首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We study the linear stability of the triangular points in the elliptic restricted problem by determining the characteristic exponents with a convergent method of iteration which in essence was introduced by Cesari (1940). We obtain the general term of such exponents as a power series in the eccentricity of the primaries, valid for sufficiently small and at all values of except one in the interval of stability of the circular problem.  相似文献   

2.
The present paper is a continuation of papers by Shinkaric (1972), Vidyakin (1976), Vidyakin (1977), and Duboshin (1978), in which the existence of particular solutions, analogues to the classic solutions of Lagrange and Euler in the circular restricted problem of three points were proved. These solutions are stationary motions in which the centres of mass of the bodies of the definite structures always form either an equilateral triangle (Lagrangian solutions) or always remain on a straight line (Eulerian solutions) The orientation of the bodies depends on the structure of the bodies. In this paper the usage of the small-parameter method proved that in the general case the centre of mass of an axisymmetric body of infinitesimal mass does not belong to the orbital plane of the attracting bodies and is not situated in the libration points, corresponding to the classical case. Its deviation from them is proportional to the small parameter. The body turns uniformly around the axis of symmetry. In this paper a new type of stationary motion is found, in which the axis of symmetry makes an angle, proportional to the small parameter, with the plane created by the radius-vector and by the normal to the orbital plane of the attracting bodies. The earlier solutions-Shinkaric (1971) and Vidyakin (1976)-are also elaborated, and stability of the stationary motions is discussed.  相似文献   

3.
The particular case of the complete generalized three-body problem (Duboshin, 1969, 1970) where one of the body-points does not exert influence on the other two is analysed. These active material points act on the passive point and also on each other with forces (attraction or repulsion), proportional to the product of masses of both points and a certain function of the time, their mutual distances and their first and second derivatives. Furthermore it is not supposed that generally the third axiom of mechanics (action=reaction) takes place.Here under these more general assumptions the equations of motion of the active masses and the passive point, as well as the diverse transformations of these equations are analogous of the same transformations which are made in the classical case of the restricted three-body problem.Then we determine conditions for some particular solutions which exist, when the three points form the equilateral triangle (Lagrangian solutions) or remain always on a straight line (Eulerian solutions).Finally, assuming that some particular solutions of the above kind exist, the character of solutions near this particular one is envisaged. For this purpose the general variational equations are composed and some conclusions on the Liapunov stability in the simplest cases are made.  相似文献   

4.
The size of the stable region around the Lagrangian point L 4 in the elliptic restricted three-body problem is determined by numerical integration as a function of the mass parameter and eccentricity of the primaries. The size distribution of the stable regions in the mass parameter-eccentricity plane shows minima at certain places that are identified with resonances between the librational frequencies of motions around L 4. These are computed from an approximate analytical equation of Rabe relating the frequency, mass parameter and eccentricity. Solutions of this equation are determined numerically and the global behaviour of the frequencies depending on the mass parameter and eccentricity is shown and discussed. The minimum sizes of the stable regions around L 4 change along the resonances and the relative strength of the resonances is analysed. Applications to possible Trojan exoplanets are indicated. Escape from L 4 is also investigated.  相似文献   

5.
In the present paper we have studied the stability of the triangular libration points for the doubly photogravitational elliptic restricted problem of three bodies under the presence of resonances as well as under their absence. Here we have found the conditions for stability.  相似文献   

6.
In this paper the first variational equations of motion about the triangular points in the elliptic restricted problem are investigated by the perturbation theories of Hori and Deprit, which are based on Lie transforms, and by taking the mean equations used by Grebenikov as our upperturbed Hamiltonian system instead of the first variational equations in the circular restricted problem. We are able to remove the explicit dependence of transformed Hamiltonian on the true anomaly by a canonical transformation. The general solution of the equations of motion which are derived from the transformed Hamiltonian including all the constant terms of any order in eccentricity and up to the periodic terms of second order in eccentricity of the primaries is given.  相似文献   

7.
The problem of stability of the Lagrangian equilibrium point of the circular restricted problem of three bodies is investigated in the light of Nekhoroshev-like theory. Looking for stability over a time interval of the order of the estimated age of the universe, we find a physically relevant stability region. An application of the method to the Sun-Jupiter and the Earth-Moon systems is made. Moreover, we try to compare the size of our stability region with that of the region where the Trojan asteroids are actually found; the result in such case is negative, thus leaving open the problem of the stability of these asteroids.  相似文献   

8.
The differential equations of motion of the elliptic restricted problem of three bodies with decreasing mass are derived. The mass of the infinitesimal body varies with time. We have applied Jeans' law and the space-time transformation of Meshcherskii. In this problem the space-time transformation is applicable only in the special case whenn=1,k=0,q=1/2. We have applied Nechvile's transformation for the elliptic problem. We find that the equations of motion of our problem differ from that of constant mass only by a small perturbing force.  相似文献   

9.
Hale's method is used to show the existence of symmetric periodic orbits of the second kind for the particular case of the elliptic restricted problem of three bodies. In this treatment we also obtain a new proof of the existence of periodic orbits of the first and second kinds in the circular restricted problem.  相似文献   

10.
The main goal of this paper is to show that the elliptic restricted three-body problem has ejection-collision orbits when the mass parameter µ is small enough. We make use of the blow up techniques. Moreover, we describe the global flow of the elliptic problem when µ = 0 taking into account the singularities due to collision and to infinity.  相似文献   

11.
In the present paper we have found the range of values of μ ande for the linear stability of the triangular points for the doubly photogravitational elliptic restricted problem of three bodies. It has been shown that some resonances of the third and the fourth order exist which will need special investigation for the determination of complete stability of the libration points under our terms of reference.  相似文献   

12.
In a binary system with both bodies being luminous, the inner collinear equilibrium pointL 1 becomes stable for values of the mass ratio and radiation pressure parameters in a certain region. The kind of periodic motions aroundL 1 is examined in this case. Second-order parametric expansions are given and the families of periodic orbits generated fromL 1 are numerically determined for several sets of values of the parameters. Short- and long-period solutions are identified showing a similarity in the character of periodicity with that aroundL 4. It is also found that the finite periodic solutions in the vicinity ofL 1 are stable.  相似文献   

13.
In this article the effect of radiation pressure on the periodic motion of small particles in the vicinity of the triangular equilibrium points of the restricted three body problem is examined. Second order parametric expansions are constructed and the families of periodic orbits are determined numerically for two sets of values of the mass and radiation parameters corresponding to the non-resonant and the resonant case. The stability of each orbit is also studied.  相似文献   

14.
The planar motion of a Trojan asteroid is considered within the framework of the elliptic restricted three-body problem. The solution is derived asymptotically to second order taking the square root of the Jupiter-Sun mass ratio and the orbital eccentricity of Jupiter as first order quantities. The results are given in explicit form for the coordinates as functions of the true anomaly of Jupiter including both short and long periodic terms resulting from the orbital accentricity of Jupiter.  相似文献   

15.
In this paper we discuss some aspects of the isosceles case of the rectilinear restricted problem of three bodies, where two primaries of equal mass move on rectilinear ellipses, and the particle is confined to the symmetry axis of the system. In particular, the behaviour near a collision of the primaries and also near a collision of all three bodies is investigated. It is shown that this latter singularity is a triple collision in the sense of Siegel's theory. Furthermore, asymptotic expansions for the particle's motion during a parabolic and a hyperbolic escape are derived.Presented at the Conference on Celestial Mechanics, Oberwolfach, Germany, August 27–September 2, 1972.  相似文献   

16.
Non-linear stability of the libration point L 4 of the restricted three-body problem is studied when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, Moser's conditions are utilised in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff's normal form with the help of double D'Alembert's series. It is found that L 4 is stable for all mass ratios in the range of linear stability except for the three mass ratios: $$\begin{gathered} \mu _{c1} = 0.0242{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.1790{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c2} = 0.0135{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0993{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c3} = 0.0109{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0294{\text{ }}...{\text{ }}A_1 . \hfill \\ \end{gathered} $$   相似文献   

17.
In the restricted problem of three bodies, it has been discovered that, in a nonrotating frame, almost perfectly square orbits can result. Numerical investigations of these orbits have been made, and a brief explanation of their behaviour is given.  相似文献   

18.
In this paper, the restricted problem of three rigid bodies under central forces is considered, and the collinear and triangular equilibrium solutions are obtained. Finally, an application to the case of axisymmetric ellipsoids is made.  相似文献   

19.
In this paper the existence of collinear as well as equilateral libration points for the generalised elliptic restricted three body problem has been studied distinct from Kondurar and Shinkarik (1972) where a study has been made for the generalised circular restricted three body problem. Here the coordinates of the libration points have been found to be functions of timet.  相似文献   

20.
In the ordinary restricted problem of three bodies, the first-order stability of planar periodic orbits may be determined by means of their characteristic exponents, as derived from the condition of a vanishing determinant for the coefficients of an infinite system of homogenous linear equations associated with the exponential series solutionu, v representing any initially small oscillations about the periodic solutionx, y. In the elliptic restricted problem, periodic solutions are possible only for periods which are equal to, or integral multiples of, the periodP of the elliptic motion of the two primary masses. It is shown that the infinite determinant approach to the determination of the characteristic exponents can be extended to the treatment of superposed free oscillations in the elliptic problem, and that in generaltwo exponents appear in any complete solutionu, v for eachone existing in the corresponding ordinary restricted problem. The value of each exponent depends on a series proceeding in even powers of the eccentricitye of the relative orbit of the two primaries, in addition to its basic dependence on the mass ratio . For stable periodic orbits, the oscillation frequenciesn 1 (,e 2),n 2 (,e 2) associated with these two exponents tend, withe0, to certain limiting valuesn 1 (),n 2(), which differ from each other by the amount of the frequencyN=2/P of the orbital motion of the primaries. One of the two frequencies, sayn 1(), is identical with the frequency of the corresponding oscillations in the ordinary restricted problem, while the second one gives rise to oscillations only in the elliptic restricted problem, withe0.The method will be described in more detail, together with its application to two families of small periodie librations about the equilateral points of the elliptic restricted problem (E. Rabe: Two new Classes of Periodic Trojan Librations in the Elliptic Restricted Problem and their Stabilities) in theProceedings of the Symposium on Periodic Orbits, Stability and Resonances, held at the University of São Paulo, Brasil, 4–12 September, 1969.Presented at the Conference on Celestial Mechanics, Oberwolfach, Germany, August 17–23, 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号