首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induction of hepatic cytochrome P450-dependent microsomal mono-oxygenase by xenobiotics is a well-established phenomenon in teleost fish. As in laboratory mammals, fish possess multiple forms of cytochrome P450 that display overlapping substrate specificity. One such isoform, CYP1A1, which has been cloned and sequenced from rainbow trout, has been shown to be orthologous to rat CYP1A1 and, as in mammals, is inducible up to several hundred-fold by planar aromatic hydrocarbons, PCBs and dioxins. It has been suggested that induction of CYP1A1 orthologues might provide a sensitive biomonitor for environmental pollution by mixtures of such compounds. In the current study, polyclonal antibodies directed against CYP1A1 purified from rat and trout liver were used to monitor induction of the CYP1A1 orthologue in hepatic microsomes from the fresh water species, the channel catfish (Ictalurus punctatus). Catfish from a local fish farm were induced in the laboratory by three daily injections of 50 mg/kg of the PCB mixture Aroclor 1254 and compared with fish taken from a site in central Arkansas—the Bayou Meto, known to be polluted with dioxin. Hepatic microsomal activities towards ethoxyresorufin (EROD) and pentoxyresorufin (PROD) were measured and Western blot analysis carried out with the two antibodies. EROD was elevated in both the Aroclor-treated fish and in the Bayou Meto fish compared with untreated fish farm controls; smaller but significant increases were observed in PROD. Spearman's rank correlations of 0·74 and 0·89 were observed between EROD and immunoquantified cross-reactivity towards the rat CYP1A1 and trout CYP1A1 antibodies.  相似文献   

2.
Recent advances in molecular immunology indicate that the expression of inducible pro-inflammatory proteins is increased in vertebrates in response to both infectious disease agents and various xenobiotics. For example, iNOS, COX-2, and CYP1A are induced by both inflammation and AhR ligands. Moreover, the expression of these proteins in response to stimuli varies among individuals within populations. Little is known of the differences among fish in the inducibility of proinflammatory proteins in response to both infectious agents and xenobiotics. Through random screening of a striped bass, Morone saxitilis, peritoneal macrophage cDNA library, a full length metallothionein (MT) gene was cloned and sequenced. MT is a low-molecular weight (6–8 kDa), cysteine-rich metal binding protein. Metals are required by pathogenic bacteria for growth, and by the host defense system by serving as a catalyst for the generation of reactive oxygen intermediates (ROIs) by phagocytes. A recombinant striped bass MT (rMT) was expressed and purified, then used to generate a specific mAb (MT-16). MT protein expression was followed in freshly isolated striped bass and channel catfish, Ictalurus punctatus, phagocytes after in vitro exposure to the naturally occurring intracellular pathogen Mycobacteria fortuitum or to 0.1 and 1 μM mercury (Hg), as HgCl2. MT expression was increased by 24 h in both channel catfish and striped bass phagocytes as a result of exposure to M. fortuitum cells. On the other hand, MT was induced by Hg in channel catfish cells, but not those of striped bass. These results indicate that metal homeostasis in phagocytes is different between catfish and striped bass. In addition, these data suggest that care should be taken to distinguish between inflammation-induced vs. metal-induced MT when using MT expression as a biomarker of metal exposure.  相似文献   

3.
Nitroaromatic compounds frequently contaminate aquatic systems and may, therefore, impact fish. However, a known pathway of nitroaromatic toxicity in mammals, that of nitroaromatic stimulated superoxide (O2) production, has yet to be addressed in fish. In this study we investigated this pathway in three species of freshwater fish-channel catfish (Ictalurus punctatus), largemouth bass (Micropterus salmoides) and rainbow trout (Salmo gairdneri)-exposed to nitrofurantoin (NF), p-nitrobenzoic acid (PNBA) and m-dinitrobenzene (MDNB). Our results indicate that these nitroaromatics elicit a stimulation of O2 production by fish liver fractions. Additionally, results suggests a similarity between, fish and mammals in the nitroreductases which mediate nitroaromatic activation and subsequent O2 production. These findings indicate a potential toxic consequence of fish exposure to nitroaromatic contaminants in aquatic systems.  相似文献   

4.
Alterations to hepatic xenobiotic metabolizing enzymes (XMEs) is an important biomarker of contaminant exposure in aquatic toxicology. Measurement of XMEs in fish liver slices in vitro is an emerging tool for examining enzyme activity and response within the intact 3-D architecture of the liver tissue. We examined integrated phase I/phase II, and phase II metabolism of XMEs from liver slices in control and B[a]P-treated rainbow trout and channel catfish. Fluorescent assay substrates to measure rates of metabolism included 7-methoxycoumarin (7-MC), 7-ethoxycoumarin (7-EC) and 7-hydroxycoumarin (7-HC). Time-dependent increases in metabolism, and a lower rate of 7-MC metabolism compared with 7-EC metabolism, were observed at all time points for both fish species. In rainbow trout, B[a]P pretreatment caused a 10-fold increase in phase I metabolism of both 7-MC and 7-EC, and a 1.6-fold increase in phase II metabolism of 7-HC. Phase I activity in channel catfish was not notably altered by B[a]P pretreatment. However, B[a]P pretreatment in channel catfish caused a 48% decrease in phase II metabolism of 7-HC. These results indicate differences in baseline and B[a]P-altered XME profiles between rainbow trout and channel catfish.  相似文献   

5.
We are investigating the effects of in vivo exposure of prototypical enzyme inducing agents on hepatic biotransformation enzyme expression in largemouth bass (Micropterus salmoides), a predatory game fish found throughout the United States and Canada. The current study targeted those genes involved in biotransformation and oxidative stress that may be regulated by Ah-receptor-dependent pathways. Exposure of bass to β-naphthoflavone (β-NF, 66 mg/kg, i.p.) elicited a 7–9-fold increase in hepatic microsomal cytochrome P4501A-dependent ethoxyresorufin O-deethylase (EROD) activities, but did not affect cytosolic GST catalytic activities toward 1-chloro-2,4-dinitrobenzene (CDNB) or 5-androstene-3,17-dione (ADI). Glutathione S-transferase A (GST-A) mRNA expression exhibited a transient, but non-significant increase following exposure to β-NF, and generally tracked the minimal changes observed in GST–CDNB activities. Expression of the mRNA encoding glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in glutathione (GSH) biosynthesis, was increased 1.7-fold by β-NF. Changes in GCLC mRNA expression were paralleled by increases in intracellular GSH. In summary, largemouth bass hepatic CYP1A-dependent and GSH biosynthetic pathways, and to a lesser extent GST, are responsive to exposure to β-NF.  相似文献   

6.
Known characteristics of the largemouth black bass, Micropterus salmoides (Lacépède), in its natural habitats in North America and as an introduction in other areas are discussed in relation to the suggestion that the fish should be introduced into New Zealand. It is concluded that much more research on the New Zealand ecosystems is necessary before a realistic assessment can be made of the likely effects of the predatory bass on indigenous fish and on trout fisheries.  相似文献   

7.
几种鲑鳟鱼血清蛋白非变性聚丙烯酰胺凝胶电泳的研究   总被引:1,自引:0,他引:1  
采用非变性聚丙烯凝胶电泳的方法分析了硬头鳟、金鳟、虹鳟、北极红点鲑和溪红点鲑血清蛋白的组成成分及其含量。结果显示, 硬头鳟、金鳟和虹鳟三者之间的遗传距离最小, 硬头鳟、金鳟和虹鳟三者与溪红点鲑的遗传距离最大; 硬头鳟、金鳟和虹鳟三者与北极红点鲑处于同一亚组, 而溪红点鲑独处于另一亚组。研究结果表明硬头鳟、金鳟和虹鳟三者与溪红点鲑的亲缘关系远于与北极红点鲑的关系; 同时还表明, 以聚丙烯酰胺凝胶电泳分析鲑鳟鱼血清蛋白的方法简单易行、重复性好。本研究结果对鲑鳟鱼的种属鉴定、良种选育、品种改良和遗传结构分析提供了试验依据; 虹鳟的繁养殖需进一步规范化和标准化, 减少蛋白遗传基因的流失, 从根本上预防大规模疾病的暴发。  相似文献   

8.
Baseline data for hepatic xenobiotic metabolizing biomarker enzyme activities were obtained for artificially reared tilapia Oreochromis niloticus, and were compared with those of the plaice (Pleuronectes platessa) and rainbow trout (Onchorynchus mykiss). Basal activities exhibited species variations with notably higher CYP1A and phenol UGT activities and lower GST activity in plaice than the freshwater species. Interspecies relationships between gene families determined by immunoblotting and substrate-activity profiles demonstrated the presence of homologous CYP1A and CYP3A enzymes in all three species, alpha class GSTs in plaice and trout, mu and pi class GSTs in trout and theta class GSTs in plaice and tilapia. CYP1A of tilapia was induced by 3-MC or PBO treatment, whilst CYP3A was induced by PCN treatment.  相似文献   

9.
10.
The carbamate pesticide, aldicarb, demonstrates significant acute toxicity in fish, and is readily biotransformed by most organisms studied. In fish, both the cytochrome P450 (CYP) and the flavin monooxygenase systems (FMO) are involved in bioactivating aldicarb to aldicarb sulfoxide, which is a more potent inhibitor of acetylcholinesterase (AChE). Channel catfish (Ictalurus punctatus), along with many other fresh water species, do not express FMO and are relatively resistant to the effects of aldicarb. This project examined the toxicity, AChE inhibition, metabolism, and toxicokinetic of aldicarb in channel catfish, and compared these values with an aldicarb-sensitive species, rainbow trout, which expresses FMO. Studies of in vitro and in vivo aldicarb biotransformation in catfish suggest that a low rate of bioactivation (10 times slower Vmax), resulting in less initial conversion to the activated metabolite, aldicarb sulfoxide, may be a contributing factor to resistance of channel catfish to aldicarb toxicity. These data are supported by toxicokinetic and enzyme inhibition studies. This work demonstrates that differences in FMO expression among fish species may have significant influence on toxicity resulting from exposure to some xenobiotics.  相似文献   

11.
The health benefits of regular consumption of fish and seafood have been espoused for many years. However, fish are also a potential source of environmental contaminants that have well known adverse effects on human health. We investigated the consumption risks for largemouth bass (Micropterus salmoides; n = 104) and striped mullet (Mugil cephalus; n = 170), two commonly harvested and consumed fish species inhabiting fresh and estuarine waters in northwest Florida. Skinless fillets were analyzed for total mercury, inorganic arsenic, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F), polychlorinated biphenyls (PCBs), and organochlorine pesticides. Contaminant levels were compared to screening values (SV) calculated using U.S. Environmental Protection Agency (EPA) recommendations for establishing consumption advisories. Largemouth bass were found to contain high levels of total mercury at all sampling locations (0.37–0.89 ug/g) and one location exhibited elevated total PCBs (39.4 ng/g). All of the samples exceeded Florida fish consumption advisory trigger levels for total mercury and one location exceeded the U.S. EPA SV for total PCBs. As a result of the high mercury levels, the non-cancer health risks (hazard index–HI) for bass were above 1 for all locations. Striped mullet from several locations with known point sources contained elevated levels of PCBs (overall range 3.4–59.3 ng/g). However, total mercury levels in mullet were low. Eight of the 16 mullet sampling locations exceeded the U.S. EPA SV for total PCBs and two locations exceeded an HI of 1 due to elevated PCBs. Despite the elevated levels of total PCBs in some samples, only two locations exceeded the acceptable cancer risk range and therefore cancer health risks from consumption of bass and mullet were determined to be low at most sampling locations.  相似文献   

12.
In fish, as well as in mammals, it is well known that the cytochrome P450-dependent oxidative metabolism of xenobiotics can generate DNA-reactive species. Moreover, this metabolism is known to be inducible by several compounds of environmental significance, such as polychlorobiphenyls, polycyclic aromatic hydrocarbons (PAHs) and dioxins. Consequently, we studied the relationship between the degree of induction of the cytochrome P4501A, expressed as that of 7-ethylresorufin O-deethylase (EROD) activity, and the level of DNA-adducts, using the post-labelling assay, in the liver of rainbow trout exposed to benzo(a)pyrene (a representative PAH). The results showed a significant 2- to 4-fold increase in EROD activity 2, 4 and 8 days after treatment, paralleled by an increase in DNA-adduct levels. This work further emphasizes the involvement of cytochrome P4501A in the metabolism of benzo(a)pyrene into genotoxic metabolites in rainbow trout.  相似文献   

13.
An isolated fish hepatocyte culture system was developed as a models ystem to investigate the mechanisms of action of environmental contaminants. Hepatocytes were isolated from striped bass (Morone saxatilis) by an adaptation of the two stage perfusion technique of Seglen.1 The system was used to evaluate metal binding protein (MBP) induction in response to cadmium, a primary inducer of metallothionein (MT) in rat hepatocytes. Striped bass hepatocytes appeared to be refractory to the induction of MBP by cadmium, since there was no significant increase in the synthesis of MBP for any of the doses at any of the time points investigated. However, when a similar experiment was performed using rat hepatocytes there was induction of MBP that was related to both dose and time. These comparative experiments indicate that although there are similarities between the hepatocytes of the two species in regard to 35S incorporation into low molecular weight metal-binding proteins, there appear to be significant quantitative differences as well in regard to MBP kinetics. This in vitro model system could potentially be utilized to investigate the toxicological properties of other environmental contaminants.  相似文献   

14.
We examined the bioaccumulation and trophic transfer of mercury in two marine finfish species, striped bass (Morone saxatilis) and tautog (Tautoga onitis), collected from the Narragansett Bay (Rhode Island, USA). For each of these target fish, white muscle tissue was analyzed for total mercury (Hg) and results were evaluated relative to fish age, body size, and Hg content of preferred prey. Dietary and stable isotope analysis was also used to elucidate the effect of trophic processes on Hg concentrations in fish. The Hg content of muscle tissue was positively correlated with fish age and length for both species, although striped bass accumulated Hg faster than tautog. Accelerated Hg bioaccumulation in striped bass is consistent with its high trophic level (trophic level = 4.07) and Hg-enriched prey (forage fish and macrocrustaceans; mean Hg content = 0.03 mg Hg kg wet wt?1). In contrast, tautog maintain a lower trophic status (trophic level = 3.51) and consume prey with lower Hg levels (mussels and crabs; mean Hg content = 0.02 mg Hg kg wet wt?1). Despite differences in Hg bioaccumulation between target fish, the mean Hg concentration of tautog exceeded levels in striped bass (0.24 and 0.16 mg Hg kg wet wt?1, respectively) due to a disparity in age-at-catch between sampled groups (mean age of tautog and bass = 11.3 and 4.3 yr, respectively). Taking into account legal minimum catch lengths further revealed that 75.0% of legal-size striped bass (>70.2 cm TL; n = 4) and 44.8% of tautog (>40.6 cm TL; n = 29) had Hg levels beyond the US EPA regulatory threshold of 0.3 mg Hg kg wet wt?1. Moreover, Hg-length relationships suggest that each target fish meets this threshold near their minimum legal catch length. Our findings reiterate the value of species ecology to improve predictions of fish Hg and permit better management of human contamination by this important dietary source.  相似文献   

15.
16.
Rainbow trout hepatocytes were isolated by a two step perfusion technique and maintained either in monolayer culture for 5 days or in aggregate culture for 30 days. Cytochrome P450 content decreased from day 0 to day 5 in both culture systems, and then was preserved at the same level after one month in aggregated cells. 7-Ethoxyresorufin O-deethylase (EROD) and UDP-glucuronosyl transferase were not significantly different in freshly isolated cells and in 30-day aggregated hepatocytes, whereas a substantial increase in glutathione S-transferase was observed. Two-day exposure of cells to β-naphthoflavone led to a significant increase in EROD activity in both culture systems, especially after one month of aggregation (10-fold increase). According to these results, aggregate culture of rainbow trout hepatocytes seems to be a promising in vitro model to investigate the biotransformation pathways in fish and their regulation by endogenous and exogenous compounds.  相似文献   

17.
Landlocked sockeye salmon (Oncorhynchus nerka), ranging in fork length (FL) from 105 to 313 mm, were captured in fine‐mesh gill nets set in the limnetic zone of the Waitaki hydro lakes (44° 30′ S, 170° 10’ E) in the South Island, New Zealand. A total of 443 stomachs was examined and the frequency of occurrence, volume and weight of prey items calculated. In the Ahuriri Arm of Lake Benmore the principal food (54% by weight) was zooplankton (Boeckella dilatata) whereas in the Haldon Arm of Lake Benmore it was larval and juvenile common bullies (Gobiomorphus cotidi‐anus) (73% by volume). In Lake Waitaki in winter, salmon had eaten insects (43% by volume) with smaller amounts of snails (Potamopyrgus antipo‐darum, 23%) and bullies (24%). In Lake Ohau adult insects may be an important food. There were also variations in diet with season and fish size. The stomachs of 147 brown trout (Salmo trutta) and 181 rainbow trout (S. gairdnerii) caught in the same gill nets were also examined. In contrast to sockeye salmon stomachs they contained negligible amounts of zooplankton (< 1% by weight) and large amounts of aquatic insects (50–58% by weight in the Ahuriri Arm of Lake Benmore). Comparisons with juvenile sockeye salmon and kokanee in North American lakes are made. The impact of introductions of sockeye salmon into other New Zealand lakes is discussed.  相似文献   

18.
We characterised seasonal and ontogenetic changes in diet and prey energy density of rainbow trout (Oncorhynchus mykiss) in Lake Rotoiti, New Zealand, to better understand the prey requirements of trout in central North Island lakes. Common smelt (Retropinna retropinna) was the dominant prey item of rainbow trout larger than 200 mm (77.8% of diet by weight), followed by kōura (freshwater crayfish Paranephrops planifrons; 6.3%), common bully (Gobiomorphus cotidianus; 5.5%), and kōaro (Galaxias brevipinnis; 3.4%). Juvenile rainbow trout (<200 mm) consumed amphipods, aquatic and terrestrial insects, oligochaetes, tanaid shrimps, and smelt. Trout consumed kōaro only in autumn and winter; consumption of other species did not vary seasonally. The maximum size of smelt consumed increased with increasing trout size, but trout continued to consume small smelt even as large adults. Consumption of larger prey items (kōaro and kōura) also increased with increasing trout size. This study indicates the importance of smelt for sustaining rainbow trout populations, as predation on other species was relatively low. These findings provide a basis for bioenergetic modelling of rainbow trout populations in lakes of the central North Island of New Zealand.  相似文献   

19.
A mathematical model that computes the accumulation of Kepone in the striped bass food chain of the James River estuary was developed. The purpose of the model was to help understand the relationship of Kepone levels in important fish species to sediment and water column Kepone concentrations and then to address the question of why these levels still exceed Food and Drug Administration limits eight years after discharge ceased. The model considers exposure through diet and respiration at rates based on species bioenergetics. It was successfully calibrated to the Kepone concentrations observed in the period 1976 through 1982 in striped bass, white perch, and Atlantic croaker. The model indicates that for the upper levels of the food chain, diet is the major route of contamination, accounting for 87–88% of the observed concentration in croaker and white perch and 91% of the observed concentration in striped bass. The two Kepone sources; sediment and water column, contribute approximately equally to the croaker and white perch. The water column is more significant for striped bass, being the original source for approximately 60% of the observed body burdens. It was estimated that a criterion requiring Kepone concentrations in fish to be at or below 0·3 μg g?1 would require dissolved water column and sediment Kepone concentrations to be reduced to somewhere between 3 and 9 ng l?1 and 13–39 ng g?1, respectively, depending on the species. Striped bass require the greatest reductions in dissolved water column and sediment Kepone concentrations to somewhere between 3 and 5 ng l?1 and 13 and 24 ng g?1, respectively.  相似文献   

20.
The hepatic CYP1A1 (ethoxyresorufin-O-deethylase (EROD) and protein level) in rainbow trout and eelpout was induced by isosafrole, β-naphthoflavone, 3,3′,4,4′-tetrachlorobiphenyl and mixtures of two of the compounds. A potentiation effect of the CYP1A1 response was observed when isosafrole was given together with β-naphthoflavone, but not when isosafrole was given with 3,3′,4,4′-tetrachlorobiphenyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号