首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Europe has warmed more than the global average (land and ocean) since pre-industrial times, and is also projected to continue to warm faster than the global average in the twenty-first century. According to the climate models ensemble projections for various climate scenarios, annual mean temperature of Europe for 2071–2100 is predicted to be 1–5.5 °C higher than that for 1971–2000. Climate change and elevated CO2 concentration are anticipated to affect grassland management and livestock production in Europe. However, there has been little work done to quantify the European-wide response of grassland to future climate change. Here we applied ORCHIDEE-GM v2.2, a grid-based model for managed grassland, over European grassland to estimate the impacts of future global change.

Results

Increases in grassland productivity are simulated in response to future global change, which are mainly attributed to the simulated fertilization effect of rising CO2. The results show significant phenology shifts, in particular an earlier winter-spring onset of grass growth over Europe. A longer growing season is projected over southern and southeastern Europe. In other regions, summer drought causes an earlier end to the growing season, overall reducing growing season length. Future global change allows an increase of management intensity with higher than current potential annual grass forage yield, grazing capacity and livestock density, and a shift in seasonal grazing capacity. We found a continual grassland soil carbon sink in Mediterranean, Alpine, North eastern, South eastern and Eastern regions under specific warming level (SWL) of 1.5 and 2 °C relative to pre-industrial climate. However, this carbon sink is found to saturate, and gradually turn to a carbon source at warming level reaching 3.5 °C.

Conclusions

This study provides a European-wide assessment of the future changes in productivity and phenology of grassland, and their consequences for the management intensity and the carbon balance. The simulated productivity increase in response to future global change enables an intensification of grassland management over Europe. However, the simulated increase in the interannual variability of grassland productivity over some regions may reduce the farmers’ ability to take advantage of the increased long-term mean productivity in the face of more frequent, and more severe drops of productivity in the future.
  相似文献   

2.

Background  

Under the United Nations convention on the law of the sea (1982), each participating country maintains exclusive economic and environmental rights within the oceanic region extending 200 nm from its coastline, known as the Exclusive Economic Zone (EEZ). Although the ocean within each EEZ has a vast capacity to absorb anthropogenic CO2 and therefore potentially be used as a carbon sink, it is not mentioned within the Kyoto Protocol most likely due to inadequate quantitative estimates. Here, I use two methods to estimate the anthropogenic CO2 storage and uptake for a typically large EEZ (Australia).  相似文献   

3.

Background

Coupled climate-carbon cycle simulations generally show that climate feedbacks amplify the buildup of CO2 under respective anthropogenic emission. The effect of climate-carbon cycle feedback is characterised by the feedback gain: the relative increase in CO2 increment as compared to uncoupled simulations. According to the results of the recent Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP), the gain is expected to increase during the 21st century. This conclusion is not supported by the climate model developed at the A.M. Obukhov Institute of Atmospheric Physics at the Russian Academy of Sciences (IAP RAS CM). The latter model shows an eventual transient saturation of the feedback gain. This saturation is manifested in a change of climate-carbon cycle feedback gain which grows initially, attains a maximum, and then decreases, eventually tending to unity.

Results

Numerical experiments with the IAP RAS CM as well as an analysis of the conceptual framework demonstrate that this eventual transient saturation results from the fact that transient climate sensitivity decreases with time.

Conclusion

One may conclude that the eventual transient saturation of the climate-carbon cycle feedback is a fundamental property of the coupled climate-carbon system that manifests itself on a relevant time scale.  相似文献   

4.

Background

Unmanaged or old-growth forests are of paramount importance for carbon sequestration and thus for the mitigation of climate change among further implications, e.g. biodiversity aspects. Still, the importance of those forests for climate change mitigation compared to managed forests is under controversial debate. We evaluate the adequacy of referring to CO2 flux measurements alone and include external impacts on growth (nitrogen immissions, increasing temperatures, CO2 enrichment, changed precipitation patterns) for an evaluation of central European forests in this context.

Results

We deduce that the use of CO2 flux measurements alone does not allow conclusions on a superiority of unmanaged to managed forests for mitigation goals. This is based on the critical consideration of uncertainties and the application of system boundaries. Furthermore, the consideration of wood products for material and energetic substitution obviously overrules the mitigation potential of unmanaged forests. Moreover, impacts of nitrogen immissions, CO2 enrichment of the atmosphere, increasing temperatures and changed precipitation patterns obviously lead to a meaningful increase in growth, even in forests of higher age.

Conclusions

An impact of unmanaged forests on climate change mitigation cannot be valued by CO2 flux measurements alone. Further research is needed on cause and effect relationships between management practices and carbon stocks in different compartments of forest ecosystems in order to account for human-induced changes. Unexpected growth rates in old-growth forests ?C managed or not ?C can obviously be related to external impacts and additionally to management impacts. This should lead to the reconsideration of forest management strategies.  相似文献   

5.

Background

Forests and forest products can significantly contribute to climate change mitigation by stabilizing and even potentially decreasing the concentration of carbon dioxide (CO2) in the atmosphere. Harvested wood products (HWP) represent a common widespread and cost-efficient opportunity for negative emissions. After harvest, a significant fraction of the wood remains stored in HWPs for a period that can vary from some months to many decades, whereas atmospheric carbon (C) is immediately sequestered by vegetation re-growth. This temporal mismatch between oxidation of HWPs and C uptake by vegetation generates a net sink that lasts over time. The role of temporary carbon storage in forest products has been analysed and debated in the scientific literature, but detailed bottom-up studies mapping the fate of harvested materials and quantifying the associated emission profiles at national scales are rare. In this work, we quantify the net CO2 emissions and the temporary carbon storage in forest products in Norway, Sweden and Finland for the period 1960–2015, and investigate their correlation. We use a Chi square probability distribution to model the oxidation rate of C over time in HWPs, taking into consideration specific half-lives of each category of products. We model the forest regrowth and estimate the time-distributed C removal. We also integrate the specific HWP flows with an emission inventory database to quantify the associated life-cycle emissions of fossil CO2, CH4 and N2O.

Results

We find that assuming an instantaneous oxidation of HWPs would overestimate emissions of about 1.18 billion t CO2 (cumulative values for the three countries over the period 1960–2015).We also find that about 40 years after 1960, the starting year of our analysis, are sufficient to detect signs of negative emissions. The total amount of net CO2 emissions achieved in 2015 are about ??3.8 million t CO2, ??27.9 t CO2 and ??43.6 t CO2 in Norway, Sweden, and Finland, respectively.

Conclusion

We argue for a more explicit accounting of the actual emission rates from HWPs in carbon balance studies and climate impact analysis of forestry systems and products, and a more transparent inclusion of the potential of HWP as negative emissions in perspective studies and scenarios. Simply assuming that all harvested carbon is instantaneously oxidized can lead to large biases and ultimately overlook the benefits of negative emissions of HWPs.
  相似文献   

6.

Background

Carbon plantations are introduced in climate change policy as an option to slow the build-up of atmospheric carbon dioxide (CO2) concentrations. Here we present a methodology to evaluate the potential effectiveness of carbon plantations. The methodology explicitly considers future long-term land-use change around the world and all relevant carbon (C) fluxes, including all natural fluxes. Both issues have generally been ignored in earlier studies.

Results

Two different baseline scenarios up to 2100 indicate that uncertainties in future land-use change lead to a near 100% difference in estimates of carbon sequestration potentials. Moreover, social, economic and institutional barriers preventing carbon plantations in natural vegetation areas decrease the physical potential by 75–80% or more. Nevertheless, carbon plantations can still considerably contribute to slowing the increase in the atmospheric CO2 concentration but only in the long term. The most conservative set of assumptions lowers the increase of the atmospheric CO2 concentration in 2100 by a 27 ppm and compensates for 5–7% of the total energy-related CO2 emissions. The net sequestration up to 2020 is limited, given the short-term increased need for agricultural land in most regions and the long period needed to compensate for emissions through the establishment of the plantations. The potential is highest in the tropics, despite projections that most of the agricultural expansion will be in these regions. Plantations in high latitudes as Northern Europe and Northern Russia should only be established if the objective to sequester carbon is combined with other activities.

Conclusion

Carbon sequestration in plantations can play an important role in mitigating the build-up of atmospheric CO2. The actual magnitude depends on natural and management factors, social barriers, and the time frame considered. In addition, there are a number of ancillary benefits for local communities and the environment. Carbon plantations are, however, particularly effective in the long term. Furthermore, plantations do not offer the ultimate solution towards stabilizing CO2 concentrations but should be part of a broader package of options with clear energy emission reduction measures.  相似文献   

7.

Background

Forest landscape restoration (FLR) has been adopted by governments and practitioners across the globe to mitigate and adapt to climate change and restore ecological functions across degraded landscapes. However, the extent to which these activities capture CO2 with associated climate mitigation impacts are poorly known, especially in geographies where data on biomass growth of restored forests are limited or do not exist. To fill this gap, we developed biomass accumulation rates for a set of FLR activities (natural regeneration, planted forests and woodlots, agroforestry, and mangrove restoration) across the globe and global CO2 removal rates with corresponding confidence intervals, grouped by FLR activity and region/climate.

Results

Planted forests and woodlots were found to have the highest CO2 removal rates, ranging from 4.5 to 40.7 t CO2 ha?1 year?1 during the first 20 years of growth. Mangrove tree restoration was the second most efficient FLR at removing CO2, with growth rates up to 23.1 t CO2 ha?1 year?1 the first 20 years post restoration. Natural regeneration removal rates were 9.1–18.8 t CO2 ha?1 year?1 during the first 20 years of forest regeneration, followed by agroforestry, the FLR category with the lowest and regionally broad removal rates (10.8–15.6 t CO2 ha?1 year?1). Biomass growth data was most abundant and widely distributed across the world for planted forests and natural regeneration, representing 45% and 32% of all the data points assessed, respectively. Agroforestry studies, were only found in Africa, Asia, and the Latin America and Caribbean regions.

Conclusion

This study represents the most comprehensive review of published literature on tree growth and CO2 removals to date, which we operationalized by constructing removal rates for specific FLR activities across the globe. These rates can easily be applied by practitioners and decision-makers seeking to better understand the positive climate mitigation impacts of existing or planned FLR actions, or by countries making restoration pledges under the Bonn Challenge Commitments or fulfilling Nationally Determined Contributions to the UNFCCC, thereby helping boost FLR efforts world-wide.
  相似文献   

8.

Background  

Global forests capture and store significant amounts of CO2 through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood products (HWP) to meet greenhouse gas monitoring commitments and climate change adaptation and mitigation objectives. This paper uses the Intergovernmental Panel on Climate Change (IPCC) production accounting approach and the California Forest Project Protocol (CFPP) to estimate HWP carbon storage from 1906 to 2010 for the USFS Northern Region, which includes forests in northern Idaho, Montana, South Dakota, and eastern Washington.  相似文献   

9.

Background

The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO2 growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical model of the terrestrial biosphere to differentiate the effects of temperature and precipitation on net primary production (NPP) and heterotrophic respiration (Rh) during the two largest anomalies in atmospheric CO2 increase during the last 25 years. One of these, the smallest atmospheric year-to-year increase (largest land carbon uptake) in that period, was caused by global cooling in 1992/93 after the Pinatubo volcanic eruption. The other, the largest atmospheric increase on record (largest land carbon release), was caused by the strong El Niño event of 1997/98.

Results

We find that the LPJ model correctly simulates the magnitude of terrestrial modulation of atmospheric carbon anomalies for these two extreme disturbances. The response of soil respiration to changes in temperature and precipitation explains most of the modelled anomalous CO2 flux.

Conclusion

Observed and modelled NEE anomalies are in good agreement, therefore we suggest that the temporal variability of heterotrophic respiration produced by our model is reasonably realistic. We therefore conclude that during the last 25 years the two largest disturbances of the global carbon cycle were strongly controlled by soil processes rather then the response of vegetation to these large-scale climatic events.  相似文献   

10.

Background  

Fires emit significant amounts of CO2 to the atmosphere. These emissions, however, are highly variable in both space and time. Additionally, CO2 emissions estimates from fires are very uncertain. The combination of high spatial and temporal variability and substantial uncertainty associated with fire CO2 emissions can be problematic to efforts to develop remote sensing, monitoring, and inverse modeling techniques to quantify carbon fluxes at the continental scale. Policy and carbon management decisions based on atmospheric sampling/modeling techniques must account for the impact of fire CO2 emissions; a task that may prove very difficult for the foreseeable future. This paper addresses the variability of CO2 emissions from fires across the US, how these emissions compare to anthropogenic emissions of CO2 and Net Primary Productivity, and the potential implications for monitoring programs and policy development.  相似文献   

11.
Terrestrial ecosystems play a significant role in global carbon and water cycles because of the substantial amount of carbon assimilated through net primary production and large amount of water loss through evapotranspiration (ET). Using a process-based ecosystem model, we investigate the potential effects of climate change and rising atmospheric CO2 concentration on global terrestrial ecosystem water use efficiency (WUE) during the twenty-first century. Future climate change would reduce global WUE by 16.3% under high-emission climate change scenario (A2) and 2.2% under low-emission climate scenario (B1) during 2010–2099. However, the combination of rising atmospheric CO2 concentration and climate change would increase global WUE by 7.9% and 9.4% under A2 and B1 climate scenarios, respectively. This suggests that rising atmospheric CO2 concentration could ameliorate climate change-induced WUE decline. Future WUE would increase significantly at the high-latitude regions but decrease at the low-latitude regions under combined changes in climate and atmospheric CO2. The largest increase of WUE would occur in tundra and boreal needleleaf deciduous forest under the combined A2 climate and atmospheric CO2 scenario. More accurate prediction of WUE requires deeper understanding on the responses of ET to rising atmospheric CO2 concentrations and its interactions with climate.  相似文献   

12.

Background  

Soil organic carbon (SOC) represents a significant pool of carbon within the biosphere. Climatic shifts in temperature and precipitation have a major influence on the decomposition and amount of SOC stored within an ecosystem and that released into the atmosphere. We have linked net primary production (NPP) algorithms, which include the impact of enhanced atmospheric CO2 on plant growth, to the SOCRATES terrestrial carbon model to estimate changes in SOC for the Australia continent between the years 1990 and 2100 in response to climate changes generated by the CSIRO Mark 2 Global Circulation Model (GCM).  相似文献   

13.

Background

Peatlands are an important component of Canada’s landscape, however there is little information on their national-scale net emissions of carbon dioxide [Net Ecosystem Exchange (NEE)] and methane (CH4). This study compiled results for peatland NEE and CH4 emissions from chamber and eddy covariance studies across Canada. The data were summarized by bog, poor fen and rich-intermediate fen categories for the seven major peatland containing terrestrial ecozones (Atlantic Maritime, Mixedwood Plains, Boreal Shield, Boreal Plains, Hudson Plains, Taiga Shield, Taiga Plains) that comprise >?96% of all peatlands nationally. Reports of multiple years of data from a single site were averaged and different microforms (e.g., hummock or hollow) within these peatland types were kept separate. A new peatlands map was created from forest composition and structure information that distinguishes bog from rich and poor fen. National Forest Inventory k-NN forest structure maps, bioclimatic variables (mean diurnal range and seasonality of temperatures) and ground surface slope were used to construct the new map. The Earth Observation for Sustainable Development map of wetlands was used to identify open peatlands with minor tree cover.

Results

The new map was combined with averages of observed NEE and CH4 emissions to estimate a growing season integrated NEE (±?SE) at ??108.8 (±?41.3) Mt CO2 season?1 and CH4 emission at 4.1 (±?1.5) Mt CH4 season?1 for the seven ecozones. Converting CH4 to CO2 equivalent (CO2e; Global Warming Potential of 25 over 100 years) resulted in a total net sink of ??7.0 (±?77.6) Mt CO2e season?1 for Canada. Boreal Plains peatlands contributed most to the NEE sink due to high CO2 uptake rates and large peatland areas, while Boreal Shield peatlands contributed most to CH4 emissions due to moderate emission rates and large peatland areas. Assuming a winter CO2 emission of 0.9 g CO2 m?2 day?1 creates an annual CO2 source (24.2 Mt CO2 year?1) and assuming a winter CH4 emission of 7 mg CH4 m?2 day?1 inflates the total net source to 151.8 Mt CO2e year?1.

Conclusions

This analysis improves upon previous basic, aspatial estimates and discusses the potential sources of the high uncertainty in spatially integrated fluxes, indicating a need for continued monitoring and refined maps of peatland distribution for national carbon and greenhouse gas flux estimation.
  相似文献   

14.

Background  

Wildfires are an increasingly important component of the forces that drive the global carbon (C) cycle and climate change as progressive warming is expected in boreal areas. This study estimated C emissions from the wildfires across the Alaskan Yukon River Basin in 2004. We spatially related the firescars to land cover types and defined the C fractions of aboveground biomass and the ground layer (referring to the top 15 cm organic soil layer only in this paper) consumed in association with land cover types, soil drainage classes, and the C stocks in the ground layer.  相似文献   

15.

Background  

Architectural methods that take into account global environmental conservation generally concentrate on mitigating the heat load of buildings. Here, we evaluate the reduction of carbon dioxide (CO2) emissions that can be achieved by improving heating, ventilating, and air conditioning (HVAC) technologies.  相似文献   

16.
Global warming associated with climate change is one of the greatest challenges of today’s world. Increasing emissions of the greenhouse gas CO2 are considered as a major contributing factor to global warming. One regulating factor of CO2 exchange between atmosphere and land surface is vegetation. Measurements of land cover changes in combination with modelling the Gross Primary Productivity (GPP) can contribute to determine important sources and sinks of CO2.The aim of this study is to accurately model the GPP for a region in West Africa with a spatial resolution of 250 m, and the differentiation of GPP based on woody and herbaceous vegetation. For this purpose, the Regional Biomass Model (RBM) was applied, which is based on a Light Use Efficiency (LUE) approach. The focus was on the spatial enhancement of the RBM from the original 1000–250 m spatial resolution (RBM+). The adaptation to the 250 m scale included the modification of two main input parameters: (1) the fraction of absorbed Photosynthetically Active Radiation (FPAR) based on the 1000 m MODIS MOD15A2 FPAR product which was downscaled to 250 m using MODIS NDVI time series; (2) the fractional cover of woody and herbaceous vegetation, which was improved by using a multi-scale approach. For validation and regional adjustments of GPP and the input parameters, in situ data from a climate station and eddy covariance measurements were integrated.The results of this approach show that the input parameters could be improved significantly: downscaling considerably reduces data gaps of the original FPAR product and the improved dataset differed less than 5.0% from the original data for cloud free regions. The RMSE of the fractional vegetation cover varied between 5.1 and 12.7%. Modelled GPP showed a slight overestimation in comparison to eddy covariance measurements. The in situ data was exceeded by 8.8% for 2005 and by 2.0% for 2006. The model results were converted to NPP and also agreed well with previous NPP measurements reported from different studies. Altogether a high accuracy and suitability of the regionally adjusted and downscaled model RBM+ can be concluded. The differentiation between vegetation growth forms allows a separation of long-term and short-term carbon storage based on woody and herbaceous vegetation, respectively.  相似文献   

17.

Background  

The repeated freeze-thaw events during cold season, freezing of soils in autumn and thawing in spring are typical for the tundra, boreal, and temperate soils. The thawing of soils during winter-summer transitions induces the release of decomposable organic carbon and acceleration of soil respiration. The winter-spring fluxes of CO2 from permanently and seasonally frozen soils are essential part of annual carbon budget varying from 5 to 50%. The mechanisms of the freeze-thaw activation are not absolutely clear and need clarifying. We investigated the effect of repeated freezing-thawing events on CO2 emission from intact arable and forest soils (Luvisols, loamy silt; Central Germany) at different moisture (65% and 100% of WHC).  相似文献   

18.

Background  

The amount of reactive nitrogen deposited on land has doubled globally and become at least five-times higher in Europe, Eastern United States, and South East Asia since 1860 mostly because of increases in fertilizer production and fossil fuel burning. Because vegetation growth in the Northern Hemisphere is typically nitrogen-limited, increased nitrogen deposition could have an attenuating effect on rising atmospheric CO2 by stimulating the vegetation productivity and accumulation of carbon in biomass.  相似文献   

19.

Background  

Following recent discussions, there is hope that a mechanism for reduction of emissions from deforestation and forest degradation (REDD) will be agreed by the Parties of the UNFCCC at their 15th meeting in Copenhagen in 2009 as an eligible action to prevent climate changes and global warming in post-2012 commitment periods. Countries introducing a REDD-regime in order to generate benefits need to implement sound monitoring and reporting systems and specify the associated uncertainties. The principle of conservativeness addresses the problem of estimation errors and requests the reporting of reliable minimum estimates (RME). Here the potential to generate benefits from applying a REDD-regime is proposed with reference to sampling and non-sampling errors that influence the reliability of estimated activity data and emission factors.  相似文献   

20.
Climate change is associated with earth radiation budget that depends upon incoming solar radiation, surface albedo and radiative forcing by greenhouse gases. Human activities are contributing to climate change by causing changes in Earth’s atmosphere (greenhouse gases, aerosols) and biosphere (deforestation, urbanization, irrigation). Long term and precise measurements from calibrated global observation constellation is a vital component in climate system modelling. Space based records of biosphere, cryosphere, hydrosphere and atmosphere over more than three decades are providing important information on climate change. Space observations are an important source of climate variables due to multi scale simultaneous observation (local, regional, and global scales) capability with temporal revisit in tune with requirements of land, ocean and atmospheric processes. Essential climatic variables that can be measured from space include atmosphere (upper air temperature, water vapour, precipitation, clouds, aerosols, GHGs etc.), ocean (sea ice, sea level, SST, salinity, ocean colour etc.) and land (snow, glacier, albedo, biomass, LAI/fAPAR, soil moisture etc.). India’s Earth Observation Programme addresses various aspects of land, ocean and atmospheric applications. The present and planned missions such as Resourcesat-1, Oceansat-2, RISAT, Megha-Tropiques, INSAT-3D, SARAL, Resourcesat-2, Geo-HR Imager and series of Environmental satellites (I-STAG) would help in understanding the issues related to climate changes. The paper reviews observational needs, space observation systems and studies that have been carried out at ISRO (Indian Space Research Organization) towards mapping/detecting the indicators of climate change, monitoring the agents of climate change and understanding the impact of climate change, in national perspectives. Studies to assess glacier retreat, changes in polar ice cover, timberline change and coral bleaching are being carried out towards monitoring of climate change indicators. Spatial methane inventories from paddy rice, livestock and wetlands have been prepared and seasonal pattern of CO2, and CO have been analysed. Future challenges in space observations include design and placement of adequate and accurate multi-platform observational systems to monitor all parameters related to various interaction processes and generation of long term calibrated climate data records pertaining to land ocean and atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号