首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dissolved ionic constitutents of groundwaters are,in part,a recored of the minerals and rocks in aquifers through which the water has flowed.The chemical composition and association of these major ions in groundwaters have been used to trace groundwater flow paths and sources,In general,the chemical compostion of water in carbonate-rock aquifers in dominated by calcium,magnesium,and bicarbonate,whereas sodium,chloride,and sulfate can be dominant ions in the water that comes from volcanic aquifers or clay minerals.Since the 1990‘s,we have dealt with the geochemistry of groundwaters from more than 100 springs and wells in southern Nevada and eastrn california ,USA for major solutes and trace elements.This paper compiles the hydrochemical data of major ions of these groundwaters.Based on major ion geochemistry,groundwaters from southern Nevada and eastern California can be classified as carbonate aquifer water,volcanic aquifer water,and mixing water (either mixing of cabonate and volcanic aquifer waters or mixing with local recharges),Piper and stiff diagrams of major ions have graphically shown the general chemical characteristics,classification,and mixing relationships of groundwaters from southern Nevada and eastern California.  相似文献   

2.
Regional patterns in ground- and surface-water chemistry of the southern Sacramento Valley in California were evaluated using publicly available geochemical data from the US Geological Survey’s National Water Information System (NWIS). Within the boundaries of the study area, more than 2300 ground-water analyses and more than 20,000 surface-water analyses were available. Ground-waters from the west side of the Sacramento Valley contain greater concentrations of Na, Ca, Mg, B, Cl and SO4, while the east-side ground-waters contain greater concentrations of silica and K. These differences result from variations in surface-water chemistry as well as from chemical reactions between water and aquifer materials. Sediments that fill the Sacramento Valley were derived from highlands to the west (the Coast Ranges) and east (the Sierra Nevada Mountains), the former having an oceanic provenance and the latter continental. These geologic differences are at least in part responsible for the observed patterns in ground-water chemistry. Thermal springs that are common along the west side of the Sacramento Valley appear to have an effect on surface-water chemistry, which in turn may affect the ground-water chemistry.  相似文献   

3.
The effects of human-induced alteration of groundwater flow patterns on concentrations of naturally-occurring trace elements were examined in five hydrologically distinct aquifer systems in the USA. Although naturally occurring, these trace elements can exceed concentrations that are considered harmful to human health. The results show that pumping-induced hydraulic gradient changes and artificial connection of aquifers by well screens can mix chemically distinct groundwater. Chemical reactions between these mixed groundwaters and solid aquifer materials can result in the mobilization of trace elements such as U, As and Ra, with subsequent transport to water-supply wells. For example, in the High Plains aquifer near York, Nebraska, mixing of shallow, oxygenated, lower-pH water from an unconfined aquifer with deeper, confined, anoxic, higher-pH water is facilitated by wells screened across both aquifers. The resulting higher-O2, lower-pH mixed groundwater facilitated the mobilization of U from solid aquifer materials, and dissolved U concentrations were observed to increase significantly in nearby supply wells. Similar instances of trace element mobilization due to human-induced mixing of groundwaters were documented in: (1) the Floridan aquifer system near Tampa, Florida (As and U), (2) Paleozoic sedimentary aquifers in eastern Wisconsin (As), (3) the basin-fill aquifer underlying the California Central Valley near Modesto (U), and (4) Coastal Plain aquifers of New Jersey (Ra). Adverse water-quality impacts attributed to human activities are commonly assumed to be related solely to the release of the various anthropogenic contaminants to the environment. The results show that human activities including various land uses, well drilling, and pumping rates and volumes can adversely impact the quality of water in supply wells, when associated with naturally-occurring trace elements in aquifer materials. This occurs by causing subtle but significant changes in geochemistry and associated trace element mobilization as well as enhancing advective transport processes.  相似文献   

4.
Groundwater samples collected from salt lakes over the Archean Yilgarn Block of Western Australia, show the influence of climate on geochemical weathering patterns. Major element compositions in salt lake groundwaters, show little systematic trend, but there are marked differences in pH and Fe, Cu, and Pb, concentrations in the alkaline carbonated systems of the arid northeastern part, compared to concentrations of the same elements in groundwater systems of the Mediterranean-type climatic region of the “wheatbelt” in the southwestern part of the block. In this latter region, in addition to higher rainfall input, the groundwater systems have steeper hydraulic gradients, weathering bedrock is closer to the surface, and oxidation and hydrolysis of iron (ferrolysis) is evident in weathering profiles. A combination of vertical diffusion and horizontal groundwater flow is thought to be responsible for the development of ferrolysis and acidity in groundwaters in this region. Anomalously high concentrations of heavy metals, particularly lead, are observed in some of the acid-saline groundwaters. The formation of laterite, which is a ubiquitous feature of the Yilgam Block landscape, is a process probably closely linked to ferrolysis.  相似文献   

5.
《Applied Geochemistry》2000,15(1):51-65
The Po Valley brines represent the base level of the Quaternary aquifer located in a thick clay-sands sedimentary sequence. Geochemistry indicates that these are marine waters, evaporated to the stage of gypsum precipitation and trapped at the bottom of the basin in the late Messinian. Most of the groundwater samples collected from different springs and wells in the plain result from a mixture of these Na–Cl brines and shallow groundwaters laterally recharged by the Alpine and Apennine chains.Natural outflows of brackish waters are associated with major tectonic features. Mud volcanoes, located in the eastern sector of the Po plain, are constantly monitored as sudden chemical changes are significant precursors of seismic activity. In the western sector, calcite-filled veins isotopically record different degrees of water-rock interaction. These are outcropping fossil conduits, where mixing between shallow groundwaters and deep seated brines has occurred. The temporal continuity of the hydrological circuits allows the reconstruction of past and present groundwater circulation patterns.This paper summarises and integrates the geochemical data produced over many years in order to obtain a regional picture of brine origins and the natural mechanisms of groundwater flow.  相似文献   

6.
Yucca Mountain, Nevada is the site of the proposed US geologic repository for spent nuclear fuel and high-level radioactive waste. The repository is to be a mine, sited approximately 300 m below the crest of the mountain, in a sequence of variably welded and fractured mid-Miocene rhylolite tuffs, in the unsaturated zone, approximately 300 m above the water table. Beneath the proposed repository, at a depth of 2 km, is a thick sequence of Paleozoic carbonate rocks that contain the highly transmissive Lower Carbonate Aquifer. In the area of Yucca Mountain the Carbonate Aquifer integrates groundwater flow from north of the mountain, through the Amargosa Valley, through the Funeral Mountains to Furnace Creek in Death Valley, California where the groundwater discharges in a set of large springs. Data that describe the Carbonate Aquifer suggest a concept for flow through the aquifer, and based upon the conceptual model, a one-layer numerical model was constructed to simulate groundwater flow in the Carbonate Aquifer. Advective transport analyses suggest that the predicted travel time of a particle from Yucca Mountain to Death Valley through the Carbonate Aquifer might be as short as 100 years to as long 2,000 years, depending upon the porosity.  相似文献   

7.
《Chemical Geology》2006,225(1-2):156-171
Groundwater samples were collected along a groundwater flow path in the Carrizo Sand aquifer in south Texas, USA. Field measurements that included pH, specific conductivity, temperature, dissolved oxygen (DO), oxidation–reduction potentials (Eh in mV), alkalinity, iron speciation, and H2S concentrations were also conducted on site. The geochemistry (i.e., concentrations, shale-normalized patterns, and speciation) of dissolved rare element elements (REEs) in the Carrizo groundwaters are described as a function of distance along a flow path. Eh and other redox indicators (i.e., DO, Fe speciation, H2S, U, and Re) indicate that redox conditions change along the flow path in the Carrizo Sand aquifer. Within the region of the aquifer proximal to the recharge zone, groundwaters exhibit both highly oxidizing and localized mildly reducing conditions. However, from roughly 10 km to the discharge zone, groundwaters are reducing and exhibit a progressive decrease in redox conditions. Dissolved REE geochemical behavior exhibits regular variations along the groundwater flow path in the Carrizo Sand aquifer. The changes in REE concentrations, shale-normalized patterns, and speciation indicate that REEs are not conservative tracers. With flow down-gradient, redox conditions, pH and solution composite, and adsorption modify groundwater REE concentrations, fractionation patterns, and speciation.  相似文献   

8.
The Ethiopian Rift (a major portion of the Great East African Rift) is characterized by a narrow elongated depression bounded by highlands from both sides. This topographic configuration leads to a monsoon redistribution which resulted in an arid rift floor and humid high rainfall highlands. The rifting and associated volcanism also caused a thinning of the crust and facilitates influx of CO2 and other mantle gases as diffuse sources or along faults from deeper sources. Groundwaters in the rift floor are usually of high mineral content (high F, U, As and salinity) while those on the plateau are of low mineral content. Among many factors, groundwater availability and quality in the rift floor aquifers is the function of their connection to the aquifers in the high rainfall plateau and the residence time of groundwater prior to reaching the rift floor. This entails the need for addressing one basic hydrologic question in such a setting: at what depth and rate does recharge from the high rainfall highland reach the lowland rift aquifers? This study uses spatial variations in trace elements and relates them to 14C variations, thereby investigating the suitability of using trace elements as proxies for residence time estimation of groundwaters of relatively short (1,000–2,000 years) residence time. This work also investigates the behavior of trace element trends along the groundwater flow path in a rifted setting and compares them with such trends in sedimentary aquifers elsewhere. The comparison shows a clear difference in behavior of trace elements along the groundwater flow path when compared with such variations in big sedimentary basins with no prominent rifting and volcanism, suggesting the need of calibrating the relation between trace elements and any direct residence time indicators. An integrated use of major elements, trace elements, and environmental isotopes reveals that the main recharge of the aquifers originates from mountain blocks and that recharge takes place via fractures with no evidence of evaporation prior to recharge. Redox processes appear to play a limited role in trace element geochemistry of groundwaters in the region. Progressive trends in trace element composition along the groundwater flow path suggest continuous groundwater flow from the plateau.  相似文献   

9.
10.
Urban karst systems are typically considered more vulnerable to contamination and excess storm discharge because of potential source areas, increased sediment loading, and focusing of water from impervious surfaces. However, urban hydrology can lead to unexpected patterns, such as pirating of recharge into man-made storm systems. Valley Creek Basin in southeastern Pennsylvania, presents such an urban karst system. Four springs were monitored for suspended sediment, water chemistry, and storm response for an 18-month period. The baseflow suspended sediment concentrations were low, less than 4.0 mg/l. Furthermore, trace metal analysis of baseflow water samples and spring mouth sediment showed only low concentrations. The response to storms within the system was rapid, on the order of 1–3 h. The maximum water stage increases at the urban springs were typically less than 15 cm, with springs from more commercialized areas showing <2 cm increase. A nearby retention basin, in contrast, had water level rises of 100 cm, suggesting that pirating of recharge into stormwater systems occurs. Thus, the concept of an urban karst system as a contaminant conduit is not the only one that applies. In Valley Creek Basin, reduced infiltration due to paving led to smaller storm response and less contaminant input, and the smaller capture area due to diversion of stormwater led to short flow paths and rapid storm response. Although contaminant levels have not increased due to urbanization, the springs may be at risk for future contamination. Short flow paths may reduce flushing, which means that the system will not cleanse itself if contamination occurs.  相似文献   

11.
12.
Vertical variations of redox chemistry and groundwater quality were investigated in an alluvial aquifer beneath an agricultural area, in which deep groundwaters are free of NO3, Fe, and Mn problems that are frequently encountered during the development of alluvial groundwaters. This study was performed to identify and evaluate vertical chemical processes attenuating these chemical species in the study area. For this study, the processes affecting groundwater chemistry were identified by factor analysis (FA) and the groundwater samples collected from six multilevel samplers were hierarchically classified into three different redox zones by cluster analysis (CA) based on the similarity of geochemical features. FA results indicated three major factors affecting the overall water chemistry: agricultural activities (factor 1), redox reactions (factor 2), and remnant seawater (factor 3). The groundwater quality in the study area was revealed to be controlled by a series of different redox reactions, resulting in different redox zones as a function of depth. It was also revealed that the low Fe and Mn levels in the groundwater of the deeper part are associated with sulfate reduction, which led to precipitation of Fe as iron sulfide and adsorption of Mn on it.  相似文献   

13.

Recently collected naturally occurring geochemical and isotopic groundwater tracers were combined with historic data from the Pahute Mesa area of the Nevada National Security Site (NNSS), Nevada, USA, to provide insights into long-term regional groundwater flow patterns, mixing and recharge. Pahute Mesa was the site of 85 nuclear detonations between 1965 and 1992, many of them deeply buried devices that introduced radionuclides directly into groundwater. The dataset examined included major ions and field measurements, stable isotopes of hydrogen (δ2H), oxygen (δ18O), carbon (δ13C) and sulfur (δ34S), and radioisotopes of carbon (14C) and chloride (36Cl). Analysis of the patterns of groundwater 14C data and the δ2H and δ18O signatures indicates that groundwater recharge is predominantly of Pleistocene age, except for a few localized areas near major ephemeral drainages. Steep gradients in sulfate (SO4) and chloride (Cl) define a region near the western edge of the NNSS where high-concentration groundwater flowing south from north of the NNSS merges with dilute groundwater flowing west from eastern Pahute Mesa in a mixing zone that coincides with a groundwater trough associated with major faults. The 36Cl/Cl and δ34S data suggest that the source of the high Cl and SO4 in the groundwater was a now-dry, pluvial-age playa lake north of the NNSS. Patterns of groundwater flow indicated by the combined data sets show that groundwater is flowing around the northwest margin of the now extinct Timber Mountain Caldera Complex toward regional discharge areas in Oasis Valley.

  相似文献   

14.
Unplanned exploitation of groundwater constitutes emerging water-related threats to MayoTsanaga River Basin. Shallow groundwater from crystalline and detrital sediment aquifers, together with rain, dams, springs, and rivers were chemically and isotopically investigated to appraise its evolution, recharge source and mechanisms, flow direction, and age which were used to evaluate the groundwater susceptibility to contamination and the basin’s stage of salinization. The groundwater which is Ca–Na–HCO3 type is a chemically evolved equivalent of surface waters and rain water with Ca–Mg–Cl–SO4 chemistry. The monsoon rain recharged the groundwater preferentially at an average rate of 74 mm/year, while surface waters recharge upon evaporation. Altitude effect of rain and springs show a similar variation of −0.4‰ for δ18O/100 m, but the springs which were recharged at 452, 679, and 773 m asl show enrichment of δ18O through evaporation by 0.8‰ corresponding to 3% of water loss during recharge. The groundwater which shows both local and regional flow regimes gets older towards the basins` margin with coeval enrichment in F and depletion in NO3 . Incidentally, younger groundwaters are susceptible to anthropogenic contamination and older groundwaters are sinks of lithologenic fluoride. The basins salinization is still at an early stage.  相似文献   

15.
An understanding of the hydrogeology of Grand Canyon National Park (GRCA) in northern Arizona, USA, is critical for future resource protection. The ~750 springs in GRCA provide both perennial and seasonal flow to numerous desert streams, drinking water to wildlife and visitors in an otherwise arid environment, and habitat for rare, endemic and threatened species. Spring behavior and flow patterns represent local and regional patterns in aquifer recharge, reflect the geologic structure and stratigraphy, and are indicators of the overall biotic health of the canyon. These springs, however, are subject to pressures from water supply development, changes in recharge from forest fires and other land management activities, and potential contamination. Roaring Springs is the sole water supply for residents and visitors (>6 million/year), and all springs support valuable riparian habitats with very high species diversity. Most springs flow from the karstic Redwall-Muav aquifer and show seasonal patterns in flow and water chemistry indicative of variable aquifer porosities, including conduit flow. They have Ca/Mg-HCO3 dominated chemistry and trace elements consistent with nearby deep wells drilled into the Redwall-Muav aquifer. Tracer techniques and water-age dating indicate a wide range of residence times for many springs, supporting the concept of multiple porosities. A perched aquifer produces small springs which issue from the contacts between sandstone and shale units, with variable groundwater residence times. Stable isotope data suggest both an elevational and seasonal difference in recharge between North and South Rim springs. This review highlights the complex nature of the groundwater system.  相似文献   

16.
Thermal groundwater is currently being exploited for district-scale heating in many locations world-wide. The chemical compositions of these thermal waters reflect the provenance and circulation patterns of the groundwater, which are controlled by recharge, rock type and geological structure. Exploring the provenance of these waters using multivariate statistical analysis (MSA) techniques increases our understanding of the hydrothermal circulation systems, and provides a reliable tool for assessing these resources.Hydrochemical data from thermal springs situated in the Carboniferous Dublin Basin in east-central Ireland were explored using MSA, including hierarchical cluster analysis (HCA) and principal component analysis (PCA), to investigate the source aquifers of the thermal groundwaters. To take into account the compositional nature of the hydrochemical data, compositional data analysis (CoDa) techniques were used to process the data prior to the MSA.The results of the MSA were examined alongside detailed time-lapse temperature measurements from several of the springs, and indicate the influence of three important hydrogeological processes on the hydrochemistry of the thermal waters: 1) salinity and increased water-rock interaction; 2) dissolution of carbonates; and 3) dissolution of sulfides, sulfates and oxides associated with mineral deposits. The use of MSA within the CoDa framework identified subtle temporal variations in the hydrochemistry of the thermal springs, which could not be identified with more traditional graphing methods, or with a standard statistical approach. The MSA was successful in distinguishing different geological settings and different annual behaviours within the group of springs. This study demonstrates the usefulness of the application of MSA within the CoDa framework in order to better understand the underlying controlling processes governing the hydrochemistry of a group of thermal springs in a low-enthalpy setting.  相似文献   

17.
In the Jakarta area (Indonesia), excessive groundwater pumping due to the rapidly increasing population has caused groundwater-related problems such as brackish water contamination in coastal areas and land subsidence. In this study, we adopted multiple hydrogeochemical techniques to demonstrate the groundwater flow system in the Jakarta area. Although almost all groundwater existing in the Jakarta basin is recharged at similar elevations, the water quality and residence time demonstrates a clear difference between the shallow and deep aquifers. Due to the rapid decrease in the groundwater potential in urban areas, we found that the seawater intrusion and the shallow and deep groundwaters are mixing, a conclusion confirmed by major ions, Br?:Cl? ratios, and chlorofluorocarbon (CFC)-12 analysis. Spring water and groundwater samples collected from the southern mountainside area show younger age characteristics with high concentrations of 14C and Ca–HCO3 type water chemistry. We estimated the residence times of these groundwaters within 45 years under piston flow conditions by tritium analysis. Also, these groundwater ages can be limited to 20–30 years with piston flow evaluated by CFCs. Moreover, due to the magnitude of the CFC-12 concentration, we can use a pseudo age indicator in this field study, because we found a positive correlation between the major type of water chemistry and the CFC-12 concentration.  相似文献   

18.
The processes that affect water chemistry as the water flows from recharge areas through breccia-pipe uranium deposits in the Grand Canyon region of the southwestern United States are not well understood. Pigeon Spring had elevated uranium in 1982 (44 μg/L), compared to other perched springs (2.7–18 μg/L), prior to mining operations at the nearby Pigeon Mine. Perched groundwater springs in an area around the Pigeon Mine were sampled between 2009 and 2015 and compared with material from the Pigeon Mine to better understand the geochemistry and hydrology of the area. Two general groups of perched groundwater springs were identified from this study; one group is characterized by calcium sulfate type water, low uranium activity ratio 234U/238U (UAR) values, and a mixture of water with some component of modern water, and the other group by calcium-magnesium sulfate type water, higher UAR values, and radiocarbon ages indicating recharge on the order of several thousand years ago. Multivariate statistical principal components analysis of Pigeon Mine and spring samples indicate Cu, Pb, As, Mn, and Cd concentrations distinguished mining-related leachates from perched groundwater springs. The groundwater potentiometric surface indicates that perched groundwater at Pigeon Mine would likely flow toward the northwest away from Pigeon Spring. The geochemical analysis of the water, sediment and rock samples collected from the Snake Gulch area indicate that the elevated uranium at Pigeon Spring is likely related to a natural source of uranium upgradient from the spring and not likely related to the Pigeon Mine.  相似文献   

19.
《Applied Geochemistry》2006,21(2):289-304
Mineral springs from Daylesford, Australia discharge at ambient temperatures, have high CO2 contents, and effervesce naturally. Mineral waters have high HCO3 and Na concentrations (up to 4110 and 750 mg/L, respectively) and CO2 concentrations of 620–2520 mg/L. Calcium and Mg concentrations are 61–250 and 44–215 mg/L, respectively, and Si, Sr, Ba, and Li are the most abundant minor and trace elements. The high PCO2 of these waters promotes mineral dissolution, while maintaining low pH values, and geochemical modelling indicates that the CO2-rich mineral water must have interacted with both sediments and basalts. Amorphous silica concentrations and silica geothermometry indicate that these waters are unlikely to have been heated above ambient temperatures and therefore reflect shallow circulation on the order of several hundreds of metres. Variations in minor and trace element composition from closely adjacent spring discharges indicate that groundwater flows within relatively isolated fracture networks. The chemical consistency of individual spring discharges over at least 20 a indicates that flow within these fracture networks has remained isolated over long periods. The mineral water resource is at risk from mixing with potentially contaminated surface water and shallow groundwater in the discharge areas. Increased δ2H values and Cl concentrations, and lower Na concentrations indicate those springs that are most at risk from surface contamination and overpumping. Elevated NO3 concentrations in a few springs indicate that these springs have already been contaminated during discharge.  相似文献   

20.
The Yakima River, a major tributary of the Columbia River, is currently overallocated in its surface water usage in part because of large agricultural water use. As a result, groundwater availability and surface water/groundwater interactions have become an important issue in this area. In several sub-basins, the Yakima River water is diverted and applied liberally to fields in the summer creating artificial recharge of shallow groundwater. Major ion, trace element, and stable isotope geochemistry of samples from 26 groundwater wells from a transect across the Yakima River and 24 surface waters in the Kittitas sub-basin were used to delineate waters with similar geochemical signatures and to identify surface water influence on groundwater. Major ion chemistry and stable isotope signatures combined with principal component analysis revealed four major hydrochemical groups. One of these groups, collected from shallow wells within the sedimentary basin fill, displays temporal variations in NO3 and SO4 along with high δ18O and δD values, indicating significant contribution from Yakima River and/or irrigation water. Two other major hydrochemical groups reflect interaction with the main aquifer lithologies in the basin: the Columbia River basalts (high-Na groundwaters), and the volcaniclastic rocks of the Ellensburg Formation (Ca–Mg–HCO3 type waters). The fourth major group has interacted with the volcaniclastic rocks and is influenced to a lesser degree by surface waters. The geochemical groupings constrain a conceptual model for groundwater flow that includes movement of water between underlying Columbia River basalt and deeper sedimentary basin fill and seasonal input of irrigation water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号