首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
海洋生态模型中的伴随同化方法   总被引:1,自引:0,他引:1  
伴随同化方法(简称“伴随法”)在1995年被首次应用于海洋生态模型,此后,它在海洋生态模型的研究中得到了广泛的应用.在本文中,作者详细阐述了海洋生态模型中伴随法的结构和特点,具体介绍了伴随法在海洋生态模型应用中的研究进展;并且以渤、黄海NPZD生态数值模式为例,展示了伴随法的优越性.  相似文献   

2.
Variations in the distribution of chemotaxonomic pigments were monitored in the Arabian Sea and the Gulf of Oman at the end of the SW monsoon in September 1994 and during the inter-monsoon period in November/December 1994 to determine the seasonal changes in phytoplankton composition. The Gulf of Oman was characterized by sub-surface chlorophyll maxima at 20-40 m during both seasons, and low levels of divinyl chlorophyll a indicated that prochlorophytes did not contribute significantly to the total chlorophyll a. Prymnesiophytes (19′-hexanoyloxyfucoxanthin), diatoms (fucoxanthin) and chlorophyll b containing organisms accounted for most of the phytoplankton biomass in September, while prymnesiophytes dominated in November/December. In the Arabian Sea in September, high total chlorophyll a concentrations up to 1742 ng l-1 were measured in the coastal upwelling region and a progressive decline was monitored along the 1670 km offshore transect to oligotrophic waters at 8°N. Divinyl chlorophyll a was not detected along this transect except at the two most southerly stations where prochlorophytes were estimated to contribute 25–30% to the total chlorophyll a. Inshore, the dominance of fucoxanthin and/or hexanoyloxyfucoxanthin indicated that diatoms and prymnesiophytes generally dominated the patchy phytoplankton community, with zeaxanthin-containing Synechococcus also being important, especially in surface waters. At the southern oligotrophic localities, Synechococcus and prochlorophytes dominated the upper 40 m and prymnesiophytes were the most prominent at the deep chlorophyll maximum. During the inter-monsoon season, total chlorophyll a concentrations were generally half those measured in September and highest levels were found on the shelf (1170 ng l-1). Divinyl chlorophyll a was detected at all stations along the Arabian Sea transect, and we estimated that prochlorophytes contributed between 3 and 28% to the total chlorophyll a, while at the two oligotrophic stations this proportion increased to 51–52%. While procaryotes were more important in November/December than September, eucaryotes still accounted for >50% of the total chlorophyll a. Pigment/total chlorophyll a ratios indicated that 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes were the dominant group, although procaryotes accounted for 65% at the two southerly oligotrophic stations.  相似文献   

3.
The high nutrient concentration associated with the mixing dynamics of two warm and cold water masses supports high primary production in the Yellow Sea. Although various environmental changes have been reported, no recent information on small phytoplankton contribution to the total primary production as an important indicator for marine ecosystem changes is currently available in the Yellow Sea. The major objective of this study is to determine the small (< 2 μm) phytoplankton contribution to the total primary production in the Yellow Sea during August, 2016. In this study, we found relatively lower chlorophyll a concentrations in the water column than those previously reported in the central waters of the Yellow Sea. Moreover, the overall contribution of small phytoplankton (53.1%) to the total chlorophyll a concentration was considerably higher in this study than that (10.7%) observed previously. Based on the N/P ratio (67.6 ± 36.6) observed in this study, which is significantly higher than the Redfield ratio (16), we believe that phytoplankton experienced P-limiting conditions during the study period. The average daily carbon uptake rate of total phytoplankton in this study was 291.1 mg C m-2 d-1 (± 165.0 mg C m-2 d-1) and the rate of small phytoplankton was 205.7 mg C m-2 d-1 (± 116.0 mg C m-2 d-1) which is 71.9% (± 8.8%) of the total daily carbon uptake rate. This contribution of small phytoplankton observed in this study appears to be higher than that reported previously. Our recent measured primary production is approximately 50% lower than the previous values decades ago. The higher contributions of small phytoplankton to the total chlorophyll a concentration and primary production might be caused by P-limited conditions and this resulted in lower chlorophyll a concentration and total primary production in this study compared to previous studies.  相似文献   

4.
将伴随同化方法用于渤、黄海NPZD三维浮游生态动力学模型的研究中,利用1998年~2006年的SeaWiFS叶绿素资料作为观测数据进行同化实验,优化难以确定的生态参数.文中对参数在整个计算区域取常数时进行了优化,同时尝试了一种新的参数化方案,即在海区中选取一些点作为独立参数点,其它点的参数由独立参数点的值经过线性插值得到,优化独立点的参数后得到所有计算格点的参数.针对这两种不同的参数化方案做了一系列对比实验,结果表明利用伴随同化方法反演空间分布的参数能有效地提高数值模拟的精度.  相似文献   

5.
Significant effort has been invested in understanding the role of iron in marine ecosystems over the past few decades. What began as shipboard amendment experiments quickly grew into a succession of in situ, mesoscale ocean iron fertilization (OIF) experiments carried out in all three high nutrient low chlorophyll (HNLC) regions of the world ocean. Dedicated process studies have also looked at regions of the ocean that are seasonally exposed to iron-replete conditions as natural OIF experiments. However, one problem common to many OIF experiments is determination of biological response beyond the duration of the experiment (typically<1 month). Satellite-derived products have been used to address this shortcoming with some success, but thus far, have been limited snapshots of a single parameter, chlorophyll. Here, we investigate phytoplankton responses to OIF in both purposeful and naturally iron enriched systems using estimates of chlorophyll (Chl), phytoplankton carbon biomass (Cphyto), their ratio (Chl:Cphyto) and two fluorescence indices, fluorescence per unit chlorophyll (FLH:Chl) and the chlorophyll fluorescence efficiency (ϕf). These quantities allow partitioning of the biological response to OIF into that due to changes in biomass and that due to phytoplankton physiology. We find that relative increases in Chl (∼10–20x) following OIF far exceed increases in Cphyto (<4–5x), suggesting that a significant fraction of the observed Chl increase is associated with physiological adjustment to increased growth rates, photoacclimation, and floristic shifts in the phytoplankton community. Further, a consistent pattern of decreased satellite fluorescence efficiency (FLH:Chl or ϕf) following OIF is observed that is in agreement with current understanding of phytoplankton physiological responses to relief from iron stress. The current study extends our ability to retrieve phytoplankton physiology from space-based sensors, strengthens the link between satellite fluorescence and iron availability, and shows that satellite ocean color analyses provide a unique tool for monitoring OIF experiments.  相似文献   

6.
In many ecosystem models based on empirical formulations, parameters generally are calibrated in order to achieve the best fit between measured and simulated chlorophyll a standing stocks. An accurate calibration of rate processes as primary production rarely is taken into account. In this paper, we test the usefulness of calibration of phytoplankton photosynthetic processes in an ecosystem model using field primary production data. We used 18 months of photosynthetic process data from the Baie des Veys ecosystem (Normandy, France). Five empirical formulations of photosynthesis–irradiance curve models amongst the most widely used were tested. In each formulation, the variability of photosynthetic parameters (i.e. the light-saturated rate of photosynthesis (PmaxB) and the initial slope of the photosynthesis–light curve (αB)) was considered depending on environmental factors (temperature and nutrient availability). The fit of the five equations as well as the calibration of parameters on field measurements (i.e. the light-saturated rate of photosynthesis (PrefB), the initial slope of the photosynthesis–light curve (αrefB), the half-saturation constant for nitrogen (KN) and silicates uptake (KSi), and the coefficient in the exponential thermal effect (KT)) was performed using the whole available data set of P vs. E curves (n = 143, P vs. E curves). Then, the Smith formulation allowing the best simulation of the Baie des Veys primary production and corresponding parameters were introduced in an ecosystem box model. This formulation led directly to a satisfactory representation of the Baie des Veys phytoplankton dynamics without additional calibration. Results obtained were compared with a more classical approach in which ecosystem models were calibrated using published values of parameters. This comparison showed that for the two years studied, annual primary production estimated through the ecosystem model was 13% and 26% higher with our approach than with the more classical approach. This work emphasizes the importance of accurately representing rate processes in ecosystem models in order to adequately simulate production as well as standing stocks.  相似文献   

7.
Areas of high nutrients and low chlorophyll a comprise nearly a third of the world’s oceans, including the equatorial Pacific, the Southern Ocean and the Sub-Arctic Pacific. The SOLAS Sea-Air Gas Exchange (SAGE) experiment was conducted in late summer, 2004, off the east coast of the South Island of New Zealand. The objective was to assess the response of phytoplankton in waters with low iron and silicic acid concentrations to iron enrichment. We monitored the quantum yield of photochemistry (Fv/Fm) with pulse amplitude modulated fluorometry, chlorophyll a, primary productivity, and taxonomic composition. Measurements of Fv/Fm indicated that the phytoplankton within the amended patch were relieved from iron stress (Fv/Fm approached 0.65). Although there was no significant difference between IN and OUT stations at points during the experiment, the eventual enhancement in chlorophyll a and primary productivity was twofold by the end of the 15-day patch occupation. However, no change in particulate carbon or nitrogen pools was detected. Enhancement in primary productivity and chlorophyll a were approximately equal for all phytoplankton size classes, resulting in a stable phytoplankton size distribution. Initial seed stocks of diatoms were extremely low, <1% of the assemblage based on HPLC pigment analysis, and did not respond to iron enrichment. The most dominant groups before and after iron enrichment were type 8 haptophytes and prasinophytes that were associated with ∼75% of chlorophyll a. Twofold enhancement of biomass estimated by flow cytometry was detected only in eukaryotic picoplankton, likely prasinophytes, type 8 haptophytes and/or pelagophytes. These results suggest that factors other than iron, such as silicic acid, light or physical disturbance limited the phytoplankton assemblage during the SAGE experiment. Furthermore, these results suggest that additional iron supply to the Sub-Antarctic under similar seasonal conditions and seed stock will most likely favor phytoplankton <2 ??m. This implies that any iron-mediated gain of fixed carbon will most likely be remineralized in shallow water rather than sink and be sequestered in the deep ocean.  相似文献   

8.
Phytoplankton growth and microzooplankton grazing rates were measured by the dilution technique in the subarctic North Pacific Ocean along a west–east transect during summer 1999. Average phytoplankton growth rates without added nutrients (μ0) were 0.33, 0.41, 0.20 and 0.49 d−1 for the four regions sampled: the Western Gyre, the Bering Sea, the Gulf of Alaska gyre and stations along the Aleutian Trench. Average grazing mortality rates (m) were 0.34, 0.27, 0.20 and 0.49 d−1. Limitation of phytoplankton growth by macronutrients, such as NO3 and SiO2, was identified only at a few stations, with overall μ0/μn (μn is nutrient-enhanced growth rate) averaging 0.9. Phytoplankton growth and microzooplankton grazing were approximately balanced, as indicated by high m/μ0 ratio, except in the Bering Sea, where the m/μ0 ratio was 0.65, indicating the relative importance of the diatom-macrozooplankton grazing food chain and possible higher export flux to the deep layer. Flow cytometric analysis revealed that the growth rates of picoplankton (Synechococcus and picoeukaryotes) were usually much lower than the total phytoplankton community growth rates estimated from chlorophyll a, except for stations in the Gulf of Alaska Gyre, where the growth rates for different populations were about the same. Lower than community-average growth rate for picoplankton indicates larger phytoplankters, presumably diatoms, were growing at a much faster rate. Suppressed phytoplankton growth in the Gulf of Alaska was probably a result of iron limitation.  相似文献   

9.
本文基于卫星遥感的叶绿素a浓度与颗粒物后向散射系数月平均数据以及其他海洋与气象参数,详细分析了两个生物光学参量在季节尺度上的相关性及其与物理参数的耦合关系,并运用光驯化模型分析了南海表层水体浮游植物的生理学季节变化特征。结果表明,受南海地形和风场等物理参量的变化,南海叶绿素a浓度与颗粒物后向散射系数存在显著的季节和空间分布特征,具有一定的共变性和差异性。在南海近岸及浅水区,叶绿素a浓度与颗粒物后向散射系数有很好的耦合关系;而在南海深水海盆区,叶绿素a浓度冬高夏低,其季节循环过程与颗粒物后向散射系数相反,这主要是受浮游植物生理学过程的影响。"生物量控制区"与"光驯化控制区"的分界在南海与陆架-海盆分界线一致,体现了水深条件对浮游植物生理状态的影响。此外本文还发现,在吕宋海峡西部海区,叶绿素a与颗粒物后向散射系数的关系表现出"生物量-光驯化共同控制"的特点。  相似文献   

10.
The distributions and seasonal variations of vitamin B12, thiamine and biotin were investigated in waters of the North Pacific Ocean, the East China Sea, and the bays and inlets along the Pacific coast of Japan, by use of microbiological assay methods. A marine diatom Cyclotella nana clone 3H for vitamin B12, and marine yeast Cryptococcus albidus for thiamine, and a marine bacterium Achromobacter sp. strain yH-51 for biotin were used as assay organisms. In the surface water of Sagami Bay, monthly changes in the amounts of the three dissolved vitamins followed closely that of chlorophyll a, being highest in July and lowest during late autumn and winter. The geographical and vertical distributions of thiamine and biotin in the sea generally showed similar patterns to that of chlorophyll a, whereas vitamin B12 did not always follow the trend. Amounts of particulate thiamine and biotin corresponded to about 1 % of that of the dissolved form in the surface water of the North Pacific Ocean. In the coastal waters, however, they were at times found to be 144.0 % and 53.9 % respectively.  相似文献   

11.
Phytoplankton is a key component in the functioning of marine ecosystems, phytoplankton community structures are very sensitive to their environment. This study was conducted in the central Bohai Sea in the spring and early summer of 2015. Spatial variations in phytoplankton functional groups were examined through high-performance liquid chromatography pigment–CHEMTAX analysis. Results suggested that the phytoplankton biomass (chlorophyll a [Chl a]) in spring was mainly derived from the diatom community and was 3.5-fold higher than that in the summer. Meanwhile, the phytoplankton in the early summer sustained more diverse marker pigments than that in the spring. Despite the overwhelming predominance of microsized phytoplankton in the spring, some smaller phytoplankton (pico- or nanosized), including flagellates, such as prasinophytes, chlorophytes, and cryptophytes, highly contributed to the total Chl a in the summer. Various physico-chemical variables were recorded, and their correlations with phytoplankton density were established by redundancy analysis. Temperature, water stratification, nutrient availability, and even nutritive proportion influenced the succession of phytoplankton functional groups from diatom dominance in the spring to flagellate (mainly haptophytes and prasinophytes) dominance in the early summer. In conclusion, our work comprehensively evaluated the phytoplankton diversity and dynamics in the central Bohai Sea and suggests the need for long-term monitoring for further investigation.  相似文献   

12.
Alterations in sea ice and primary production are expected to have cascading influences on the food web in high Arctic marine ecosystems. This study spanned four years and examined the spring phytoplankton production bloom in Disko Bay, West Greenland (69°N, 53°W) (using chlorophyll a concentrations as a proxy) under contrasting sea ice conditions in 2001 and 2003 (heavy sea ice) and 2002 and 2004 (light sea ice). Satellite-based observations of chlorophyll a, sea ice and sea surface temperature were used together with in situ depth profiles of chlorophyll a fluorescence collected at 24 sampling stations along the south coast of Disko Island (5-30 km offshore) in May 2003 and 2004. Chlorophyll a and sea surface temperatures were also obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS: EOS-Terra and AQUA satellites) between March 2001 and July 2004. Daily SMMR/SSMI sea ice data were obtained in the same years. An empirical regional algorithm was developed to calibrate ratios of remotely sensed measurements of water leaving radiance with in situ chlorophyll a fluorescence. The optimal integration depth was 0-4 m, explaining between 70% and 91% of the variance. The spatial development of the phytoplankton bloom showed that the southwestern corner of the study area had the earliest and the largest spring phytoplankton bloom. The eastern part of Disko Bay, influenced by meltwater outflow from the glaciers, shows no signs of an early phytoplankton bloom and followed the general pattern of an accelerated bloom soon after the disappearance of sea ice. In all four years the coupling between phytoplankton and sea ice was bounded by average open water between 50% and 80%, likely due to the combined availability of light and stable open water. The daily incremental growth in both mean chlorophyll a density (chlorophyll a per volume water, μg l−1) and abundance (density of chlorophyll a extrapolated to ice free areas, tons) estimated by linear regression (chlorophyll a vs. day) between 1 April and 15 May was highest in 2002 and 2004 (light ice years) and lowest in 2001 and 2003 (heavy ice years). In years with late sea ice retreat the chlorophyll a attained only slightly lower densities than in years with early sea ice retreat. However, the abundance of chlorophyll a in light ice years was considerably larger than in heavy ice years, and there was an obvious effect of more open water for light-induced stimulation of primary production. This observation demonstrates the importance of estimating chlorophyll a abundance rather than density in sea ice covered areas. This study also presents the first regional calibration of MODIS chlorophyll a data for Arctic waters.  相似文献   

13.
A set of phytoplankton pigment measurements collected on eight quarterly transects from France to New Caledonia is analyzed in order to identify the main assemblages of phytoplankton and to relate their occurrence to oceanic conditions. Pigment concentrations are first divided by the sum [monovinyl chlorophyll a plus divinyl chlorophyll a] to remove the effect of biomass, and second are normalized to give an equal weight to all pigments. The resulting 17 pigments × 799 observations matrix is then classified into 10 clusters using neural methodology. Eight out of these 10 clusters have a well marked regional or seasonal character, thus evidencing adapted responses of the phytoplankton communities. The main gradient opposes two clusters with high fucoxanthin and chlorophyll c1+2 in the North Atlantic in January, April and July, to three clusters in the South Pacific Subtropical Gyre with high divinyl chlorophyll a, zeaxanthin and phycoerythrin. One of the clusters in the South Pacific Subtropical Gyre has relatively high zeaxanthin and phycoerythrin contents and dominates in November and February (austral summer), while another with relatively high divinyl chlorophylls a and b dominates in May and August (austral winter). The third one in the South Pacific is characterized by high carotene concentration and its occurrence peaks in February and May. In the equatorial current system, one cluster, rich in chlorophylls b and c1+2, is strictly located in a narrow zone centred at the equator, while another with relatively high violaxanthin concentration is restricted to the high nutrient - low chlorophyll waters in only the southern part of the South Equatorial Current. One cluster with relatively high prasinoxanthin content has a spatial distribution spanning the entire South Equatorial Current. Two clusters have a ubiquitous distribution: one in the equatorial Pacific, the Carribbean Sea and the North Atlantic during summer has pigment concentrations close to the average of the entire dataset, and the other in the South Pacific Subtropical Gyre, the Carribbean Sea and the North Atlantic during autumn clearly has an oligotrophic character. Many of the differences between clusters are caused by diagnostic pigments of nano- or picoflagellates. While the space and time characteristics of the clusters are well marked and might correspond to differences in physical and chemical forcing, knowledge of the ecological requirements of these flagellates is generally lacking to explain how the variability of the environment triggers these clusters.  相似文献   

14.
Based on long-term (1985–1995) monitoring data, the paper considers the peculiarities of seasonal variability in the spatial and vertical distribution of particulate organic phosphorus (РPOM) in the surface layer and in the photosynthetic zone in the northwestern Black Sea. Regression equations, experimental data, and satellite observations for the chlorophyll a concentration allowed us to evaluate the seasonal longterm (1979–1995) variability in РPOM in the surface layer and photosynthesis zone. The ratios of the concentrations of particulate organic carbon, nitrogen, phosphorus, and chlorophyll a are calculated and statistical estimates of seasonal changes in the РPOM in the areas with different degrees of influence of river runoff and water of open seas are obtained. The consistency of intra-annual changes in the concentrations of РPOM, chlorophyll a, and phytoplankton biomass is shown, which indicates the role of phytoplankton in the formation of РPOM and in its intra- and interannual variability in the northwestern part of the sea. It is shown that long-term seasonal variations in РPOM and related changes in the concentration of chlorophyll a depend on the variability of bulk river runoff, the extent of its abundance in the northwestern shelf, and regional hydrometeorological conditions.  相似文献   

15.
Prochlorococcus marinus is present in all tropical and subtropical oceans, where it is often found throughout the euphotic zone, contributing significantly to phytoplankton biomass and primary production and growing at rates comparable to those of other picoplankters. Clearly, Prochlorococcus and eucaryotic picoplankton share significant niche dimensions in the open ocean. Here we report the discovery of populations of Prochlorococcus in layers below the oxyclines of the oxygen minimum zones of the Arabian Sea and the Eastern Tropical North Pacific off Mexico. The unusual aspects of these populations are that these were at times virtual monoalgal cultures found at a depth of 80 to 140 m, often below the euphotic zone, where irradiance ranged from less than 0.1 to 2% of the surface irradiance (I0). The pigment complement of these deep populations was characterized in detail. The previously unidentified Chl-c-like pigment of Prochlorococcus is Mg-3,8-divinylpheoporphyrin a5 monomethylester. The carotenoid complement of populations in these deep layers was similar to that of cultured Prochlorococcus strains, except for high concentrations of a 7′,8′-dihydro-derivative of zeaxanthin, quite likely parasiloxanthin. Even though cellular concentrations of pigments were very high in these populations, suggesting acclimation to low irradiance, ambient light experienced by these populations in the Arabian Sea, <0.1% I0, may not have been sufficient to support normal photoautotrophic growth. Off Mexico these deep Prochlorococcus populations were located at 0.2 and 2% I0 isolumes, an irradiance likely sufficient for slow growth. Environmental conditions in these layers, except for concentrations of oxygen, are similar to those found at and below the subsurface chlorophyll maxima of the subtropical central gyres. As only Prochlorococcus thrives in these layers but Prochlorococcus and eucaryotic picoplankton coexist in and below subsurface chlorophyll maxima, we conclude that the low oxygen concentrations at the deep Prochlorococcus maxima are the determining factor, but we are not able to identify any specific physiological functions that are affected by low oxygen concentrations in eucaryotes but not Prochlorococcus.  相似文献   

16.
The chlorophyll a specific absorption coefficient of phytoplankton, aφ(λ) is an important parameter to determine for primary production models and for the estimation of phytoplankton physiological condition. Knowledge of this parameter at high latitudes where nutrient rich cold water submitted to low incident light is a common environment is almost nonexistent. To address this issue, we investigated the light absorption properties of phytoplankton as a function of irradiance, temperature, and nutrients using a large data set in the southern Beaufort Sea during the open water to ice cover transition period. The aφ(λ) tended to increase from autumn when open water still existed to early winter when sea ice cover was formed, resulting from a biological selection of smaller-size phytoplankton more efficient to absorb light. There was no significant correlation between aφ(λ) and irradiance or temperature for both seasons. However, aφ(λ) showed a significant positive correlation with NO3 + NO2. Implications of the results for phytoplankton community adaptation to changing light levels are discussed.  相似文献   

17.
The carbon flux through major phytoplankton groups, defined by their pigment markers, was estimated in two contrasting conditions of the Northwestern Mediterranean open ocean ecosystem: the spring bloom and post-bloom situations (hereafter Bloom and Post-bloom, respectively). During Bloom, surface chlorophyll a (Chl a) concentration was higher and dominated by diatoms (53% of Chl a), while during Post-bloom Synechococcus (42%) and Prymnesiophyceae (29%) became dominant. The seawater dilution technique, coupled to high pressure liquid chromatography (HPLC) analysis of pigments and flow cytometry (FCM), was used to estimate growth and grazing rates of major phytoplankton groups in surface waters. Estimated growth rates were corrected for photoacclimation based on FCM-detected changes in red fluorescence per cell. Given the 30% average decrease in the pigment content per cell between the beginning and the end of the incubations, overlooking photoacclimation would have resulted in a 0.40 d?1 underestimation of phytoplankton growth rates. Corrected average growth rates (μo) were 0.90±0.20 (SD) and 0.40±0.14 d?1 for Bloom and Post-bloom phytoplankton, respectively. Diatoms, Cryptophyceae and Synechococcus were identified as fast-growing groups and Prymnesiophyceae and Prasinophyceae as slow-growing groups across Bloom and Post-bloom conditions. The higher growth rate during Bloom was due to dominance of phytoplankton groups with higher growth rates than those dominating in Post-bloom. Average grazing rates (m) were 0.58±0.20 d?1 (SD) and 0.31±0.07 d?1. The proportion of phytoplankton growth consumed by microzooplankton grazing (m/μo) tended to be lower in Bloom (0.69±0.34) than in Post-bloom (0.80±0.08). The intensity of nutrient limitation experienced by phytoplankton indicated by μo/μn (where μn is the nutrient-amended growth rate), was similar during Bloom (0.78) and Post-bloom (0.73). Primary production from surface water (PP) was estimated with 14C incubations. A combination of PP and Chl a synthesis rate yielded C/Chl a ratios of 34±21 and 168±75 (g:g) for Bloom and Post-bloom, respectively. Transformation of group-specific Chl a fluxes into carbon equivalents confirmed the dominant role of diatoms during Bloom and Synechococcus and Prymnesiophyceae during Post-bloom.  相似文献   

18.
Autotrophic biomass and productivity as well as nutrient distributions and phytoplankton cell populations in the James River estuary, Virginia, were quantified both spatially and temporally over a 17-month period. Emphasis was placed on the very low salinity region of the estuary in order to gain information on the fate of freshwater phytoplankters. Differing amounts of freshwater plant biomass are advected into the estuary as living material, DOC or POC and the demonstrated variability of this input must play an important role in marine biogeochemical cycling.Late summer and fall maxima in both chlorophyll a and the photosynthetic production of particulate organic carbon in very low salinity regions were inversely correlated with river discharge.During periods of low river discharge greater than 50% of the chlorophyll a biomass measured at 0‰ disappeared within a narrow range of salinity (0–2‰). Cell enumeration data suggest that species introduced from the freshwater end-member tend to comprise the bulk of the biomass removed. Confounding factors, which may contribute to the regulation of both the abundance and species of phytoplankters mid-river, include the flocculation of colloidal material with phytoplankton cells, the presence of the turbidity maximum and the growth of endemic phytoplankton populations.An inverse relationship exists between the phytoplankton abundance in very low salinity waters and the abundance of biomass measured in the lower portion of the river (estuary). Thus, autotrophic production in the fresh and very low salinity areas may indirectly regulate the onset on the spring bloom in the estuary by controlling the amount of nutrients available.  相似文献   

19.
Changes in phytoplankton composition and degradation of particulate organic matter (POM) in the northwestern Mediterranean Sea were studied using time-series sediment trap samples collected during the spring of 2003 at the DYFAMED station. Lipid biomarkers (pigments, fatty acids, sterols, acyclic isoprenoids, alkenones and n-alkanols) were used to identify the main contributors to the POM produced during two phytoplankton blooms, while the effects of photooxidation, autoxidation and biodegradation were differentiated using characteristic lipid degradation products. Traps collected material corresponding to pre-bloom, bloom and post-bloom periods. Pigment analyses in the integrated (0-200 m) water column samples indicated that diatoms dominated the initial stages of the bloom event, with smaller amounts of haptophytes and pelagophytes. During the second part of bloom event there was a switch to haptophyte dominance with significant contributions from diatoms and pelagophytes, and an increased contribution from cryptophytes. Fatty acid distributions in the trap samples reflected contributions from marine bacteria, phytoplankton and zooplankton. Photooxidation and autoxidation products of monounsaturated oleic, cis-vaccenic and palmitoleic acids were detected along with photooxidation products from the chlorophyll side-chain. The relatively good correlation between the variation of U37K′ index and specific phytol autoxidation product percentage allowed us to attribute the alterations of U37K′ observed during the pre-bloom period and in the deeper traps to the involvement of selective autoxidative degradation processes. A variety of sterol oxidation products formed by biohydrogenation, autoxidation and photooxidation were detected. Sterol degradation products appeared to be less suited than oxidation products of monounsaturated fatty acids for the precise monitoring of the degradation state of POM, but their stable functionalized cyclic structure constitutes a useful tool to estimate the part played by biotic and abiotic processes. In these waters, biotic degradation generally predominates, but abiotic degradation is not negligible and, as expected, the extent of biotic degradation increases with depth. To obtain a more complete picture of POM degradation, the use of a pool of lipid degradation products (i.e. from unsaturated fatty acids, the phytyl side-chain and sterols) should be employed.  相似文献   

20.
Eight stations were chosen for this 14 month survey of Tolo Harbour in Hong Kong, four of them in the harbour proper and four in the estuaries of the major streams entering the harbour. Various chemical and physical factors were measured twice each month. Water samples were collected for nutrient, phytoplankton, chlorophyll and bacteriological analysis.The annual discharge of nutrients from the four streams into Tolo Harbour has been estimated, based on the nutrient analyses and computation of annual discharge (QA) values for these streams. The seasonal and spatial variations in nutrient content are discussed in relation to the increasing organic pollution of Tolo Harbour. Calculations of various ratios between SiO3, PO4, NO3 and total inorganic N reveal that excessive amounts of phosphate are entering the harbour and subsequently accumulating in the bottom waters and sediments, leading to changes in the trophic condition of this water body and the development of anoxic conditions in the bottom layer.Significant correlation has been demonstrated between standing crop and various environmental parameters in both estuarine and marine waters and similarly between chlorophyll a concentration and various environmental parameters. However, no significant correlation values were obtained between either standing crop or chlorophyll a concentrations, SiO3Si (the latter presumably due to the predominance of diatoms in the phytoplankton). Neither standing crop nor chlorophyll determinations reveal any evidence of alternating periods of high productivity and decomposition which could explain the deteriorating bottom water conditions. This again is taken as evidence that the high organic inputs are responsible for such deterioration.Increasing TC, FC and FS densities have been noted in Tolo Harbour as a direct result of the increasing organic pollution and ratios between FC and FS densities indicate that in 55% of the samples pollution was derived from human sewage. The bacterial levels well exceeded various international standards for bathing waters and shellfish collection for at least a part of the survey period and at a number of stations for the entire survey period. Pathogenic organisms were also present. This underlines the potential health risks in these waters.Finally, the future prospects for this harbour are discussed in relation to activities such as reclamation and the development of new towns and their impact on water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号