首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)−1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)−1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.

  相似文献   

2.
The recent decline in Arctic sea-ice cover (SIC) shows seasonal and regional characteristics. The retreat of summer sea ice has occurred mainly in the Pacific sector of the Arctic. In this study, using the moving t-test, we found an abrupt change event in the long-term sea-ice area in the Pacific sector in summer 1989. This event was linked to the phase shift of the Arctic Oscillation (AO) or the Northern Annular Mode (NAM). Corresponding with the AO/NAM phase shift from negative to positive, the area of the northern hemisphere stratospheric polar vortex decreased abruptly in winter 1988/89. Comparisons of two periods before (1979–1988) and after (1989–1993) the abrupt decrease in sea ice show that an anomalous winter sea level pressure (SLP) was induced by changes in the polar vortex leading to an anomalous cyclonic ice drift in the Pacific sector. The changes in SLP and wind field persisted into the following spring, resulting in a decrease in SIC and warming of the surface air temperature (SAT). The influence of the spring SLP and SAT on ice persisted into the following summer. Meanwhile, the increased summer net surface heat flux over the ocean and sea ice as a result of the decreased spring ice cover further contributed to the summer sea-ice melt.  相似文献   

3.
With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961–2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen’s Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3–62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.  相似文献   

4.
Under recent Arctic warming, boreal winters have witnessed severe cold surges over both Eurasia and North America, bringing about serious social and economic impacts. Here, we investigated the changes in daily surface air temperature (SAT) variability during the rapid Arctic warming period of 1988/89–2015/16, and found the daily SAT variance, mainly contributed by the sub-seasonal component, shows an increasing and decreasing trend over eastern Eurasia and North America, respectively. Increasing cold extremes (defined as days with daily SAT anomalies below 1.5 standard deviations) dominated the increase of the daily SAT variability over eastern Eurasia, while decreasing cold extremes dominated the decrease of the daily SAT variability over North America. The circulation regime of cold extremes over eastern Eurasia (North America) is characterized by an enhanced high-pressure ridge over the Urals (Alaska) and surface Siberian (Canadian) high. The data analyses and model simulations show the recent strengthening of the high-pressure ridge over the Urals was associated with warming of the Barents–Kara seas in the Arctic region, while the high-pressure ridge over Alaska was influenced by the offset effect of Arctic warming over the East Siberian–Chukchi seas and the Pacific decadal oscillation (PDO)–like sea surface temperature (SST) anomalies over the North Pacific. The transition of the PDO-like SST anomalies from a positive to negative phase cancelled the impact of Arctic warming, reduced the occurrence of extreme cold days, and possibly resulted in the decreasing trend of daily SAT variability in North America. The multi-ensemble simulations of climate models confirmed the regional Arctic warming as the driver of the increasing SAT variance over eastern Eurasia and North America and the overwhelming effect of SST forcing on the decreasing SAT variance over North America. Therefore, the regional response of winter cold extremes at midlatitudes to the Arctic warming could be different due to the distinct impact of decadal SST anomalies.  相似文献   

5.
In this the second of a two-part study, we examine the physical mechanisms responsible for the increasing contrast of the land–sea surface air temperature (SAT) in summertime over the Far East, as observed in recent decades and revealed in future climate projections obtained from a series of transient warming and sensitivity experiments conducted under the umbrella of the Coupled Model Intercomparison Project phase 5. On a global perspective, a strengthening of land–sea SAT contrast in the transient warming simulations of coupled atmosphere–ocean general circulation models is attributed to an increase in sea surface temperature (SST). However, in boreal summer, the strengthened contrast over the Far East is reproduced only by increasing atmospheric CO2 concentration. In response to SST increase alone, the tropospheric warming over the interior of the mid- to high-latitude continents including Eurasia are weaker than those over the surrounding oceans, leading to a weakening of the land–sea SAT contrast over the Far East. Thus, the increasing contrast and associated change in atmospheric circulation over East Asia is explained by CO2-induced continental warming. The degree of strengthening of the land–sea SAT contrast varies in different transient warming scenarios, but is reproduced through a combination of the CO2-induced positive and SST-induced negative contributions to the land–sea contrast. These results imply that changes of climate patterns over the land–ocean boundary regions are sensitive to future scenarios of CO2 concentration pathways including extreme cases.  相似文献   

6.
The multi-model ensemble (MME) of 20 models from the Coupled Model Intercomparison Project Phase Five (CMIP5) was used to analyze surface climate change in the 21st century under the representative concentration pathway RCP2.6, to reflect emission mitigation efforts. The maximum increase of surface air temperature (SAT) is 1.86°C relative to the pre-industrial level, achieving the target to limit the global warming to 2°C. Associated with the “increase-peak-decline” greenhouse gases (GHGs) concentration pathway of RCP2.6, the global mean SAT of MME shows opposite trends during two time periods: warming during 2006–55 and cooling during 2056–2100. Our results indicate that spatial distribution of the linear trend of SAT during the warming period exhibited asymmetrical features compared to that during the cooling period. The warming during 2006–55 is distributed globally, while the cooling during 2056–2100 mainly occurred in the NH, the South Indian Ocean, and the tropical South Atlantic Ocean. Different dominant roles of heat flux in the two time periods partly explain the asymmetry. During the warming period, the latent heat flux and shortwave radiation both play major roles in heating the surface air. During the cooling period, the increase of net longwave radiation partly explains the cooling in the tropics and subtropics, which is associated with the decrease of total cloud amount. The decrease of the shortwave radiation accounts for the prominent cooling in the high latitudes of the NH. The surface sensible heat flux, latent heat flux, and shortwave radiation collectively contribute to the especial warming phenomenon in the high-latitude of the SH during the cooling period.  相似文献   

7.
In the period 1960–2010, the land surface air temperature (SAT) warmed more rapidly over some regions relative to the global mean. Using a set of time-slice experiments, we highlight how different physical processes shape the regional pattern of SAT warming. The results indicate an essential role of anthropogenic forcing in regional SAT changes from the 1970s to 2000s, and show that both surface–atmosphere interactions and large-scale atmospheric circulation changes can shape regional responses to forcing. Single forcing experiments show that an increase in greenhouse gases can lead to regional changes in land surface warming in winter (DJF) due to snow-albedo feedbacks, and in summer (JJA) due to soil-moisture and cloud feedbacks. Changes in anthropogenic aerosol and precursor (AA) emissions induce large spatial variations in SAT, characterized by warming over western Europe, Eurasia, and Alaska. In western Europe, SAT warming is stronger in JJA than in DJF due to substantial increases in clear sky shortwave radiation over Europe, associated with decreases in local AA emissions since the 1980s. In Alaska, the amplified SAT warming in DJF is due to increased downward longwave radiation, which is related to increased water vapor and cloud cover. In this case, although the model was able to capture the regional pattern of SAT change, and the associated local processes, it did not simulate all processes and anomalies correctly. For the Alaskan warming, the model is seen to achieve the correct regional response in the context of a wider North Pacific anomaly that is not consistent with observations. This demonstrates the importance of model evaluation that goes beyond the target variable in detection and attribution studies.  相似文献   

8.
Based on time series and linear trend analysis, the authors evaluated the performance of the fourth generation atmospheric general circulation model developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP AGCM4.0), in simulating surface air temperature (SAT) during the twentieth century over China and the globe. The numerical experiment is conducted by driving the model with the observed sea surface temperature and sea ice. It is shown that IAP AGCM4.0 can simulate the warming trend of the global SAT, with the major warming regions in the high latitudes of the Northern Hemisphere and the mid-latitudes of the Southern Hemisphere. While the simulated trend over the whole globe is close to the observation, the model under-estimates the observed trend over the continents. More-over, the model simulates the spatial distribution of SAT in China, with a bias of approximately-2°C in eastern China, but with a more serious bias in western China. Compared with the global mean, however, the correlation coefficient between the simulation and observation in China is significantly lower, indicating that there is large uncertainty in simulating regional climate change.  相似文献   

9.
This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the SAT over the Northeast Asia experienced a significant warming after 1994 relative to that before 1993.This decadal shift also extends to northern China,and leads to a warmer summer over Northeast China and North China after the mid-1990s.The decadal warming over Northeast Asia is found to concur with the enhancement of South China rainfall around the mid-1990s.On the one hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift only in summer,but not in other seasons.On the other hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift not only in the summer seasonal mean,but also in each month of summer (June,July and August).Furthermore,the decadal warming is found to result from an anticyclonic anomaly over Northeast Asia,which can be interpreted as the response to the increased precipitation over South China,according to previous numerical results.Thus,we conclude that the warming shift of summer Northeast Asian SAT around the mid-1990s was a remote response to the increased precipitation over South China.  相似文献   

10.
中国春季沙尘暴年代际变化和季节预测   总被引:2,自引:0,他引:2  
祝从文  徐康  张书萍  郭玲 《气象科技》2010,38(2):201-204
利用1954~2007年中国258个台站观测的月沙尘暴日数资料,北半球地表温度和美国NCAR/NCEP大气再分析资料,研究了中国春季沙尘暴日数年代际变化特征及其影响因子。研究发现:中国春季沙尘暴日数与贝加尔湖地表变暖存在显著的负相关,相关系数达到-0.8,该地区的地表温度变暖导致蒙古气旋活动和我国沙尘暴频率降低。利用该地区冬季对流层850 hPa温度与春季地表温度指数之间显著正相关关系,建立了冬季850 hPa温度指数预测中国春季沙尘暴频率的线性预报方程。通过22年回报检验发现,统计预报结果与多数台站观测的沙尘暴发生频率存在显著的正相关,最大相关系数达到+0.4。其中,近22年的预报场与观测之间空间相关系数平均达到+0.4以上,均方根误差在1~2之间,表明该统计预报模型具有一定的业务应用价值。  相似文献   

11.
地温突升与短期气候变化初探   总被引:7,自引:5,他引:2  
汤懋苍  张健 《高原气象》1990,9(4):364-370
利用我国各气象站1954—1985年的地温资料,分析发现3.2m深度的地温有“突然升高”现象,其中大部分不能用地表层的变化来解释。当“地热异常型”的地温突升呈大范围(大于10~3km)群发性时,会使该区域当年降水量明显增多;当“地热异常”呈“孤点”爆发时,不会使该地降水机率增加,但当降水发生时可以增加降水量。  相似文献   

12.
本文应用WRF-Chem(Weather Research and Forecasting—Chemistry)模式研究中国东部地区气溶胶及其部分组分(硫酸盐、硝酸盐和黑碳气溶胶)在天气尺度下的辐射强迫和对地面气温的影响。5个无明显降水时间段(2006年8月23~25日、2008年11月10~12日、2008年12月16~18日、2009年1月15~17日和2009年4月27~29日)的模拟显示,气溶胶浓度呈现显著的白天低,夜间高的日变化特征,且北方区域(29.8°~42.6°N,110.2°~120.3°E)平均PM2.5近地面浓度(40~80 μg m-3)高于南方区域(22.3°~29.9°N,109.7°~120.2°E,30~47 μg m-3)。气溶胶对地面2 m温度(地面气温)有明显的降温效果,在早上08:00(北京时,下同)和下午17:00左右最为显著,最高可降低约0.2~1 K,同时气溶胶的参与改善了模式对地面气温的模拟。本文还通过对2006年8月23~25日一次个例的模拟,定量分析了气溶胶及其部分组分(硫酸盐、硝酸盐和黑碳气溶胶)的总天气效应(直接效应+间接效应)、直接效应和间接效应分别对到达地面的短波辐射和地面气温的影响。北方区域平均气溶胶直接效应所造成的短波辐射强迫要高于南方区域,分别为-11.3 W m-2和-5.8 W m-2,导致地面气温分别降低了0.074 K和0.039 K。南方区域平均气溶胶间接效应所产的短波辐射强迫高于北方区域,分别为-14.4 W m-2和-12.4 W m-2,引起的地面气温的改变分别为-0.094 K和-0.035 K。对于气溶胶组分,硫酸盐气溶胶的直接效应和间接效应的作用相当,其总效应在北方和南方区域平均短波辐射强迫分别为-7.0 W m-2和-10.5 W m-2,对地面气温的影响为-0.062 K和-0.074 K,而硝酸盐气溶胶的作用略小。黑碳气溶胶使得北方和南方区域平均到达地表的太阳短波辐射分别减少了6.5 W m-2和5.8 W m-2,而地表气温则分别增加了0.053 K和0.017 K,相比于间接效应,黑碳气溶胶的直接效应的影响更加显著。  相似文献   

13.
To preserve consistency among developed emission scenarios, the scenarios used in climate modeling, and the climate scenarios available for impact research, the pattern scaling technique is useful technique. The basic assumption of pattern scaling is that the spatial response pattern per 1 K increase in the global mean surface air temperature (SAT) (scaling pattern) is the same among emission scenarios, but this assumption requires further validation. We therefore investigated the dependence of the scaling pattern of the annual mean SAT on GHGs emission scenarios of representative concentration pathways (RCP) and the causes of that dependence using the Model for Interdisciplinary research on Climate 5 developed by Japanese research community. In particular, we focused on the relationships of the dependency with effects of aerosols and Atlantic meridional overturning circulation. We found significant dependencies of the scaling pattern on emission scenarios at middle and high latitudes of the Northern Hemisphere, with differences of >15 % over parts of East Asia, North America, and Europe. Impact researchers should take into account those dependencies that seriously affect their research. The mid-latitude dependence is caused by differences in sulfate aerosol emissions per 1 K increase in the global mean SAT, and the high-latitude dependence is mainly caused by nonlinear responses of sea ice and ocean heat transport to global warming. Long-term trends in land-use and land-cover changes did not significantly affect the scaling pattern of annual mean SAT, but they might have an effect at different timescales.  相似文献   

14.
Wang  Ya  Huang  Gang  Hu  Kaiming 《Climate Dynamics》2020,55(9-10):2835-2847

The surface air temperature (SAT) exhibits pronounced warming over West Antarctica in recent decades, especially in austral spring and winter. Using a 30-member ensemble of simulations by Community Earth System Model (CESM), two reanalysis datasets, and observed station data, this study investigates the relative contributions of internally generated low-frequency climate variability and externally forced climate change to the austral winter SAT trend in Antarctica. Although these simulations share the same external forcing, the SAT trends during 1979–2005 show large diversity among the individual members in the CESM ensemble simulations, suggesting that internally generated variability contributes a considerable part to the multidecadal SAT change in Antarctica. Quantitatively, the total forced contribution to the SAT (1979–2005) change is about 0.53 k/27 yr, and the internal variability can be strong enough to double or cancel the externally forced warming trend. A method called “dynamical adjustment” is utilized to further divide the forced response. We find both the forced thermodynamically-induced and the forced dynamically-induced SAT trends are positive over all the regions in Antarctica, with the regional mean values of 0.20 k /27 yr and 0.33 k/27 yr, respectively. The diversity of SAT trends among the simulations is closely linked to a Southern hemisphere Annular Mode (SAM)-like atmospheric circulation multidecadal change in the Southern Hemisphere. When there exists a positive–negative seesaw of pressure trend between Antarctica and the mid-latitudes, the SAT trend is positive over most of Antarctica but negative over the Antarctic Peninsula, and vice versa. The SAM-like atmospheric circulation multidecadal change mainly arises from atmospheric internal variability rather than remote tropical Sea Surface Temperature (SST).

  相似文献   

15.
近百年中国气候变暖趋势之再评估   总被引:5,自引:0,他引:5  
基于均一化的气温观测序列集,1900年以来中国气温升高趋势1.3—1.7℃/(100 a)。这个已用于新近的中国国家气候变化评估报告的结果,远高于早期的评估结果(0.5—0.8℃/(100 a))。回顾了始于20世纪80年代的中国百年气温序列的研究,指出其中关键进展在于近年来研发了均一化的长期站点气温观测序列集。早年构建的中国气温序列中,20世纪40年代前异常偏高,除了战乱期间观测缺失严重及记录代表性问题外,主要是50年代前后很多台站迁址导致早期气温观测值系统性偏高所致,从而低估长期变暖趋势。40年代前后部分区域确实偏暖,但由于不同区域气温波动位相不一致,因而大范围平均序列中并不明显。这一事实可与近年发展的“北极暖-大陆冷”等气候变化动力学理论以及一些区域气温代用资料相印证。近几十年城市化对中国气温变化趋势之贡献大小尚存争议,但远非主导因素。   相似文献   

16.
Preliminary evaluations of FGOALS-g2 for decadal predictions   总被引:3,自引:0,他引:3  
The Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2) for decadal predictions, is evaluated preliminarily, based on sets of ensemble 10-year hindcasts that it has produced. The results show that the hindcasts were more accurate in decadal variability of SST and surface air temperature (SAT), particularly in that of Nin o3.4 SST and China regional SAT, than the second sample of the historical runs for 20th-century climate (the control) by the same model. Both the control and the hindcasts represented the global warming well using the same external forcings, but the control overestimated the warming. The hindcasts produced the warming closer to the observations. Performance of FGOALS-g2 in hindcasts benefits from more realistic initial conditions provided by the initialization run and a smaller model bias resulting from the use of a dynamic bias correction scheme newly developed in this study. The initialization consists of a 61-year nudging-based assimilation cycle, which follows on the control run on 01 January 1945 with the incorporation of observation data of upper-ocean temperature and salinity at each integration step in the ocean component model, the LASG IAP Climate System Ocean Model, Version 2 (LICOM2). The dynamic bias correction is implemented at each step of LICOM2 during the hindcasts to reduce the systematic biases existing in upper-ocean temperature and salinity by incorporating multi-year monthly mean increments produced in the assimilation cycle. The effectiveness of the assimilation cycle and the role of the correction scheme were assessed prior to the hindcasts.  相似文献   

17.
Declining sea ice area in the Canadian Arctic has gained significant attention with respect to the prospect of increased shipping activities. To investigate relationships between recent declines in sea ice area with Arctic maritime activity, trend and correlation analysis was performed on sea ice area data for total, first-year ice (FYI), and multi-year ice (MYI), and on a comprehensive shipping dataset of observed vessel transits through the Vessel Traffic Reporting Arctic Canada Traffic Zone (NORDREG zone) from 1990 to 2012. Links to surface air temperature (SAT) and the satellite derived melt season length were also investigated. Between 1990 and 2012, statistically significant increases in vessel traffic were observed within the NORDREG zone on monthly and annual time-scales coincident with declines in sea ice area (FYI, MYI, and total ice) during the shipping season and on a monthly basis. Similarly, the NORDREG zone is experiencing increased shoulder season shipping activity, alongside an increasing melt season length and warming surface air temperatures (SAT). Despite these trends, only weak correlations between the variables were identified, although a step increase in shipping activity is apparent following the former summer sea ice extent minimum in 2007. Other non-environmental factors have also likely contributed to the observed increase in Arctic shipping activity within the Canadian Arctic, such as tourism demand, community re-supply needs, and resource exploration trends.  相似文献   

18.
Climate change signals in Saudi Arabia are investigated using the surface air temperature (SAT) data of 19 meteorological stations, well distributed across the country. Analyses are performed using cumulative sum, cumulative annual mean, and the Mann–Kendall rank statistical test for the period of 1978–2010. A notable change in SAT for the majority of stations is found around 1997. The results show a negative temperature trend (cooling) for all stations during the first period (1978–1997), followed by a positive trend (warming) in the second period (1998–2010) with reference to the entire period of analysis. The Mann–Kendall test confirms that there is no abrupt cooling at any station during the analysis period, reflecting the warming trend across the country. The warming trend is found to be 0.06 °C/year, while the cooling trend is 0.03 °C/year, which are statistically significant.  相似文献   

19.
20世纪80~90年代我国气候增暖进程的统计事实   总被引:44,自引:8,他引:44       下载免费PDF全文
运用统计诊断方法分析了近50年来我国年平均及四季的气温变化特征,重点研究了20世纪90年代和80年代气温变化的主要差异及其增暖进程。结果表明,我国年平均气温是呈上升趋势的,但80年代以前年代际变化并不明显, 升温幅度不大。我国气候增暖始于20世纪80年代后期,90年代增暖加速,急剧增暖的主要原因是长江流域以南地区经历了由偏冷向偏暖的趋势转变。我国四季气温变化趋势在80~90年代增暖的进程中存在明显差异:其中冬季增暖开始时间最早、幅度最大、持续时间最长;90年代我国气候增暖急剧加速,其原因除了冬季气温持续攀升作用外,春、夏、秋季气温上升, 特别是春、夏季增暖幅度的加大增暖区域的显著扩展也起到很重要的作用。  相似文献   

20.
Jia X.  Liu X.  Qian Q. 《大气科学》2023,(3):825-836
This work analyzes the abrupt change in summer surface air temperature (SAT) in Central Asia (CA) and its relationship with sea surface temperature (SST) in the North Atlantic and snow cover in the Qinghai Tibet Plateau between 1980 and 2019 based on NCEP/NCAR reanalysis data, CRU SAT, and snow cover and global SST data. The results reveal a significant summer SAT change in CA in 2005. The standardized regional average temperature index in CA shifts from the previous negative phase to the subsequent positive phase, indicating a significant summer SAT increase in CA. Analysis of the anomalous atmospheric circulations related to interdecadal changes in summer SAT in CA shows the abnormally enhanced anticyclonic circulation system in the west of CA after 2005. The atmospheric subsidence associated with the anomalous anticyclone can cause warming. On the other hand, the reduction in the amount of cloud caused by this anticyclone anomaly enhancement results in the increase in downward short-wave radiation and thus is favorable for the increased summer temperature in CA. Furthermore, the interdecadal summer SAT changes in CA in 2005 are closely related to SST warming in the middle and high latitudes of the North Atlantic and the reduction in snow cover in the west of the Tibet Plateau (TP). The SST increase in the middle and high latitudes of the North Atlantic can stimulate a Rossby wave propagating downstream. The reduction in snow cover in the west of the TP can cause warming to the above atmosphere through the snow albedo effect. The changes in both the North Atlantic SST and the TP snow can strengthen the anticyclone over CA, leading to an abnormally high summer SAT over there. © 2023 Science Press. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号