首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment trap samples collected from a depth of 1018 m in the Central Arabian Sea Trap (CAST) at 14°28.2′N, 64°35.8′E were analyzed for temporal variation of coccolithophore fluxes from October 1993 to August 1994. Out of the twenty species of coccolithophores encountered,Gephyrocapsa oceanica, Emiliania huxleyi, Umbilicosphaera sibogae andUmbellosphaera irregularis were the most abundant. The total coccolithophore fluxes ranged from 28.5 × 106m-2d-1 to 50.3 × 106m-2d-1 showing seasonality with higher fluxes during the northeast (NE) monsoon and lower fluxes during the spring intermonsoon. The higher fluxes were attributed to the enhancement of primary production in the central Arabian Sea due to southward extent of nutrients from the northeast Arabian Sea by the prevailing surface currents. Similarly, the occurrences of relatively lower coccolithophore fluxes during the spring intermonsoon and southwest (SW) monsoon were attributed to the low nutrients in the warm, shallow surface mixed layer and downwelling to the south of Findlater Jet respectively in the central Arabian Sea. Some of the coccolithophore species such asE. huxleyi, G. oceanica, Calcidiscus leptoporus andUmbellosphaera tenuis showed signs of dissolution.  相似文献   

2.

Elizabeth and Middleton Reefs are atoll-like structures that have developed on top of volcanic edifices and are close to the southern environmental limit of reef development in the southwest Pacific. Reef morphology and vertical accretion rates during the Holocene appear similar to those on other more tropical reefs. Sediment samples were collected from the lagoon of both reefs and around the flanks of Middleton Reef. A distinctly chlorozoan assemblage was observed with coral, molluscs, Halimeda, coralline algae and foraminifers being the dominant sediment constituents. Lagoon sediment samples show little variation within or between reefs, lacking the concentric zonation characteristic of larger atolls. Samples collected from the flanks of Middleton Reef, and subsurface material from vibrocores, differ compositionally from the surficial lagoon sand and were typically more tropical in character. A comparison of the sediment constituents from these reefs with those of samples from within a fringing reef and from the shelf around Lord Howe Island, further south, indicated regional patterns in sediment composition. Halimeda rapidly decreased in abundance with increased latitude, and appeared confined to deeper water, whereas coralline red algae increased significantly. The rapid change in these major sediment contributors is coincident with the general decrease in coral growth rates with latitude. This reinforces the notion that the latitudinal limit of reef development is constrained by factors other than coral growth alone.  相似文献   

3.
Mono Lake sediments have recorded five major oscillations in the hydrologic balance between A.D. 1700 and 1941. These oscillations can be correlated with tree-ring-based oscillations in Sierra Nevada snowpack. Comparison of a tree-ring-based reconstruction of the Pacific Decadal Oscillation (PDO) index (D’Arrigo et al., 2001) with a coral-based reconstruction of Subtropical South Pacific sea-surface temperature (Linsley et al., 2000) indicates a high degree of correlation between the two records during the past 300 yr. This suggests that the PDO has been a pan-Pacific phenomena for at least the past few hundred years. Major oscillations in the hydrologic balance of the Sierra Nevada correspond to changes in the sign of the PDO with extreme droughts occurring during PDO maxima. Four droughts centered on A.D. 1710, 1770, 1850, and 1930 indicate PDO-related drought reoccurrence intervals ranging from 60 to 80 yr.  相似文献   

4.
Tree-ring records from western juniper (Juniperus occidentalis var. occidentalis Hook.) growing throughout the interior Pacific Northwest identify extreme climatic pointer years (CPYs) (i.e., severe single-year droughts) from 1500–1998. Widespread and extreme CPYs were concentrated in the 16th and early part of the 17th centuries and did not occur again until the early 20th century. The 217-yr absence of extreme CPYs may have occurred during an extended period of low variance in the Pacific Decadal Oscillation. We mapped climatic boundaries for the interior Pacific Northwest based on the location of sites with similar precipitation variability indices. Three regions, the Northwest (based on chronologies from nine sites), the Southwest (four sites), and the East (five sites) were identified. Our results suggest that western juniper radial growth indices have substantial interannual variability within the northwestern range of the species (central Oregon), particularly when compared with western juniper growing in its eastern range (eastern Oregon, southeastern Idaho, and northern Nevada) and southwestern range (southern Oregon and northeast California). We suspect that the substantial differences in the variability of western juniper radial growth indices are linked to the influence of ENSO events on winter/spring precipitation amounts.  相似文献   

5.
To reconstruct the palaeoproductivity evolution history of the centre of the western Pacific warm pool (WPWP) over the last 250 ka, multi‐proxies were analysed in sediment core WP7 recovered from the Ontong–Java Plateau. Palaeoproductivity evolution at the centre of the WPWP during the last 250 ka is closely related to glacial–interglacial cycles and the insolation controlled by precession. The glacial higher primary productivity relative to the interglacial conditions could have resulted from both thermocline shoaling associated with persistent El Niňo‐like conditions and the increased influx of dust resulting from intensified winter monsoon together with important changes in the thermocline. The minimum primary productivity values during the last three terminations could be resulted from deglacial thermocline deepening and intensified stratification associated with persistent La Niña‐like conditions, and the concurrent Neogloboquadrina dutertrei δ13C minimum events probably reflect the chemical signatures of Subantarctic Mode Water and Antarctic Intermediate Water. In addition, primary productivity values are also controlled by the thermocline variations resulting from El Niño/La Niña‐Southern Oscillation processes responding to precession forcing, and lead the δ18O by about 4 ka. The 33.1 ka, 19 ka and “half‐precession” periods are prominent in the palaeoproductivity records. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
We investigate Pacific Decadal Oscillation (PDO) signals recorded by two bimonthly resolved coral δ18O series from La Réunion and Ifaty (West Madagascar), Indian Ocean from 1882 to 1993. To isolate the main PDO frequencies, we apply a band pass filter to the time series passing only periodicities from 16 to 28 years. We investigate the covariance patterns of the coral time series with sea surface temperature (SST) and sea level pressure (SLP) of the Indian and Pacific Oceans. In addition, the empirical orthogonal functions of the filtered SST and SLP fields (single and coupled) are related to the filtered coral times series. The covariance maps show the typical PDO pattern for SST and SLP, confirming the coupling between the Indian and Pacific Oceans. Both corals show the strongest signal in boreal summer. The La Réunion (Ifaty) coral better records SST (SLP) than SLP (SST) pattern variability. We suggest that the filtered La Réunion coral δ18O represents δ18O of seawater that varies with the South Equatorial Current, which, in turn, is linked with the SST PDO. The filtered Ifaty coral δ18O represents SST and is remotely linked with the SLP PDO variability. A combined coral record of the Ifaty and La Réunion boreal summer δ18O series explains about 64% of the variance of the coupled SST/SLP PDO time series. AGU OS06 special issue “Ocean’s role in climate change—a paleo perspective”.  相似文献   

7.
The subarctic North Pacific Ocean holds a large CO2 reservoir that is currently isolated from the atmosphere by a low-salinity layer. It has recently been hypothesized that the reorganization of these high-CO2 waters may have played a crucial role in the degassing of carbon dioxide to the atmosphere during the last deglaciation. This reorganization would leave some imprint on paleo-productivity records. Here we present 230Th-normalized biogenic fluxes from an intermediate depth sediment core in the Northwest Pacific (RC10-196, 54.7°N, 177.1°E, 1007 m) and place them within the context of a synthesis of previously-published biogenic flux data from 49 deep-sea cores north of 20°N, ranging from 420 to 3968 m water depth. The 230Th-normalized opal, carbonate, and organic carbon fluxes from RC10-196 peak approximately 13,000 calendar years BP during the Bølling/Allerød (B/A) period. Our data synthesis suggests that biogenic fluxes were in general lowest during the last glacial period, increased somewhat in the Northwest Pacific during Heinrich Event 1, and reached a maximum across the entire North Pacific during the B/A period. We evaluate several mechanisms as possible drivers of deglacial change in biogenic fluxes in the North Pacific, including changes in preservation, sediment focusing, sea ice extent, iron inputs, stratification, and circulation shifts initiated in the North Atlantic and North Pacific. Our analysis suggests that while micronutrient sources likely contributed to some of the observed changes, the heterogeneity in timing of glaciogenic retreat and sea level make these mechanisms unlikely causes of region-wide contemporaneous peaks in export production. We argue that paleo-observations are most consistent with ventilation increases in both the North Pacific (during H1) and North Atlantic (during B/A) being the primary drivers of increases in biogenic flux during the deglaciation, as respectively they were likely to bring nutrients to the surface via increased vertical mixing and shoaling of the global thermocline.  相似文献   

8.
Sedimentological analyses of 289 years (AD 1718-2006) of varved sediment from Shadow Bay, southwest Alaska, were used to investigate hydroclimate variability during and prior to the instrumental period. Varve thicknesses relate most strongly to total annual discharge (r2 = 0.75, n = 43, p < 0.0001). Maximum annual grain size depends most strongly on maximum spring daily discharge (r2 = 0.63, n = 43, p < 0.0001) and maximum annual daily discharge (r2 = 0.61, n = 43, p < 0.0001), while varve thickness is poorly correlated with maximum annual grain size (r2 = 0.004, n = 287, p = 0.33). Relations between varve thickness and annual climate variables (temperature, precipitation, North Pacific (NP) and Pacific Decadal Oscillation (PDO) indices) are insignificant. On multidecadal timescales, however, regime shifts in varve thickness and total annual discharge coincide with shifts in NP and PDO indices. Periods with increased varve thickness and total annual discharge were associated with warm PDO phases and a strengthened Aleutian Low. The varve-inferred record of PDO suggests that any periodicity in the PDO varied over time, and that the early 19th century marked a transition to a more frequent or detectable shifts.  相似文献   

9.
上新世最重要的古气候事件就是北极冰盖的形成和扩张(3.2—2.5Ma)。根据北极冰盖的形成过程,文中将上新世—早更新世(4.5—1.6Ma)西太平洋暖池核心区ODP807A孔2个浮游有孔虫属种Globigerinoides ruber和Pulleniatina obliquiloculata的δ18O(氧同位素)、δ13C(碳同位素)记录数据细分为3个阶段:形成前(4.5—3.2Ma)、形成中(3.2—2.5Ma)和形成后(2.5—1.6Ma)。研究结果表明,北极冰盖形成以来,G.ruber和P.obliquiloculata的 δ18O值均呈增大趋势;北极冰盖形成中,G.ruber 的δ18O值基本不变,P.obliquiloculata的 δ18O值略增大,反映出西太平洋暖池次表层海水受北极冰盖形成的影响更甚;Δδ18OP-GG.ruberP.obliquiloculataδ18O 的差值)反映出温跃层无明显变化,受北极冰盖形成影响微弱。根据用Ma/Ca值得到的ODP806站SST值(Wara et al.,2005)以及用UK′37得到的东太平洋ODP847站SST值数据(Herbert and Laura,2010),对北极冰盖形成以来东西太平洋古海洋学演化进行比较发现:冰盖形成以来东西赤道太平洋海水表层温度均有所下降,且东太平洋降温幅度更大;对比同时期的西太平洋ODP807A孔Δδ18OP-G与东太平洋ODP847站Δδ18OT-S的变化趋势,发现东太平洋温跃层变浅,表明受北极冰盖形成和扩张的影响,东西太平洋温跃层深度梯度增大。对比ODP807A孔与南海南部1143站、南海北部1148站G.ruber的 δ18O 和δ13C记录,揭示西太平洋边缘海如南海北部和南部受北极冰盖形成的影响有所不同,北部的表层海水温度和生产力水平受冰盖形成的影响更加明显。  相似文献   

10.
A high-resolution pollen record from a 5-m-long sediment core from the closed-lake basin Laguna Piusbi in the southern Colombian Pacific lowlands of Chocó, dated by 11 AMS14C dates that range from ca. 7670 to 22014C yr B.P., represents the first Holocene record from the Chocó rain forest area. The interval between 7600 and 610014C yr B.P. (500–265 cm), composed of sandy clays that accumulated during the initial phase of lake formation, is almost barren of pollen. Fungal spores and the presence of herbs and disturbance taxa suggest the basin was at least temporarily inundated and the vegetation was open. The closed lake basin might have formed during an earthquake, probably about 440014C yr B.P. From the interval of about 600014C yr B.P. onwards, 200 different pollen and spore types were identified in the core, illustrating a diverse floristic composition of the local rain forest. Main taxa are Moraceae/Urticaceae,Cecropia,Melastomataceae/Combretaceae,Acalypha, Alchornea,Fabaceae,Mimosa, Piper, Protium, Sloanea, Euterpe/Geonoma, Socratea,andWettinia.Little change took place during that time interval. Compared to the pollen records from the rain forests of the Colombian Amazon basin and adjacent savannas, the Chocó rain forest ecosystem has been very stable during the late Holocene. Paleoindians probably lived there at least since 346014C yr B.P. Evidence of agricultural activity, shown by cultivation ofZea maissurrounding the lake, spans the last 1710 yr. Past and present very moist climate and little human influence are important factors in maintaining the stable ecosystem and high biodiversity of the Chocó rain forest.  相似文献   

11.
The regular variations in magmatic activities along the Northwest Pacific plate have been little studied in spite of their importance. In this contribution, systematic analyses were conducted on tholeiitic basalts from three Ocean Drilling Program sites (Sites 304, 1149, and 801), including the petrographic features, major and trace elements, Nd isotopic compositions, and mineral structure and compositions of whole rocks. Volcanic rocks from Sites 304, 1149, and 801 belong to tholeiites and exhibit depleted light rare earth elements (LREE), large ion lithophile elemental contents (LILE), and relatively depleted Nd isotopic ratios (143Nd/144Nd=0.513139–0.513211), similar to those of normal mid-ocean ridge basalts (N-MORB). Comprehensive data on mineral compositions, whole-rock geochemistry, and geochronology demonstrate that a regular variation trend exists in the north-south direction along the Northwest Pacific plate. The 143Nd/144Nd values (0.513139–0.513211) and trace-element ratios for whole rocks (Sm/Th=15.35–30.00; Zr/Hf=28.53–35.76; Zr/Y=2.58–3.67; Th/La=0.04–0.06; Th/Y=0.33–0.70), as well as the trace-element ratios (Zr/Hf, La/Yb, Ti/Zr) of clinopyroxenes from Sites 1149 and 801 tholeiites show larger variations compared to those from Site 304 tholeiites (143Nd/144Nd=0.513185–0.513195; Sm/Th=18.19–20.58; Zr/Hf=31.07–33.26; Zr/Y=2.62–3.03; Th/La=0.05–0.06; Th/Y=0.48–0.57). Mineral zoning textures were obvious in tholeiites from Sites 1149 and 801 but were rarely observed in Site 304. These regular features were likely attributed to the differences in the heterogeneity of the magma source, the process of magmatic evolution, the plate-spreading rate, and the effective and ineffective mixing.  相似文献   

12.
To provide insights into the long‐term evolution of aquatic ecosystems without human interference, we here evaluate a decadal‐ to centennial‐scale‐resolution diatom record spanning about 12 ka of the Holsteinian interglacial (Marine Isotope Stage 11c). Using a partially varved sediment core from the Dethlingen palaeolake (northern Germany), which has previously been studied for palynological and microfacies signals, we document the co‐evolution of the aquatic and surrounding terrestrial environment. The diatom record is dominated by the genera Stephanodiscus, Aulacoseira, Ulnaria and Fragilaria. Based on the diatom assemblages and physical sediment properties, the evolution of the Dethlingen palaeolake can be subdivided into three major phases. During the oldest phase (lasting ~1900 varve years), the lake was ~10–15 m deep and characterized by anoxic bottom‐water conditions and a high nutrient content. The following ~5600 years exhibited water depths >20 m, maximum diatom and Pediastrum productivity, and a peak in allochtonous nutrient input. During this phase, water‐column mixing became more vigorous, resulting in a breakdown of anoxia. The youngest lake phase (~4000–5000 years) was characterized by decreasing water depth, turbulent water conditions and decreased nutrient loading. Based on our palaeolimnological data, we conclude that the evolution of the Dethlingen palaeolake during the Holsteinian interglacial responded closely to (i) changes within the catchment area (as documented by vegetation and sedimentation) related to the transition from closed forests growing on nutrient‐rich soils (mesocratic forest phase) to open forests developing on poor soils (oligocratic forest phase), and (ii) short‐term climate variability as reflected in centennial‐scale climate perturbations.  相似文献   

13.
Based on the survey data of five submarine seamount provinces (chains) in the Western Pacific, the distribution characteristics of cobalt-rich ferromanganese crust resources have been researched in this paper by using the relative reference data and applying the theories of hotspot and seafloor spreading. The main research results obtained are as follows: The Co-rich crust thickness in the study area is gradually increasing from east to west and from south to north having a negative correlation (r = -0.59) with longitude and a positive correlation (r = 0.48) with latitude. The crust thickness varying along longitude and latitude is influenced by the hotspot and seafloor spreading. The oceanic crusts and seamounts in the northwest part of the study area are older, and the crust resources are superior to those in the southeast part. In the depth of 〈1500 m, 1500-2000 m, 2000-2500 m in the study area, the cobalt crust thickness is respectively 5.45 cm, 4.34 cm and 3.55 cm, and in the depth of 2500-3000 m and 3000-3500 m, it drops respectively to 2.84 cm and 3.37 cm. The Co-rich crust resources are mainly concentrated in the seamount summit margins and the upper flanks in the depth of 〈2500 m. There is a strong negative correlation (r = -0.67) between the cobalt crust abundance and the slope of the seamount, 75 kg/m^2 and 50 kg/mz at the slopes of 0°-20° and 20°-34° respectively. Cobalt crusts are mainly distributed in the parts whose slopes are less than 20°. It is consistent with the fractal result that the slope threshold of cobalt crust distribution is 19°, and slopes over 20° are not conducive to the crust growth. The cobalt crusts of high grade are mainly enriched in the region within 150°E-140°W and 30°S-30°N in the Pacific, where there are about 587 seamounts at the depth of 3500- 6000 m and over 30 Ma of the oceanic crusts. The perspective area rich in cobalt crust resources is about 41×104 km^2 and the resource quantity is approximately 27 billion tons.  相似文献   

14.
Historical documents and newspapers from Mexican Pacific states (north of 14° N) were reviewed to determine the incidence of landfalling tropical cyclones from 1850 to 1949, prior to the start of the United States National Hurricane Center database. The reviewed documents are only found in Mexican repositories at national, state and municipal level and the systematic search embarked upon in this study yielded valuable information that cannot be found elsewhere. Atime series of landfall was reconstructed back to 1850, indicating active and quiet periods. An average of 1.8 ± 1.6 landfalls per year is determined from the time series for 1850-2010. When the series is limited to 1880-2010, eliminating the first 30 years that may have some undercounting, the average increases to 2.1 ± 1.6 cases per year. Spectral and wavelet analysis of the 161 years of landfalling tropical cyclones indicates that the Pacific Decadal Oscillation (PDO) modulates the activity. The influence of El Niño/Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) on the landfall frequency may be present throughout the reconstruction period but both oscillations have lower correlations compared to that from the PDO.  相似文献   

15.
Seawater samples were collected from four locations in the Equatorial Pacific Ocean during the MR02-K06 cruise of the R/V Mirai and analyzed for dissolved rare earth elements (REEs) using inductively coupled plasma mass spectrometry. According to variations of REE concentrations and Yb/La ratios, the results show that the river input of the Papua New Guinea islands may affect the compositions of REEs in the Equatorial Pacific surface water. The Yb/La values and the REE concentrations in the waters deeper than 3,000 m in the western South Pacific and the Equatorial Pacific Oceans, which represent the characteristics of Antarctic Bottom Water (AABW), demonstrate similar variation trend with depth. This result also indicates that the REEs which originated from the South Pacific Ocean have entered the North Pacific Ocean across the equator with AABW intrusion.  相似文献   

16.
The n-alkane C31/(C29 + C31) ratios from surface sediments in the eastern equatorial Pacific (EEP) exhibit higher values to the north and lower values to the south across the southern edge (2–4°N) of the Intertropical Convergence Zone (ITCZ). Since plants tend to synthesize longer chain length n-alkanes in response to elevated temperature and/or aridity, the higher C31/(C29 + C31) ratios at northern sites suggest a higher contribution of vegetation under hot and/or dry conditions. This is consistent with the observation that northern sites receive higher levels of plant waxes transported by northeasterly trade winds from northern South America, where hot and dry conditions prevail. Furthermore, from a sediment core covering the past 750 ka (core HY04; 4°N, 95°W) we found that C31/(C29 + C31) ratios exhibit a long-term decrease from MIS (marine oxygen isotope stage) 17 to 13. During this period, the zonal SST (sea-surface temperature) gradient in the equatorial Pacific increased, suggesting an increase in Walker circulation. Such intensified Walker circulation may have enhanced moisture advection from the equatorial Atlantic warm pool to the adjacent northern South America, causing arid regions in northern South America to contract, which may explain long-term decrease in n-alkane chain lengths.  相似文献   

17.
To detect climatic linkages between the Baltic Sea, the Skagerrak and the Nordic Seas, we present multi‐proxy reconstructions covering the last 4500 years from three sediment cores taken in the Skagerrak and along the SW Norwegian margin. Foraminiferal assemblages at all three sites show a distinct change at c. 1700 years BP, associated with a transition from absence and rare occurrence of Brizalina skagerrakensis during c. 4500–2300 years BP to its subsequent abundance increase, suggesting a stronger influence of nutrient‐rich water‐masses during the last c. 1700 years. Increased nutrient availability, which probably stimulated higher primary productivity, is further supported by an increase in diatoms, total organic carbon and benthic foraminiferal species indicative of high productivity and carbon fluxes during the last c. 1700 years as compared to c. 4500–2300 years BP. The amplitude of the B. skagerrakensis signal is largest in the central Skagerrak and gradually becomes smaller towards the Norwegian Sea suggesting that the dominant source of the nutrient‐rich water was the brackish outflow from the Baltic Sea. The generally lower abundances of planktonic foraminifera since c. 1700 years BP support the hypothesis of less saline surface water conditions in the Skagerrak. These results agree with other studies, which suggest a stronger Baltic outflow over the last 1700 years coinciding with a general cooling, increased wintertime westerlies bringing more winter precipitation to northern Europe, increased river runoff and higher frequency of floods. The increase in outflow also occurs during deposition of laminated sediments in the deep Baltic Sea. Leakage of dissolved inorganic phosphorus from anoxic sediments, as well as enhanced erosion due to deforestation in combination with higher runoff from Norway, coastal upwelling and more vigorous frontal dynamics may all have contributed to higher nutrient availability within the adjacent Skagerrak during the last 1700 years BP as compared to c. 4500–2300 years BP, when low productivity prevailed in the study area.  相似文献   

18.
There has been limited previous research about Holocene climate variability in the Indian Sector of the Southern Ocean. Here we examine centennial‐scale changes in diatom assemblages and stable isotopic ratios since 10 000 cal a BP in a high‐accumulation‐rate sediment core from the Conrad Rise. Although abundances of dominant diatom taxa (Fragilariopsis kerguelensis and Thalassiothrix antarctica) are comparatively constant, relative abundances of secondary taxa fluctuate. Before c. 9900 cal a BP, winter sea‐ice and cold water covered the Conrad Rise. Following deglaciation the sea‐ice retreated from the Conrad Rise, lagging that of the Atlantic and eastern Indian Sectors by about 1500 a. The Polar Front moved southward during the early Holocene optimum and north Antarctic Zone waters covered the Conrad Rise for about 650 a. After 9300 cal a BP, solar insolation strongly influenced sea surface temperature and primary productivity in the Southern Ocean. In the high‐latitude Indian Sector, productivity increased 1500 a after the onset of late Holocene neoglaciation. Periodic δ18O and cold‐water diatom taxa spikes (at intervals of 200 and 300–500 a, respectively) occurred after 9300 cal a BP, probably associated with solar activity. Fluctuations in short‐term sea surface temperature and cold‐water taxa are synchronous with changes in δD observed in an east Antarctic ice core. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
An attempt has been made to understand the Pleistocene bottom water history in response to the paleoclimatic changes in the northern Indian Ocean employing quantitative analyses of deep sea benthic foraminifera at the DSDP sites 219 and 238. Among the 150 benthic foraminifera recorded a few species show dominance with changing percent frequencies during most of the sequence. The dominant benthic foraminiferal assemblages suggest that most of the Pleistocene bottom waters at site 219 and Early Pleistocene bottom waters at site 238 are of North Indian Deep Water (NIDW) origin. However, Late Pleistocene assemblage at site 238 appears to be closely associated with a water mass intermediate between North Indian Deep Water (NIDW) and Antarctic Bottom Water (AABW). Uvigerina proboscidea is the most dominant benthic foraminiferal species present during the Pleistocene at both the sites. A marked increase in the relative abundance ofU. proboscidea along with less diverse and equitable fauna during Early Pleistocene suggests a relative cooling, an intensified oceanic circulation and upwelling of nutrient rich bottom waters resulting in high surface productivity. At the same time, low sediment accumulation rate during Early Pleistocene reveals increased winnowing of the sediments possibly due to more corrosive and cold bottom waters. The Late Pleistocene in general, is marked by relatively warm and stable bottom waters as reflected by low abundance ofU. proboscidea and more diverse and equitable benthic fauna. The lower depth range for the occurrence ofBulimina aculeate in the Indian Ocean is around 2300 m, similar to that of many other areas.B. aculeata also shows marked increase in its abundance near the Pliocene/Pleistocene boundary while a sudden decrease in the relative abundance ofStilostomella lepidula occurs close to the Early/Late Pleistocene boundary.  相似文献   

20.
Based on typhoon best track data of China Meteorological Administration and NCEP global reanalysis data, this study analyzed the characteristics of binary tropical cyclones (TC) in the Northwest Pacific Ocean during 1951 to 2014 by using the objective determine standard. When the distance between the two TCs d≤ 1 800 km, they are defined as binary tropical cyclones or binary typhoons. And binary typhoons are divided into two different types which are typical binary typhoons and atypical binary typhoons. The climatic characteristics of binary tropical cyclones are as follows: There were 699 pairs of binary typhoons in Northwest Pacific Ocean during 1951 to 2014. In these cases, there were 446 pairs of typical binary typhoons and 253 pairs of atypical cases, occupying 63.8% and 36.2%, respectively. The proportion of typical cases increased with the shortest distance decreasing, while the proportion of atypical cases decreased with the shortest distance decreasing. When the speed of typical binary typhoons moving towards each other reached the peak, binary typhoons mainly showed the east to west direction. At this time, typhoons were controlled by easterly stream of the southern edge of the subtropical high. In this situation, the east typhoon moved toward the west typhoon quickly. When the anticlockwise angular velocity of typical binary typhoons reached the peak, binary cases distributed northeast to southwest or east-northeast to west-southwest, appearing in west and southwest edge of the subtropical high and mainly being controlled by southeasterly stream, thus benefiting the anticlockwise rotation between the typical binary typhoons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号