首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the removal of regenerated nitrogen by estuarine sediments, we compared sediment N2 fluxes to the stoichiometry of nutrient and O2 fluxes in cores collected in the Childs River, Cape Cod, Massachusetts. The difference between the annual PO4 3− (0.2 mol P m−2 yr−1) and NH4 + (1.6 mol N m−2 yr−1) flux and the Redfield N∶P ratio of 16 suggested an annual deficit of 1.5 mol N m−2 yr−1. Denitrification predicted from O2∶NH4 + flux ratios and measured as N2 flux suggested a nitrogen sink of roughly the same magnitude (1.4 mol N m−2 yr−1). Denitrification accounted for low N∶P ratios of benthic flux and removed 32–37% of nitrogen inputs entering the relatively highly nutrient loaded Childs River, despite a relatively brief residence time for freshwater in this system. Uptake of bottom water nitrate could only supply a fraction of the observed N2 flux. Removal of regenerated nitrogen by denitrification in this system appears to vary seasonally. Denitrification efficiency was inversely correlated with oxygen and ammonium flux and was lowest in summer. We investigated the effect of organic matter on denitrification by simulating phytoplankton deposition to cores incubated in the lab and by deploying chambers on bare and macroaglae covered sediments in the field. Organic matter addition to sediments increased N2 flux and did not alter denitrification efficiency. Increased N2 flux co-varied with O2 and NH4 + fluxes. N2 flux (261±60 μmol m−2 h−1) was lower in chambers deployed on macroalgal beds than deployed on bare sediments (458±70 μmol m−2 h−1), and O2 uptake rate was higher in chambers deployed on macroalgal beds (14.6±2.2 mmol m−2 h−1) than on bare sediments (9.6±1.5 mmol m−2 h−1). Macroalgal cover, which can retain nitrogen in the system, is a link between nutrient loading and denitrification. Decreased denitrification due to increasing macroalgal cover could create a positive feedback because decreasing denitrification would increase nitrogen availability and could increase macroalgae cover.  相似文献   

2.
In this study rates of oxygen, ammonium (NH4 +), nitrate (NO3 ), nitrite (NO2 ), and nitrous oxide (N2O) fluxes, nitrogen (N) fixation, nitrification, and denitrification were compared between two intertidal sites for which there is an abundant global literature, muddy and sandy sediments, and two sites representing the rocky intertidal zone where biogeochemical processes have scarcely been investigated. In almost all sites oxygen production rates greatly exceeded oxygen consumption rates. During daylight, NH4 + and NO3 uptake rates together with ammonification could supply the different N requirements of the primary producer communities at all four sites; N assimilation by benthic or epilithic primary producers was the major process of dissolved inorganic nitrogen (DIN) removal; N fixation, nitrification, and denitrification were minor processes in the overall light DIN cycle. At night, distinct DIN cycling processes took place in the four environments, denitrification rates ranged from 9 ± 2 to 360 ± 30 μmol N2 m−2 h−1, accounting for 10–48% of the water column NO3 uptake; nitrification rates varied from 0 to 1712 ± 666 μmol NH4 + m−2 h−1. A conceptual model of N cycle dynamics showed major differences between intertidal sediment and rocky sites in terms of the mean rates of DIN net fluxes and the processes involved, with rocky biofilm showing generally higher fluxes. Of particular significance, the intertidal rocky biofilms released 10 times the amount of N2O produced in intertidal sediments (up to 17 ± 6 μmol N2O m−2 h−1), representing the highest N2O release rates ever recorded for marine systems. The biogeochemical contributions of intertidal rocky substrata to estuarine and coastal processes warrant future detailed investigation.  相似文献   

3.
Concentration profiles of O2, NH4 +, NO3 , and PO4 3− were measured at high spatial resolution in a 12-cm thick benthic mat of the filamentous macroalga Chaetomorpha linum. Oxygen and nutrient concentration profiles varied depending on algal activity and water turbulence. High surface irradiance stimulated O2 production in the surface layers and introduced O2 to deeper parts of the mat while the bottom layers of the mat and the underlying sediment were anoxic. Nutrient concentrations were highest in the bottom layers of the mat directly above the sediment nutrient source and decreased towards the surface layers due to algal assimilation and enhanced mixing with the overlying water column. Increased turbulence during windy periods resulted in more homogeneous oxygen and nutrient concentration profiles and shifted the oxic-anoxic interface downward. Denitrification within the mat, as measured by the isotope pairing technique on addition of 15NO3 , was found to take place directly below the oxic-anoxic interface. Denitrification activity was always due to coupled nitrification-denitrification, whereby nitrifiers in the mat utilize NH4 + diffusing from below and O2 diffusing from above. The denitrification rate in the mat ranged from 22 μmol m−2 h−1 to 28 μmol m−2 h−1, approximately equivalent to that measured in the surrounding nonvegetated sediment. Although sediment denitrification is suppressed when the sediment surface is covered by a dense macroalgal mat, the denitrification zone may migrate up into the mat. In eutrophic estuaries with a large area of macroalgal cover, the physical structure and growth stage of algal mats may thus play an important role in the regulation of nitrogen removal by denitrification.  相似文献   

4.
Phosphatase activity was measured in sediments from tidal freshwater habitats adjacent to the Cooper River in South Carolina representing different stages of ecological succession. It was found that sediment (0–5 cm) acid phosphatase activity, alkaline phosphatase activity and phosphodiesterase activity increased with increasing successional stage and phytomass. Acid phosphatase activity in creased from 7.5±1.2 (±1 SD) in subtidal sediment from a shallow open water habitat without vegetation to 61.2±4.9 μmol g−1 hr−1 (μmol of p-nitrophenol released per gram of dry sediment per hour) in intertidal sediments colonized by emergent macrophytes, while alkaline phosphatase activity increased from 2.1±0.1 to 19.01±1.5 μmol g−1 hr−1. Phosphodiesterase activity increased from 1.8±0.1 to 20.2±2.0 μmol g−1 hr−1 along the same gradient. Acid phosphatase activity was highly correlated (R2=0.92, P<0.001) with the organic matter content of the sediment. A study of phosphatase kinetics showed that Vmax of all phosphatases also increased along the successional gradient. Trends in phosphatase activity and Vmax correlated positively with plant biomass and negatively with concentrations of soluble reactive phosphorus in porewater, sediment extractable phosphorus, and total phosphourus. The porewater N∶P atom ratio decreased along the succession gradient from 25.3 in an early stage, open water community to 13.0 in a community dominated by emergent vegetation. The data also show that the distribution of the forms of phosphorus changed with successional stage. The change in distribution and the increased biological demand for phosphorus that paralleled succession were mediated by the activity of phosphatase enzymes.  相似文献   

5.
This paper addresses temporal variability in bottom hypoxia in broad shallow areas of Mobile Bay, Alabama. Time-series data collected in the summer of 2004 from one station (mean depth of 4 m) exhibit bottom dissolved oxygen (DO) variations associated with various time scales of hours to days. Despite a large velocity shear, stratification was strong enough to suppress vertical mixing most of the time. Bottom DO was closely related to the vertical salinity gradient (ΔS). Hypoxia seldom occurred when ΔS (over 2.5 m) was <2 psu and occurred almost all the time when ΔS was >8 psu in the absence of extreme events like hurricanes. Oxygen balance between vertical mixing and total oxygen demand was considered for bottom water from which oxygen demand and diffusive oxygen flux were estimated. The estimated decay rates at 20°C ranging between 0.175–0.322 d−1 and the corresponding oxygen consumption as large as 7.4 g O2 m−2 d−1 fall at the upper limit of previously reported ranges. The diffusive oxygen flux and the corresponding vertical diffusivity estimated for well mixed conditions range between 8.6–9.5 g O2 m−2 d−1 and 2.6–2.9 m2 d−1, respectively. Mobile Bay hypoxia is likely to be associated with a large oxygen demand, supported by both water column and sediment oxygen demands, so that oxygen supply from surface water during destratification events would be quickly exhausted to return to hypoxic conditions within a few hours to days after destratification events are terminated.  相似文献   

6.
Sediment cores were sampled from Xiamen Western Bay at five sites during the summer and winter of 2006 and Hg–Au microelectrodes were used to make on board measurements of the concentration gradients of dissolved oxygen, Mn2+, and Fe2+ within the sediments. The O2 concentrations decreased sharply from about 200 μmol L−1 in the bottom seawater to zero within a depth of a few millimeters into the sediment. Dissolved Mn2+ was detected below the oxic zones with peak concentrations up to 600 μmol L−1, whereas dissolved Fe2+ had peak concentrations up to 1,000 μmol L−1 in deeper layers. The elemental contents of organic carbon and nitrogen within the sediments were analyzed and their C/N ratios were in the range of 9.0 to 10.1, indicative of heavy terrestrial origin. Sediments from two sites near municipal wastewater discharge outlets had higher organic contents than those from the other sites. These high organic contents corresponded to shallow O2 penetration depths, high dissolved Mn2+ and Fe2+ concentrations, and negative redox potentials within the sediments. This indicated that the high organic matter content had promoted microbial respiration within the sediments. Overall, the organic content did not show any appreciable decrease with increasing sediment depths, so a quadratic polynomial function was used to fit the curve of O2 profiles within the sediments. Based on the O2 profiles, O2 fluxes across the seawater and sediment interface were estimated to be in the range 6.07 to 14.9 mmol m−2 day−1, and organic carbon consumption rates within the surface sediments were estimated to be in the range 3.3 to 20.8 mgC cm−3 a−1. The case demonstrated that biogeochemistry within the sediments of the bay was very sensitive to human activities such as sewage discharge.  相似文献   

7.
In an annual cycle from March 2005 to February 2006, benthic nutrient fluxes were measured monthly in the Dongtan intertidal flat within the Changjiang (Yangtze River) Estuary. Except for NH4^+, there always showed high fluxes from overlying water into sediment for other four nutrients. Sediments in the high and middle marshes, covered with halophyte and consisting of macrofauna, demonstrated more capabilities of assimilating nutrients from overlying water than the low marsh. Sampling seasons and nutrient concentrations in the overlying water could both exert significant effects on these fluxes. Additionally, according to the model provided by previous study, denitrification rates, that utilizing NO3- transported from overlying water (Dw) in Dongtan sediments, were estimated to be from -16 to 193 μmol·h^-1·m^-2 with an average value of 63 μmol·h^-1·m^-2 (n=18). These estimated values are still underestimates of the in-situ rates owing to the lack of consideration of DN, i.e., denitrification supported by the local NO3^- production via nitrification.  相似文献   

8.
The applicability of the natural abundance of nitrogen gas isotope ratios was used to indicate the spatial distribution of nitrogen transformations in the water column and sediment pore waters of Lake Ngapouri, a small (area 0.19 km2), monomictic, eutrophic lake in the Taupo Volcanic Zone, North Island, New Zealand. Samples were collected from the epilimnion, hypolimnion, benthic boundary layer and at 5-cm intervals from the sediment pore waters at monthly intervals for 1 year. Values of δ15N [N2] ranged from −1 to 0.28‰ in the epilimnion, −1.5 to 1.25‰ in the hypolimnion, −1.8 to 12.2‰ in the benthic boundary layer and −0.7 to 3.5‰ in sediment pore waters. Values of δ15N [N2] showed a strong seasonal pattern that was related to the loss of dissolved oxygen in the hypolimnion during seasonal stratification. Increases in 15N-enriched dinitrogen take place in the benthic boundary layer during the periods of anoxia (taken to be dissolved oxygen concentrations <6.3 μM) and may be related to abundant ammonium substrate (up to 275 μM) to support denitrification. Nitrate concentrations increased up to 36 μM with increasing duration of anoxia. We hypothesise that an alternative electron acceptor besides oxygen is required to support the nitrification needed for the production of nitrate. Iron and manganese hydroxides and oxides from material sedimenting out of the water column may have induced chemo-nitrification sufficient to oxidise ammonium in the anoxic benthic boundary layer. The nitrate formed would mostly be rapidly denitrified so that the δ15N [N2] would continue to become enriched during the presence of anoxia, as observed in hypolimnion and benthic boundary layer of Lake Ngapouri. The changes in δ15N [N2] values indicate the potential use of isotope ratios to identify and quantify potential chemo-nitrification/denitrification in the water column and sediment pore waters of lakes.  相似文献   

9.
Denitrification rates along a salinity gradient in the eutrophic Neuse River Estuary, North Carolina, were quantified using membrane inlet mass spectrometry (MIMS) within short-term batch incubations. Denitrification rates within the system were highly variable, ranging from 0 to 275 μmol N m−2 h−1. Intrasite variability increased with salinity, but no significant differences were observed across the salinity gradient. Denitrification rates were positively correlated with sediment oxygen demand at the upstream sampling site where sediment organic carbon levels were lowest. This relationship was not observed in the more saline sampling sites. Denitrification rates were highest during winter. On an annual basis, denitrification accounted for 26% of the dissolved inorganic nitrogen and 12% of the total nitrogen supplied to the system.  相似文献   

10.
This study corroborates the hypothesis that nitrogen-fixing cyanobacteria have probably occurred as an important component of the phytoplankton community in the Baltic Sea at least since brackish water conditions were initiated 8,50014C yr BP. Pigment analyses indicate that extensive occurrences started prior to a sharp increase in nutrient levels dated to 7,10014C yr BP. The cyanobacteria could have functioned as a natural trigger for eutrophication in the Baltic Sea by importing nitrogen. This is also verified by a contemporaneous drop in the δ15N values from 4‰ to around 2‰. We further conclude that the spreading of cyanobacteria was probably caused by a decrease in nitrogen∶phosphorus (N∶P) in the water mass that resulted from the intrusion of oceanic water with high P levels. The fractionation of P in sediments indicated that iron-bound P was efficiently sequestered under anoxic conditions that occurred as a consequence of the establishment of a stable stratification caused by the marine intrusion. This pool only showed minor variations around 3 μmol g−1 at the freshwater-brackish water transition. All P pools except the CaCO3 fraction showed a distinct increase around 9,30014C yr BP prior to the transition. We interpreted this increase as a change in preservation of organic matter or in the source of the sediment. Slightly after 4,00014C yr BP there was a dramatic drop in all P pools without any corresponding decreases in total N and carbon. Total P decreased from around 75 to 25–30 μmol g−1. The most dramatic drop occurred in the organic bound and the detrital apatite fractions, which decreased by a factor of 3–4. We explain this as a preferential regeneration of P, especially organic P, compared to other nutrients due to more prevalent anoxic conditions.  相似文献   

11.
Analysis of 3-m sediment cores revealed that profiles of carbon (C), sulfur (S), and iron (Fe) varied with relative distance from marine and terrestrial sediment sources in Tomales Bay California. Despite relatively high sedimentation rates throughout the bay (historically 3–30 mm yr−1), sulfate reduction of deposited organic matter led to free-sulfide accumulation in sediments only at the location farthest from terrestrial runoff, the source of reactive iron. Acid-volatile sulfide concentrations in all sediments (<10 μmol g−1) were low relative to concentrations of chromiumreducible sulfide (up to 400 μmol g−1 farthest from the reactive iron source). A calculated index of iron availability, used to describe sediment resistance to build-up of free sulfide, was lowest at this location. Recent, upward shifts in reactive Fe concentration and in the relative contribution of terrestrial orgnic carbon (measured as a shift in δ13C of bulk sediment organic matter) in all cores indicated that erosion and transport of sediments from the watershed surrounding Tomales Bay increased after European settlement in the 1850s.  相似文献   

12.
Quarterly field sampling was conducted to characterize variations in water column and sediment nutrients in a eutrophic southern California estuary with a history of frequent macroalgal blooms. Water column and sediment nutrient measures demonstrated that Upper Newport Bay (UNB) is a highly enriched estuary. High nitrate (NO3 ) loads from the river entered the estuary at all sampling times with a rainy season (winter) maximum estimated at 2,419 mol h−1. This resulted in water NO3 concentration in the estuary near the river mouth at least one order of magnitude above all other sampling locations during every seasons; maximum mean water NO3 concentration was 800 μM during springer 1997. Phosphorus (P)-loading was high year round (5.7–90.4 mol h−1) with no seasonal pattern. Sediment nitrogen (N)-content showed a seasonal pattern with a spring maximum declining through fall. sediment and water nutrients, as well as percent cover of three dominant macroalgae, varied between the main channel and tidal creeks. During all seasons, water column NO3 concentrations were higher in the main channel than in tidal creeks while tidal creeks had higher levels of sediment total Kjeldhal nitrogen (TKN) and P. During each of the four sampling periods, percent cover ofEntermorpha intestinalis andCeramium spp. was higher in tidal creeks than in the main channel, while percent cover ofUlva expansa was always higher in the main channel. Decreases in sediment N in both creek and channel habitats were concurrent with increases in macroalgal cover, possibly reflecting use of stored sediment TKN by macroalgae. Our data suggest a shift in primary nutrient sources for macroalgae in UNB from riverine input during winter and spring to recycling from sediments duirng summer and fall.  相似文献   

13.
We used enclosures to quantify wetland-water column nutrient exchanges in a dwarf red mangrove, (Rhizophora mangle L.) system near Taylor River, an important hydraulic linkage between the southern Everglades and eastern Florida Bay, Florida, USA. Circular enclosures were constructed around small (2.5–4 m diam) mangrove islands (n=3) and sampled quarterly from August 1996 to May 1998 to quantify net exchanges of carbon, nitrogen, and phosphorus. The dwarf mangrove wetland was a net nitrifying environment with consistent uptake of ammonium (6.6–31.4 μmol m−2 h−1) and release of nitrite +nitrate (7.1–139.5 μmol m−2 h−1) to the water column. Significant flux of soluble reactive phosphorus was rarely detected in this nutrient-poor, P-limited environment. We did observe recurrent uptake of total phosphorus and nitrogen (2.1–8.3 and 98–502 μmol m−2 h−1, respectively), as well as dissolved organic carbon (1.8–6.9 μmol m−2 h−1) from the water column. Total organic carbon flux shifted unexplainably from uptake, during Year 1, to export, during Year 2. The use of unvegetated (control) enclosures during the second year allowed us to distinguish the influence of mangrove vegetation from soil-water column processes on these fluxes. Nutrient fluxes in control chambers typically paralleled the direction (uptake or release) of mangrove enclosure fluxes, but not the magnitude. In several instances, nutrient fluxes were more than twofold greater in the absence of mangroves, suggesting an influence of the vegetation on wetland-water column processes. Our findings characterize wetland nutrient exchanges, in a mangrove forest type that has received such little attention in the past, and serve as baseline data for a system undergoing hydrologic restoration.  相似文献   

14.
Benthic respiration, sediment–water nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in the upper section of the Parker River Estuary from 1993 to 2006. This site experiences large changes in salinity over both short and long time scales. Sediment respiration ranged from 6 to 52 mmol m−2 day−1 and was largely controlled by temperature. Nutrient fluxes were dominated by ammonium fluxes, which ranged from a small uptake of −0.3 to an efflux of over 8.2 mmol N m−2 day−1. Ammonium fluxes were most highly correlated with salinity and laboratory experiments demonstrated that ammonium fluxes increased when salinity increased. The seasonal pattern of DNRA closely followed salinity. DNRA rates were extremely low in March, less than 0.1 mmol m−2 day−1, but increased to 2.0 mmol m−2 day−1 in August. In contrast, denitrification rates were inversely related to salinity, ranging from 1 mmol m−2 day−1 during the spring and fall to less than 0.2 mmol m−2 day−1 in late summer. Salinity appears to exert a major control on the nitrogen cycle at this site, and partially decouples sediment ammonium fluxes from organic matter decomposition.  相似文献   

15.
The purpose of this field study was to determine the relationship between environmental conditions, particularly high nitrate (NO 3 ), low salinity events, and both nitrogen (N) storage (NO 3 , ammonium [NH 4 + ], free amino acids [FAA], protein, and total N) and nitrate reductase (NR) activity in the macroalgaeEnteromorpha lingulata andGelidium pusillum in the lower Mobile Bay estuary (Alabama, USA). The environmental conditions at the collection site varied over the growing season with the most notable changes due to late winter and spring runoff entering the estuary (1–30 psu, 0.3–25.8 μM NO 3 , 0.9–12.5 μM NH 4 + , 3–28°C, 61–2,375 μmol PAR m−2 s−1). Principal component analysis reduced the six environmental variables measured to three principal components. Stepwise, multiple regression analysis was then used to examine the relationship between the principal components and the internal NO 3 , NH 4 + , and FAA pools and NR activity. The results indicate that changes in inorganic N availability and salinity rather than changes in irradiance determine patterns of N storage and NO 3 reduction. BothE. lingulata andG. pusillum are capable of taking up and storing NO 3 when it becomes available. Greater NO 3 availability produced larger NH 4 + and FAA pools along with higher rates of NR activity inE. lingulata, but notG. pusillum, suggesting thatE. lingulata is able to metabolize NO 3 more rapidly during high NO 3 , low salinity events. Differences in the susceptibility ofE. lingulata andG. pusillum to NH 4 + inhibition and salinity stress combined with their different growth strategies help to explain the seasonal trends in total N. Total N inE. lingulata ranged from 2.57% to 6.39% dw, while the slower growingG. pusillum showed no significant variation in total N content (3.8–4.1% dw). These results led to the conclusion thatE. lingulata responds more quickly thanG. pusillum to high NO 3 , low salinity events and that these events have a larger effect on the overall N content ofE. lingulata.  相似文献   

16.
The Nauset Marsh estuary is the most extensive (9.45 km2) and least disturbed salt marsh/estuarine system within the Cape Cod National Seashore, even though much of the 19 km2 watershed area of the estuary is developed for residential or commercial purposes. Because all of the Nauset watershed is serviced by on-site individual sewage disposal systems, there is concern over the potential impact of groundwater-derived nutrients passing from these systems to the shallow receiving waters of the estuary. The purpose of this study was to determine whether denitrification (the bacterial conversion of nitrate to gaseous nitrogen) in estuarine sediments could effectively remove the nitrate from contaminated groundwater before it passed from the watershed to the estuary. Rates of denitrification were measured both in situ and in sediment cores, in areas of active groundwater discharge, in relatively pristine locations, and in areas situated down-gradient of moderate to heavily developed regions of the watershed. Denitrification rates for 47 sediment cores taken over an annual cycle at 5 stations ranged from non-detectable to 47 μmol N2 m−2 h. Mean denitrification rates were positively correlated with sediment organic content, and varied seasonally due to changes in sediment organic content and to the effect of water temperatures on sediment oxygen penetration depths. There was no correlation between observed denitrification rates and corresponding nitrate concentrations in groundwater. A comparison of in situ denitrification rates (supported by groundwater nitrate) with denitrification rates observed in sediment cores (supported by remineralized nitrate) showed that groundwater-driven denitrification rates were small, and not in excess of denitrification rates supported by remineralized nitrate. Most of the denitrification in Nauset sediments was apparently fueled by remineralized nitrate through coupled nitrification/denitrification. Denitrification did not contribute significantly to the direct loss of nitrate from incoming groundwater at Nauset Marsh estuary. Groundwater flow was rapid, and much of it occurred in freshwater springs and seeps through very coarse, sandy, well-oxygenated sediments of limited organic content. There was little opportunity for denitrification to occur during groundwater passage through these sediments. These results have important management implications because they suggest that the majority of nitrogen from contaminated groundwater crosses the sediment/water interface and arrives at Nauset Estuary, where it is available to primary producers. Preliminary budget calculations suggest that while denitrification was not an effective mechanism for the direct removal of nitrate in contaminated groundwater flowing to Nauset Marsh estuary, it may contribute to significant nitrogen losses from the estuary itself.  相似文献   

17.
Deep Bay is a semienclosed bay that receives sewage from Shenzhen, a fast-growing city in China. NH4 is the main N component of the sewage (>50% of total N) in the inner bay, and a twofold increase in NH4 and PO4 concentrations is attributed to increased sewage loading over the 21-year period (1986–2006). During this time series, the maximum annual average NH4 and PO4 concentrations exceeded 500 and 39 μM, respectively. The inner bay (Stns DM1 and DM2) has a long residence time and very high nutrient loads and yet much lower phytoplankton biomass (chlorophyll (Chl) <10 μg L−1 except for Jan, July, and Aug) and few severe long-term hypoxic events (dissolved oxygen (DO) generally >2 mg L−1) than expected. Because it is shallow (~2 m), phytoplankton growth is likely limited by light due to mixing and suspended sediments, as well as by ammonium toxicity, and biomass accumulation is reduced by grazing, which may reduce the occurrence of hypoxia. Since nutrients were not limiting in the inner bay, the significant long-term increase in Chl a (0.52–0.57 μg L−1 year−1) was attributed to climatic effects in which the significant increase in rainfall (11 mm year−1) decreased salinity, increased stratification, and improved water stability. The outer bay (DM3 to DM5) has a high flushing rate (0.2 day−1), is deeper (3 to 5 m), and has summer stratification, yet there are few large algal blooms and hypoxic events since dilution by the Pearl River discharge in summer, and the invasion of coastal water in winter is likely greater than the phytoplankton growth rate. A significant long-term increase in NO3 (0.45–0.94 μM year−1) occurred in the outer bay, but no increasing trend was observed for SiO4 or PO4, and these long-term trends in NO3, PO4, and SiO4 in the outer bay agreed with those long-term trends in the Pearl River discharge. Dissolved inorganic nitrogen (DIN) has approximately doubled from 35–62 to 68–107 μM in the outer bay during the last two decades, and consequently DIN to PO4 molar ratios have also increased over twofold since there was no change in PO4. The rapid increase in salinity and DO and the decrease in nutrients and suspended solids from the inner to the outer bay suggest that the sewage effluent from the inner bay is rapidly diluted and appears to have a limited effect on the phytoplankton of the adjacent waters beyond Deep Bay. Therefore, physical processes play a key role in reducing the risk of algal blooms and hypoxic events in Deep Bay.  相似文献   

18.
We measured fluxes of NH4+ and NO3 and δ15N of NH4+, sediment, and porewater NH4+ from incubated sediment cores along a nitrate gradient and in different seasons from Childs River, MA. NH4+ flux was low at the downstream site with the lowest concentration of organic matter (high salinity) but otherwise did not differ along the estuary. The δ15N of regenerated NH4+ ranged from +6.1‰ to +15.3‰ but did not vary significantly with season or salinity; the mean for the entire estuary was +10.4 ± 0.5‰. Based on differences between the δ15N of regenerated NH4+ and sediment, and expected isotopic fractionation due to remineralization, we concluded that nitrification occurred after remineralization of NH4+. Differences between the δ15N of regenerated NH4+ and the δ15N of porewater NH4+ provided further evidence of nitrification. We estimated that 11% to 48% of remineralized NH4+ underwent coupled nitrification–denitrification before release into the water column. In spite of losses to denitrification, NH4+ flux released 1.4 mol N m−2 year−1 to the water column and could provide 42% of phytoplankton nitrogen requirements.  相似文献   

19.
Sediment denitrification is a microbial process that converts dissolved inorganic nitrogen in sediment porewaters to N2 gas, which is subsequently lost to the atmosphere. In coastal waters, it represents a potentially important loss pathway for fixed nitrogen which might otherwise be available to primary producers. Currently, data are lacking to adequately assess the role of denitrification in reducing or remediating the effects of large anthropogenic nitrogen loads to the coastal zone. This study describes the results of 88 individual measurements of denitrification (as a direct flux of N2 gas) in sediment cores taken over a 3-yr period (1991–1994) from six stations in Boston Harbor, nine stations in Massachusetts Bay, and two stations in Cape Cod Bay. The dataset is unique in its extensive spatial and temporal coverage and includes the first direct measurements of denitrification for North Atlantic shelf sediments. Results showed that rates of denitrification were significantly higher in Boston Harbor (mean=54, range<5–206 μmol N2 m?2 h?1) than in Massachusetts Bay (mean=23, range<5–64 μmol N2 m?2 h?1). Highest rates occurred in areas with organic-rich sediments in the harbor, with slower rates observed for low-organic sandy sediments in the harbor and at shallow shelf stations in the bay. Lowest rates were found at the deepest shelf stations, located in Stellwagen Basin in Massachusetts Bay. Observed rates were correlated with temperature, sediment carbon content, and benthic macrofaunal activity. Seasonally, highest denitrification rates occurred in the summer in Boston Harbor and in the spring and fall in Massachusetts Bay, coincident with peak phytoplankton blooms in the overlying water column. Despite the fact that sediment denitrification rates were high relative to rates reported for other East Coast estuaries, denitrification losses accounted for only 8% of the annual total nitrogen load to Boston Harbor, a consequence perhaps, of the short water-residence times (2–10 d) of the harbor.  相似文献   

20.
Sulfate reduction rates were measured over the course of a year in the sediments of aJuncus roemerianus marsh located in coastal Alabama. Sulfate reduction rates were typically highest in the surface 0–2 cm and at depths corresponding to peak belowground biomass of the plants. The highest volume-based sulfate reduction rate measured was 1,350 μmol liter-sediment−1 d−1 in September 1995. Areal sulfate reduction rates (integrated to 20 cm depth) were strongly correlated to sediment temperature and varied seasonally from 15.2 mmol SO 4 2− m−2 d−1 in January 1995 to 117 mmol SO 4 2− m−2 d−1 in late August 1995. Despite high sulfate reduction rates porewater dissolved sulfide concentrations were low (<73 μM), indicating rapid sulfide oxidation or precipitation. Sulfate depletion data indicated that net oxidation of sediment sulfides occurred in March through May, following a period of infrequent tidal flooding and during a period of high plant production. Porewater Fe(II) reached very high levels (maximum of 969 μM; mean for all dates was 160 μM), particularly during periods of high sulfate reduction. The annual sulfate reduction rate integrated over the upper 20 cm of sediment was 22.0 mol SO 4 2− m−2 yr−1, which is among the highest rates measured in a wetland ecosystem. Based on literature values of net primary production inJ. roemerianus marshes, we estimate that an amount equivalent to 16% to 90% of the annual belowground production may be remineralized through sulfate reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号