共查询到16条相似文献,搜索用时 78 毫秒
1.
广东省2020年在册地质灾害隐患点4744处,威胁24.95万人,但近年发生多起重大地质灾害并不在已发现的隐患点库内,全面识别排查潜在隐患仍是当前和今后一段时期防灾减灾重要任务之一。合成孔径雷达干涉测量区域范围大、形变反演灵敏度高,可以弥补传统地面调查及光学遥感技术不足。研究以广州黄埔区为例,采用2019年1月至2022年4月Sentinel-1A长时序雷达数据,综合利用SBAS-InSAR时序形变信息结合地形级实景三维模型解译风险斜坡,识别出研究区崩滑流斜坡变形潜在隐患风险84处,抽取15%比例开展外业调查5处具有显著形变的滑坡崩塌风险,证明该方法具有可行性,并对综合遥感识别地质灾害提出建议。 相似文献
2.
为解决常规In SAR技术仅能获取一维视线上的形变,导致升、降轨监测的模糊性和差异性,难以全面完整识别出区域内滑坡隐患问题.本文利用小基线数据集技术,以云南东川区为研究对象,获取该区域2018年至2020年升轨和降轨Sentinel-1A数据,采用融合升降轨数据的方法,反演研究区垂直向和东西向二维形变场进行滑坡隐患识别,并结合遥感影像对识别结果的可靠性进行验证.实验结果显示:(1)研究区在升轨和降轨雷达视线方向上的形变速率分别为-188.1~88.9 mm/a、-163.6~74.7 mm/a,融合升降轨数据反演出的东西向形变速率为-123.9~136.7 mm/a,垂直向为-206.5~58.5 mm/a,说明研究区地表形变在垂直方向变化较大,相对于其他方向,沉降中心更为明显.(2)在单一轨道雷达视线向的升降轨形变结果中,分别有15和12个滑坡隐患区被识别;而在融合后所提取的垂直向形变场中,则有25个滑坡隐患区被探测,除升降轨所识别的区域外,还新增6处滑坡隐患.表明垂直向形变结果具有较好的监测能力,能够有效识别区域内滑坡隐患,弥补单一轨道在复杂山区应用的不足.(3)通过对融合结果中典... 相似文献
3.
库岸滑坡失稳会造成严重的危害并带来巨大的经济损失。合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar, InSAR)已成为滑坡探测领域的重要技术手段。时序InSAR具备识别滑坡隐患的能力,但是面对海量数据,该技术仍然存在数据处理耗时久、识别效率低等问题。因此,提出一种基于InSAR相位梯度叠加的滑坡隐患快速识别方法,该方法采用改进后的Sobel算子对InSAR差分干涉对进行梯度运算,去除各项误差后,采用梯度叠加方式快速识别发生形变的区域。通过该方法在毛尔盖库岸成功快速识别出23处滑坡隐患,识别结果可靠性高,并且具备更优秀的微弱形变探测能力。在识别速度方面,相较于Stacking-InSAR和SBAS-InSAR分别提升1.4和1.9倍,该方法能从海量数据中快速且准确识别滑坡隐患,可以为广域滑坡隐患的快速识别提供借鉴与参考。 相似文献
4.
南水北调总干渠中线工程豫北段受矿区开采沉陷、区域地质构造活动及城市地下水开采沉降等多种威胁,区域地质结构稳定性较差。为了评估干渠沿线基础稳定性,为引水工程提供安全评价保障,以南水北调中线豫北段为例,利用2009年全年共9期ENVISAT ASAR雷达数据,采用二通加外部DEM的D-InSAR数据处理算法和"相位累积式"干涉测量甄别大气影响,采用"相邻重访周期式"干涉测量减小时间退相干影响,获得了沿线126km渠段、33个监测点在2009年8个时间段的时序差分形变相位图像;提取了不同时期采矿、地下水开采造成的地面沉降区及沉降幅度信息;评价了区域活动构造及稳定性。研究表明:研究渠段全线有不均匀下沉,350d累积最小下沉量为-33mm,最大下沉量为-73mm。年下沉速率0.34~0.76m/a,年平均下沉速率0.53m/a。监测点下沉总体符合指数分布,平均相关系数R2=0.741 8。根据监测点下沉拟合曲线预测,调水干渠多数段落基础下沉趋稳;南水北调中线工程豫北段受多种因素叠加影响,总体基础稳定性较差,地质构造活动、城市地表沉降为主要影响因素,基础施工为次要影响,矿区开采沉陷对基础失稳未见直接相关性。 相似文献
5.
对于易发生地表形变的区域,传统DEM模型如SRTM,逐渐失去其时效特性,不能准确的描述地质特征,亟待更新重建.本文基于合成孔径雷达干涉测量(InSAR)采用SAR影像复数据相位信息提取地面三维信息的新技术,介绍了合成孔径雷达干涉测量数字高程模型建立的原理和方法.在此基础上,选取研究区,获取了Envisat ASAR SLC雷达影像数据,采用InSAR算法对研究区的数字高程模型进行了重建.并在研究区的形变区内外分别选取控制点,对重建DEM和SRTM进行比较分析.结果表明:对于易发生形变的特殊区域,传统DEM因失去其时效性,无法准确的描述地形特征;合成孔径雷达干涉测量可以作为此类地区DEM定期重建的有效手段.最后对重建的DEM实现三维可视化,提高了读图效率和成图质量. 相似文献
6.
滑坡是我国主要的地质灾害之一,广域范围滑坡灾害体的早期识别及局部重点区域近实时监测是地质灾害防治工作中的一项重要任务.本文通过四川茂县新磨村滑坡这一典型案例,采用星载InSAR技术对广域范围滑坡进行早期识别,并利用地基InSAR技术对局部重点滑坡近实时监测,探索星载InSAR技术和地基InSAR技术联合监测应用模式.在星载InSAR技术滑坡早期识别阶段,为了准确还原滑坡加速下滑过程,采用分级构网策略加密PS点,在时间域上低通滤波获取非线性形变信息.针对地基InSAR技术传统选点方法误选率高、合理性差等问题,设计了三阈值优化算法,提取分布合理的有效测量点.结果表明:星载InSAR技术成功识别出茂县滑坡不稳定坡体,且在滑坡发生前,不稳定坡体有加速下滑现象;在滑坡发生后,地基InSAR技术获取了滑坡体完整的形变信息,在滑源区和流通区存在两处明显形变区域.星载InSAR技术和地基InSAR技术联合监测在滑坡形变的不同阶段多尺度识别出变形区域,可在滑坡稳定性调查和评价中发挥重要作用. 相似文献
7.
《中国科学D辑(英文版)》2008,(3)
Based on the regional water resources character, the concept of soil water resources is first redefined, and then associated with their transfer relationship in the hydrological cycle, Evapotranspiration (ET)-based consumption structure and consumption efficiency of soil water resources are analyzed. According to ET 's function in productivity, the consumption efficiency of soil water resources is di- vided into three classes: high efficient consumption from vegetation transpiration, low efficient con- sumption from soil evaporation among plants with high vegetation coverage and inefficient consump- tion from soil evaporation among plants with low vegetation coverage and bare soil evaporation. The high efficient and low efficient consumption were further classified as productive consumption. The ineffi- cient consumption is considered non-productive consumption because it is significant in the whole hydrological cycle process. Finally, according to these categories, and employing a WEP-L dis- tributed hydrological model, this paper analyzes the consumption efficiency of soil water resources in the Yel- low River Basin. The results show that there are 2078.89×108 m3 soil water resources in the whole basin. From the viewpoint of consumption structure, the soil water resources are comprised of 381.89×108 m3 transpiration consumption from vegetation and 1697.09×108 m3 evaporation consumption from soil among plants and bare soil. From the viewpoint of consumption efficiency, soil water re- sources are composed of 920.11×108 m3 efficient consumption and 1158.86×108 m3 of inefficient con- sumption. High efficient consumption accounts for 41.5 percent of the total efficient consumption of the whole basin, low efficient for 58.5 percent. Furthermore, consumption efficiency varies by region. Compared with ET from different land use conditions, the whole basin appears to follow the trend of having the greatest proportion of consumption as inefficient consumption, followed by low efficient consumption, and then the least proportion as high efficient consumption. The amount of inefficient consumption in some regions with vegetation is less than in other regions without vegetation. The amount of inefficient consumption in grasslands is much greater than in forestlands. However, the proportion of low efficient consumption is the greatest in crop fields. The amount of high efficient con- sumption in grasslands and forelands is similar to the corresponding low efficient consumption. However, the low efficient consumption in grasslands is larger than in the forelands. Therefore, when adjusting the utilization efficiency of soil water resources, vegetation coverage and plant structure should be modulated in terms of the principle of decreasing inefficient consumption, improving low efficiency ET and increasing high efficiency ET according to area character. 相似文献
8.
9.
Distributed modeling of monthly air temperatures over the rugged terrain of the Yellow River Basin 总被引:1,自引:0,他引:1
Our analyses of the monthly mean air temperature of meteorological stations show that altitude, global solar radiation and
surface effective radiation have a significant impact on air temperature. We set up a physically-based empirical model for
monthly air temperature simulation. Combined the proposed model with the distributed modeling results of global solar radiation
and routine meteorological observation data, we also developed a method for the distributed simulation of monthly air temperatures
over rugged terrain. Spatial distribution maps are generated at a resolution of 1 km×1 km for the monthly mean, the monthly
mean maximum and the monthly mean minimum air temperatures for the Yellow River Basin. Analysis shows that the simulation
results reflect to a considerable extent the macro and local distribution characteristics of air temperature. Cross-validation
shows that the proposed model displays good stability with mean absolute bias errors of 0.19°C–0.35°C. Tests carried out on
local meteorological station data and case year data show that the model has good spatial and temporal simulation capacity.
The proposed model solely uses routine meteorological data and can be applied easily to other regions.
Supported by China Meteorological Administration key Project on New Technique Diffusion (Grant No. CMATG2006Z10) and Jiangsu
Key Laboratory of Meteorological Disasters (Grant No. KLME050102) 相似文献
10.
根据黄河流域1960—2005年5个水文站逐日流量、77个气象站1959—2013年逐日降水数据,结合流域内主要农作物种植面积及大型水库资料,全面探讨气候与农业面积变化及人类活动对黄河流域径流变化的影响.研究表明:黄河流域所有流量分位数总体呈下降趋势,并于1980s中后期到1990s中期发生突变.降水变化是黄河流域径流变化的主要影响因素.在考虑不同流量分位数情况下,农作物种植面积变化对不同分位数径流变化的影响也有差异性.花园口站农作物种植面积变化对径流量量级和可变性均有显著影响;其余4站各项气候变化与农作物种植指标参数较大,虽均未达到10%的显著性水平,但仍会对径流的量级变化产生影响.对唐乃亥站,农作物耕作面积的下降减少了灌溉用水,在0.5流量分位数时有高达60%增加径流量的间接作用.对于头道拐站,农作物耕作面积的增加使得流域总蒸发量增加,灌溉用水增加,在0.3流量分位数时有高达40%减少径流量的间接作用.该研究为气候变化与人类活动影响下黄河流域水资源优化配置提供重要理论依据. 相似文献
11.
Current crustal motion and deformation in the Chinese mainland and its surrounding area determined from GPS data 总被引:1,自引:0,他引:1
Based on the geodetic data taken from the National GPS Network established by China Climbing Program "Investigation of Crust Motion and Geodynamics in Modern Time",we derived the movement velocities of the GPS sites. In terms of the power series expansion of a rotation function for horizontal velocities on a spherical surface proposed by Haines and Holt (1993), we computed the horizontal velocity and strain-rate field. We preliminarily studied the appearances and characteristics of the present-day crustal movement and deformation in the Chinese mainland with the computed results. The researches demonstrated: ① The present-day crustal movement and deformation in the Chinese mainland are being jointly controlled by Indian, Pacific and Philippines Ocean Plates and Siberia-Mongolia block, and these three large plates and block form a situation of tripartite confrontation, but Indian Plate seems to play a leading role; ② The North-South Earthquake Zone plays an important adjustment role in the present-day crustal movement and deformation process, displaying clear characteristics of demarcation line of tectonics in large areas; ③ There seems to be another adjustment zone along the latitude line approximate N35°, but its characteristics are less obvious than that of the former; ④ Dynamic actions of these three large plates and block on the Chinese mainland are dynamic stable; appearing in stable push-press velocities. These results are generally accorded with the results determined from geology, geophysics, and seismology. By the contrast with seismicities, it appears preliminarily that there is some corresponding relation between intense shear strain zone and future strong seismicity area, but this problem needs further examination of earthquake examples. 相似文献
12.
A series of independent faulted basins developed in the present middle reaches of the Yellow River during late Cenozoic, among which the Sanmen Lake Basin is located in the east edge of the Loess Plateau, a transitional zone between the second and third macromorphological step of China. The thick strata of the Sanmen Group deposited in the large basin. The Sanmen Group is a perfect place for the study on paleoenvironmental change, tectono-climatic cycles as well as the formation and evolution of the Yellow River. In this paper, the paleoenvironmental changes, regional tectonic movement and the evolutionary process of the Sanmen Lake Basin during the past 5 Ma were reconstructed based on the analysis of paleomagnetic stratigraphy, pollen, TOC and carbonate content from the Huangdigou outcrop near the Sanmenxia Reservoir, Pinglu County, Shanxi Province. The sedimentary records from the outcrop indicate that the basin was first formated by fault activity at about 5.4 MaBP, and after the strong tectonic movement at 3.6 MaBP the lake enlarged and the rainfall of summer monsoon increased. There was no great climatic transition near 2.6 MaBP, corresponding to the bottom age of loess in the Loess Plateau. After Olduvai event (about 1.77 MaBP) the Picea and Abies were presented in the sediments, which indicates a colder climate. The tectonic movement at 1.2 MaBP caused the light angular discordance between the upper and lower Sanmen Group. The sedimentary records show a cold and wet climate during the prosperous periods of loess accumulation such as L15, L9, L6. The tectonic intensification periods of the Sanmen Basin correspond with the tectonic movements in the Qinghai-Xizang Plateau chronologically. The earliest age of the outflow from the Paleo-Sanmen Lake or the partly cutting off of the Sanmenxia Gorge was about 0.41- 0.35 MaBP. The age of cutting thoroughly the Sanmenxia Gorge by the Yellow River and the disappearance of the Paleo-Sanmen Lake was about 0.15 MaBP, which symbolized the formation of the present Yellow River and had an important influence on the environmental and morphological evolution in the middle and lower reaches of the Yellow River. 相似文献
13.
Xia Li Zuhao Zhou Jiajia Liu Chongyu Xu Junqiang Xia Pengxiang Wang Hao Wang Yangwen Jia 《水文研究》2024,38(2):e15097
In order to increase the capability to understand and quantify the spatial differences in terrestrial water storage (TWS), and to reflect the unique energy balance processes and soil freeze–thaw mechanisms in the Qinghai-Tibet Plateau (QTP), this study improved the energy balance processes of the water and energy transfer processes model, including its surface radiation calculations and snowmelt module. By integrating these improvements, a water and energy transfer processes model in Qinghai-Tibet Plateau (WEP-QTP) for the Yellow River source region (YRSR) is developed. Using the improved WEP-QTP model to perform simulations, we assessed the daily changes in snow cover, soil moisture (SM), permafrost (PM), and groundwater storage (GWS) in the YRSR. Our analysis revealed an increase in TWS of 0.24 mm/yr from 1961 to 2020. Snow water equivalent (SWE), SM, PM, and GWS have proportional contributions of 8.33%, 216.67%, −154.17%, and 29.17% to the increased TWS, respectively. SM is the primary component of TWS. Temperature (T), precipitation (P), evapotranspiration (E), and solar radiation (Rs) influence the spatiotemporal variations in TWS, as well as those of its components. The increase in P is the primary cause for the rise in TWS, SWE, and SM, while the increase in T predominantly contributes to the decrease in PM. Furthermore, permafrost degradation and climate-induced warming and humidification lead to increased infiltration, resulting in elevated GWS. 相似文献
14.
Sediment retention by check dams in the Hekouzhen-Longmen Section of the Yellow River 总被引:4,自引:2,他引:4
Coarse sediment retention by check dams is analyzed for five typical catchments in the Hekou-Longmen section of the midstream of the Yellow River, which is an area of high .coarse sediment concentration. The catchments are the Huangfuchuan, Kuye, Wuding, Sanchuan and Qiushui River Basins. The amount of coarse sediment retained by check clams in these areas for different periods was measured. Sediment reduction due to check clams is compared with other soil conservation measures and the results show that check clams are the most effective to rapidly reduce the amount of coarse sediment entering the Yellow River. If the average percentage of the drainage area with check clams for the five typical catchments reaches 3.0%, the average sediment reduction ratio can reach 60%. Therefore, to rapidly and effectively reduce the amount of sediment, especially coarse sediment, entering the Yellow River, the area percentage of check clams in the Hekou-Longmen section should be kept around 3%. The Kuye and Huangfuchuan River Basins are the preferred main catchments in which such water conservation measures are implemented. 相似文献
15.
The temporal trends of reference evapotranspiration (ETref) reflect the combined effects of radiometric and aerodynamic variables, such as global solar radiation (Rs), wind speed, relative humidity and air temperature. The temporal trends of annual ETref during 1961–2006 calculated by Penman‐Monteith method were explored and the underlying causes for these trends were analysed in the Yellow River Basin (YRB). The contributions of key meteorological variables to the temporal trend of ETref were detected using the detrended method and then sensitivity coefficients of ETref to meteorological variables were determined. For ETref, positive trends in the upper, middle and whole of YRB, and significant negative trend (P = 0·05) in the lower basin were obtained by the linear fitted model. Significant increasing trend (P = 0·05) in air temperature and decreasing trend in relative humidity were the main causes for the increasing trends of ETref in the upper, middle and whole basins. For the whole basin, the increasing trend of ETref was mainly caused by the significant increase (P = 0·05) in air temperature and to a lesser extent by a decrease in the relative humidity, decreasing trends of Rs and wind speed reduced ETref. The spatial distribution of sensitivity coefficients addressed that the sensitive regions for ETref response to the changes of the four meteorological variables are different in the YRB. The sensitive region lay in the upper basin for Rs, the northwest portion of the middle basin for wind speed, the south portion of YRB for relative humidity and the west portion of the upper basin and the north portion of the middle basin for air temperature. In general, Rs was the most sensitive variable for ETref, followed by relative humidity, air temperature and wind speed in the basin scale. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
16.
定量研究区域滑坡空间分布规律,揭示不同类型滑坡的分布格局,对预测和评价滑坡危险性有重要指导意义。基于ArcGIS空间分析功能及分形理论的关联维数和盒计维数,分析了巴谢河流域黄土滑坡及黄土-泥岩滑坡的空间分布格局及其影响因素。结果表明:区域滑坡个体关联具有多尺度分形,黄土滑坡与黄土-泥岩滑坡分别在8 km、12 km尺度上存在阈值,滑坡个体在该阈值尺度前后呈现不同的相关程度,且黄土滑坡个体空间的关联程度和聚集程度均高于黄土-泥岩滑坡;黄土-泥岩滑坡分布范围广、形态复杂,其面积展布盒计维数大于黄土滑坡;地层岩性及坡度对两类滑坡分布格局的影响较大,沟壑密度次之,起伏度影响较小。 相似文献