速度频散曲线的分布,并由各处相速度频散曲线反演得到地壳上地幔的三维横波波速图像,进而得到中国东部地壳上地幔的S波速度结构.结果表明:我国大陆东部地壳厚度总体上呈东薄西厚的趋势,以105°E为界向西地壳厚度逐渐加深到55 km以上,其中有一个北东向的h形地壳厚度的坡度带.豫西及晋南地区为相对薄地壳的地区.大别山地区和泰山附近地区地壳变厚,但秦岭地区地壳不变厚.上地幔低速层上界面的深度在华北地区较浅,为80-90km,在鄂尔多斯、四川东部以及黔湘地区为120-130km.扬子地块东部及华南褶皱系中、东部上地幔顶部速度偏低使低速层的速度反差不明显.滇黔褶皱系的西部在200 km以内的上地幔中未出现低速层.  相似文献   

4.
利用中国大陆东部21个台站的43条面波大圆路径上瑞利面波记录的双台资料, 计算出双台间地震面波相速度频散,采用Tarantola概率反演的方法求得相速度频散曲线的分 布,并由各处相速度频散曲线反演得到地壳上地幔的三维横波波速图像,进而得到中国东部 地壳上地幔的S波速度结构.结果表明:我国大陆东部地壳厚度总体上呈东薄西厚的趋势,以 105°E为界向西地壳厚度逐渐加深到55km以上,其中有一个北东向的h形地壳厚度的坡度 带.豫西及晋南地区为相对薄地壳的地区.大别山地区和泰山附近地区地壳变厚,但秦岭地 区地壳不变厚.上地幔低速层上界面的深度在华北地区较浅,为80—90km,在鄂尔多斯、四 川东部以及黔湘地区为120—130km.扬子地块东部及华南褶皱系中、东部上地幔顶部速度 偏低使低速层的速度反差不明显.滇黔褶皱系的西部在200km以内的上地幔中未出现低速层。  相似文献   

5.
利用新疆塔里木盆地附近喀什和高台地震台所记录到的天然地震面波资料,研究了该地区的地壳结构,并测定了瑞利波QR值。 结果表明:塔里木盆地地壳为多层结构,地壳厚度约60公里,其中沉积层厚度约为10公里,是造成塔里木盆地的面波群速度异常低的主要因素。同时,地壳中部有一低速层;长周期瑞利波QR值偏低,反映了地震波在该区的地壳下部和上地幔的强衰减。  相似文献   

6.
李白基  李宁 《地震学报》1989,11(3):268-274
本文测量了南北地震带和两侧的瑞利波群速度,各路径间有系统的差别。反演频散得出地壳横波速度结构。按中地壳速度,可分为速度逆转型、低速型和高速型,分别与构造运动的活跃区、活化区和稳定区相关。   相似文献   

7.
利用Rayleigh波群速度资料反演得到中国大陆及其临近海域的(70°E-145°E,10°N-55°N)15-120s周期的群速度分布图像. 塔里木盆地在15s处清楚地显示为低速,在16-33s左右没有显示,但在36-5s显示为高速,说明塔里木盆地有较深的根. 青藏高原块体是44s至120s图像中最为突出的低速块体,南面与印度板块的分界线以及与北面的塔里木盆地、柴达木盆地的分界清晰,其块体中西部的速度低于东部. 泰国清迈附近存在一尺度为1000km左右的低速带,可能是青藏高原块体的物质向东南方向迁移造成上地幔物质上涌的结果. 南北地震带表现为强烈的速度梯度带,西面为低速,东面为高速. 中国南海的中央、日本海中央、菲律宾海表现为海洋性地壳. 菲律宾海的图像与地形及地震带完全吻合. 环绕菲律宾海及日本海存在400km左右宽的低速带,可能是岩浆活动带.  相似文献   

8.
中国大陆及邻近海域的Rayleigh波群速度分布   总被引:11,自引:5,他引:11       下载免费PDF全文
利用Rayleigh波群速度资料反演得到中国大陆及其临近海域的(70°E-145°E,10°N-55°N)15-120s周期的群速度分布图像. 塔里木盆地在15s处清楚地显示为低速,在16-33s左右没有显示,但在36-5s显示为高速,说明塔里木盆地有较深的根. 青藏高原块体是44s至120s图像中最为突出的低速块体,南面与印度板块的分界线以及与北面的塔里木盆地、柴达木盆地的分界清晰,其块体中西部的速度低于东部. 泰国清迈附近存在一尺度为1000km左右的低速带,可能是青藏高原块体的物质向东南方向迁移造成上地幔物质上涌的结果. 南北地震带表现为强烈的速度梯度带,西面为低速,东面为高速. 中国南海的中央、日本海中央、菲律宾海表现为海洋性地壳. 菲律宾海的图像与地形及地震带完全吻合. 环绕菲律宾海及日本海存在400km左右宽的低速带,可能是岩浆活动带.  相似文献   

9.
用瑞利波研究新疆塔里木盆地地壳分层结构及QR   总被引:1,自引:0,他引:1       下载免费PDF全文
利用新疆塔里木盆地附近喀什和高台地震台所记录到的天然地震面波资料,研究了该地区的地壳结构,并测定了瑞利波QR值。 结果表明:塔里木盆地地壳为多层结构,地壳厚度约60公里,其中沉积层厚度约为10公里,是造成塔里木盆地的面波群速度异常低的主要因素。同时,地壳中部有一低速层;长周期瑞利波QR值偏低,反映了地震波在该区的地壳下部和上地幔的强衰减。  相似文献   

10.
青藏高原东南缘是研究印度—欧亚板块碰撞过程、块体间相互作用和壳幔变形机制的重要地区.本文利用川滇地区流动地震台阵和固定地震台网共557个台站的连续波形数据,基于改进的背景噪声处理流程和分析方法得到了6023条瑞利波群速度频散曲线,反演获得了6~48 s的瑞利波群速度分布图像.结果显示在四川盆地内部短周期群速度分布较好地揭示了盆地内沉积层厚度的横向变化.在30~48 s周期,四川盆地西部群速度存在南低、北高的特征,推测是南部中下地壳和上地幔温度较高引起的.温度的增高降低了地壳的力学强度,在青藏高原东向挤压作用下盆地西南部地壳更易发生变形,并导致脆性上地壳在新生代产生地壳缩短和褶皱、断裂等地质活动.攀枝花及其周边地区从地壳浅部至上地幔深度的高速异常体,可能与基性和超基性岩的侵入有关.该高速体具有较大的介质强度,在一定程度上阻碍了青藏高原物质东南向的运移,这可能是造成丽江—小金河断裂两侧巨大高程差异的重要因素.自24 s开始,南盘江盆地表现为明显的高速异常,与华南块体西南部其他区域的深部结构存在明显差异.反演的S波速度结构揭示,自中上地壳至上地幔,南盘江盆地的速度一直高于北侧其他区域.结合此地区的地壳运动模式,推测介质S波速度较高、力学强度较大的南盘江盆地对青藏高原物质的东南向逃逸具有一定的阻挡作用.  相似文献   

11.
陈虹  黄忠贤 《地球物理学报》1998,41(Z1):270-280
利用时频偏振分析技术分析穿过青藏高原不同地区的基阶Love波的偏振方向,确定不同周期的Love波到达台站的入射方向对于大圆的偏离.结果表明,在青藏高原内部传播的Love波传播路径基本不偏离大圆路径,穿过青藏块体及川滇西部低速区边界的Love波明显偏离大回路径低速区(青藏高原及川滇西部)的边界区域速度变化梯度大,对路径影响大.低速区内部路径偏离不明显,内部速度变化梯度比边界区域速度变化梯度小.低速区内大约在青藏高原中部位置是面波速度最低的地方.面波路径对于大圆路径的明显偏离,是由于速度结构的横向不均匀性造成的.利用已知的相速度分布,采用射线追踪方法正演计算的结果与实测结果在偏离方向上是一致的,但偏离角的值则比实测值小.  相似文献   

12.
南北地震带的瑞利波群速度与地壳结构   总被引:2,自引:2,他引:2       下载免费PDF全文
本文用长周期面波资料研究了南北地震带及其西侧的地壳结构。结果表明:南北地震带的地壳厚度具有南薄北厚,西厚东薄的特征,南北带和其西侧区域地壳内都存在有低速层;地壳横波平均速度很低,约为3.37公里/秒;上地幔顶部的横波速度只有4.40公里/秒;南北带北段可能存在上地幔物质上隆,岩石圈厚度只有60多公里,该区域地壳底部存在有低速层。  相似文献   

13.
利用中国数字化地震台网(CDSN)11个台站和周边地区的11个IRIS数字化地震台站记录的长周期面波资料,用多重滤波方法测定了在647条不同路径上周期从10~92s的基阶瑞利波群速度频散曲线.采用Dimtar Yanovskaya方法,反演得到北纬18~54、东经70~140范围内,25个中心周期的群速度分布图象.结果表明:在10~15.9s周期范围内,群速度分布存在着明显的横向不均匀性.其分区分块特征与大地构造单元有着密切的对应关系,两个明显的低速区域分别位于塔里木盆地和东海及北部邻域;从21~33s逐渐显示出深部构造块体的格局;在36.6~40s周期附近的群速度分布图象中,十分清晰地显示出中国大陆岩石圈结构的分区特征,南北地震带、青藏高原、华北、华南块体及东北地块的边界非常明显.本文给出了沿30N、38N 纬线和沿90E、120E 经线剖面的群速度随周期分布图象.在这些剖面上,较明显地展示出中国大陆及其邻域地壳上地幔速度结构的基本特征.各构造块体的深部速度结构差异较大,在青藏高原东部地区的地壳中部存在局部低速区域;塔里木盆地、扬子地台的上地幔速度较高,显示出稳定地台特征;华北平原上地幔低速层的埋深浅、厚度大;东海及日本海的上地幔速度较低,这可能与菲律宾板块下插产生的摩擦热与喜山期以来受强烈拉张有密切的关系.  相似文献   

14.
为研究青藏高原的岩石层构造及其动力学过程,根据记录到的来自台站东北方向的大量宽频带远震林波波形资料,应用时间域的最大熵谱反褶积算法,得到了11个(全部)PASSCAL(地壳与岩石层的地震台阵研究计划)台站的接收函数.利用时间域广义线性反演的Jumping(跳动)算法,引入模型光滑度约束,并将合成地震图的Kennett完全算法及微分地震图的Randall快速算法用于接收函数的正演计算,由台站接收函数获得了各台站下方的一维S波速度分布.反演结果表明,青藏高原的Moho界面在班公—怒江缝合带附近存在明显的深度错断;在日喀则、拉萨、桑雄和安多等地的地壳内部,可以连续观测到三个显著的速度界面h1,h2和h3,其中h1和h2可以连续追踪到温泉、二道沟和不冻泉等地,而h3在班公—怒江缝合带以北消失;在日喀则、拉萨、桑雄、安多、二道沟和不冻泉等地有壳内低速层.关于班公—怒江缝合带附近Moho界面的错断现象,一个可能的解释是班公—怒江缝合带是印度地壳向欧亚下地壳挤入的前沿.  相似文献   

15.
用宽频带远震接收函数研究青藏高原的地壳结构   总被引:73,自引:31,他引:73       下载免费PDF全文
为研究青藏高原的岩石层构造及其动力学过程,根据记录到的来自台站东北方向的大量宽频带远震林波波形资料,应用时间域的最大熵谱反褶积算法,得到了11个(全部)PASSCAL(地壳与岩石层的地震台阵研究计划)台站的接收函数.利用时间域广义线性反演的Jumping(跳动)算法,引入模型光滑度约束,并将合成地震图的Kennett完全算法及微分地震图的Randall快速算法用于接收函数的正演计算,由台站接收函数获得了各台站下方的一维S波速度分布.反演结果表明,青藏高原的Moho界面在班公-怒江缝合带附近存在明显的深度错断;在日喀则、拉萨、桑雄和安多等地的地壳内部,可以连续观测到三个显著的速度界面h1,h2和h3,其中h1和h2可以连续追踪到温泉、二道沟和不冻泉等地,而h3在班公-怒江缝合带以北消失;在日喀则、拉萨、桑雄、安多、二道沟和不冻泉等地有壳内低速层.关于班公-怒江缝合带附近Moho界面的错断现象,一个可能的解释是班公-怒江缝合带是印度地壳向欧亚下地壳挤入的前沿.  相似文献   

16.
体波波形反演对青藏高原上地幔速度结构的研究   总被引:5,自引:5,他引:5       下载免费PDF全文
采用波形反演方法对青藏高原地区震中距8°-38°范围内的宽频带炸波波形进行拟合,研究该地区上地幔平均速度结构以及上地幔纵、横波速度的横向不均匀性结果表明青藏高原地区的平均地壳厚度约为68km,上地幔盖层平均厚度约为30-40km,速度约为8.10km/s雅鲁藏布江附近地壳厚度最大,约80km,相应的上地幔Pn速度为8.15km/s左右,青藏高原中部地区的地壳平均厚度约68-70km.位于拉萨地块北部的羌塘地块S波速度相对较低,其地壳和上地慢的平均S波速度分别比拉萨地块低1%和2%以上34°N以北,90°E附近的区域存在明显的上地幔P波低速异常区,P波的平均速度小于7.8km/s据此结果及前人工作,推断印度板块的俯冲可能以雅鲁藏布江缝合带附近为界,青藏高原巨大的地壳厚度是由于欧亚板块碰撞造成地壳缩短与增厚引起.  相似文献   

17.
根据均匀半空间Rayleigh波相速度与介质剪切波速度之间的关系,对某一频率面波的影响深度内各层介质进行"均匀"化,使其等效于均匀半空间.并利用模型进行正演,以确定在这种均匀化的前提下,面波勘探深度与波长的关系.应用相匹配滤波技术从实测面波信号中分离出基阶Rayleigh波信号,对它进行多重滤波和叠加处理,精确地计算出5.0-30.0Hz之间的基阶面波相、群速度频散.使用"均匀"化的方法,从相速度频散曲线中获得反演的初始模型,利用群速度频散反演得到35m以上各土层的剪切波速度结构.结果表明,反演结果与钻孔资料较为吻合  相似文献   

18.
熊熊  滕吉文 《地球物理学报》2002,45(04):507-515
由于青藏高原东部地区记录了高原约50 Ma演化历史中物质东流的构造史,因此受到地学界的广泛重视. 现代大地测量与地质研究结果给出了该区现代地壳运动的图像,为地球动力学数值模拟提供了重要的边界约束条件. 利用重力异常计算的高原及邻区地幔对流应力场与地表地壳运动格局的明显差异表征了高原东部地壳与地幔物质的运动解耦. 基于随深度变化地壳蠕变率的动力学模拟结果显示,高原东部地壳增厚与高原内部存在很大差异,高原东部地壳增厚主要表现为下地壳的增厚,并且地幔形变过程与地表变化也不一致,同样显示出地壳、地幔运动的解耦. 研究表明,下地壳低强度分布可能是导致这种解耦的重要原因,而了解高原东部地壳及上地幔物理力学性质对我们认识高原物质东流至关重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号