首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new microtephras are reported from a number of lake sites from the Inner Hebrides and Scottish mainland. One occurs stratigrapically in the middle of Greenland Interstadial 1 (GI‐1) and has been named the Penifiler Tephra. It is rhyolitic and possesses a geochemical signature that is very similar to that of the Borrobol Tephra, which also occurs in three of the sequences reported here, but which lies close to the lower boundary of GI‐1. The second occurs stratigraphically in the early Holocene below the Saksunarvatn Ash and is named the Ashik Tephra. This tephra is geochemically bimodal, with a rhyolitic component comparable to the An Druim Tephra that occurs later in the Holocene, and a basaltic component which is similar to the Saksunarvatn Ash. A third tephra occurs stratigraphically above the Saksunarvatn Ash and is provisionally named the Breakish Tephra. The consistent inter‐site correlation demonstrated for these new tephras at several sites enhances the regional tephrostratigraphic framework, and increases the potential for correlating palaeoenvironmental events during GI‐1 and the early Holocene. However, the occurrence of multiple tephras with similar geochemistry in close stratigraphic and temporal proximity has implications for the rigour with which tephrostratigraphic investigations must be performed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
This paper reports the discovery of a visible, tephra horizon of Late‐glacial age from the site of Loch Ashik in the Isle of Skye, the Inner Hebrides, Scotland. Although the tephra shards have a bimodal geochemical composition identical to that of the Vedde Ash (a well known marker horizon within Late‐glacial sequences. The horizon at Ashik is dominated by basaltic shards and devitrified tephra shards, giving the layer its characteristic black colour. Only rhyolitic shards have previously been reported from Vedde Ash horizons in the British Isles. This new evidence raises some important questions about the factors that govern the distribution and accumulation of basaltic tephra, and about the methods used to detect ash shards in basins distal to centres of volcanic activity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
High‐precision correlation of palaeoclimatic and palaeoenvironmental records is crucial for testing hypotheses of synchronous change. Although radiocarbon is the traditional method for dating late Quaternary sedimentary sequences, particularly during the last glacial–interglacial transition (LGIT; 15–9 ka), there are inherent problems with the method, particularly during periods of climate change which are often accompanied by major perturbations in atmospheric radiocarbon content. An alternative method is the use of tephras that act as time‐parallel marker horizons. Within Europe, numerous volcanic centres are known to have erupted during the LGIT, providing considerable potential for high‐precision correlation independent of past radiocarbon fluctuations. Here we report the first identification of the Vedde Ash and Askja Tephra in Ireland, significantly extending the known provenance of these events. We have also identified two new horizons (the Roddans Port Tephras A and B) and tentatively recognise an additional horizon from Vallensgård Mose (Denmark) that provide crucial additional chronological control for the LGIT. Two phases of the Laacher See Tephra (LST) are reported, the lower Laacher See Tephra (LLST) and probably the C2 phase of the Middle Laacher See Tephra (MLST‐C2) indicating a more northeasterly distribution of this fan than reported previously. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The tephrochronological record of the 1400–1640 m depth (~10 000–16 000 calendar ice core years before present) of the NGRIP ice core has been established by particle screening of selected samples. Ash was identified in 20 samples. Correlation with ice, marine and terrestrial records from volcanic source regions in the northern hemisphere positively identifies the Saksunarvatn Ash and the Vedde Ash (Ash Zone 1). Major element chemistry of the remaining identified ash layers mainly points towards an Icelandic origin. This tephrochronological record provides new important marker horizons for correlating the timing of the climatic changes associated with the Last Glacial Termination within the North Atlantic region, as well as outlining more details concerning the frequency and composition of volcanic eruptions occurring at this deglaciation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Investigations of Lateglacial to Early Holocene lake sediments from the Nahe palaeolake (northern Germany) provided a high-resolution palynological record. To increase the temporal resolution of the record a targeted search for cryptotephra was carried out on the basis of pollen stratigraphy. Three cryptotephra horizons were detected and geochemically identified as G10ka series tephra (a Saksunarvatn Ash), Vedde Ash and Laacher See Tephra. Here we present the first geochemically confirmed finding of the ash from the Laacher See Eruption in Schleswig-Holstein—extending the so far detected fallout fan of the eruption further to the north-west. These finds enable direct stratigraphical correlations and underline the potential of the site for further investigations.  相似文献   

6.
The emerging tephrostratigraphy of NW Europe spanning the last termination (ca. 15–9 ka) provides the potential for synchronizing marine, ice‐core and terrestrial records, but is currently compromised by stratigraphic complications, geochemical ambiguity and imprecise age estimates for some layers. Here we present new tephrostratigraphic, radiocarbon and chironomid‐based palaeotemperature data from Abernethy Forest, Scotland, that refine the ages and stratigraphic positions of the Borrobol and Penifiler tephras. The Borrobol Tephra (14.14–13.95 cal ka BP) was deposited in a relatively warm period equated with Greenland Interstadial sub‐stage GI‐1e. The younger Penifiler Tephra (14.09–13.65 cal ka BP) is closely associated with a cold oscillation equated with GI‐1d. We also present evidence for a previously undescribed tephra layer that has a major‐element chemical signature identical to the Vedde Ash. It is associated with the warming trend at the end of the Younger Dryas, and dates between 11.79 and 11.20 cal ka BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Tephra shards from the Vedde Ash eruption have been identified in two lakes from northwestern Russia and the Polar Ural Mountains. This is the most distal and easternmost occurrence of this regional tephra marker horizon found so far and it extends the area of the Vedde Ash tephra more than 1700 km further east than previously documented. This means that particles the size of fine sand have travelled more than 4000 km from the Katla volcano source, south Iceland. These findings offer a new possibility to correlate archives over a very long distance in the time period around the Younger Dryas.  相似文献   

8.
Studies of Late Quaternary sediments in south and central Sweden have yielded a detailed tephrochronology for the Last Glacial–Interglacial transition (LGIT; ca. 15,000–10,000 cal. yr BP) and the Holocene. More than ten tephra layers have been detected and geochemically characterised. The most widespread tephra from the LGIT is the rhyolitic phase of the Vedde Ash (ca. 12,000 cal. yr BP) which has been found in lacustrine sediments and marine clays south of the Younger Dryas moraines in south Sweden. Other horizons from the LGIT identified to date include the Borrobol tephra (ca. 14,400 cal. yr BP), the Hässeldalen tephra (ca. 11,500 cal. yr BP), the 10-ka Askja tephra (ca. 11,300 cal. yr BP) and the Högstorpsmossen tephra (ca. 10,200 cal. yr BP). The most significant Holocene isochrones are Hekla-4 (ca. 4260 cal. yr BP), Hekla-Selsund/Kebister (ca. 3750 cal. yr BP), Hekla-3 (ca. 3000 cal. yr BP) and Askja-1875. Two new Late Holocene tephra horizons (the Stömyren tephra, ca. 2100 cal. yr BP and the Gullbergby tephra; ca. 2700 cal. yr BP) were identified in single sites and are so far less valuable as marker horizons, but are potentially important for the future.  相似文献   

9.
Four Quaternary volcanic ash zones in the southern Norwegian Sea have been investigated in core P57-7 from the Iceland Plateau. Both the geochemical composition and morphological variation of each ash layer have been studied. The four volcanic ash zones appear in the light oxygen isotope stages 1, 5, 7 and 11. The ash zones are composed of transparent platy grains, light brown transparent grains, brown blocky and black blocky grains and white/transparent pumice, and each zone shows a distinct stratigraphic evolution. The geochemical results show a mixture of basaltic and silicic grains in each ash zone, and that each zone contains grains from more than one eruption. The geochemical investigations strongly suggest that all the ashes are derived from Iceland. The youngest ash zone includes two layers, which based on their geochemical composition and stratigraphic position are correlated with the 14C-dated Vedde Ash (10 600 yr BP) and Saksunarvatn Ash (9 100 yr BP). Possible sources on Iceland for these layers are discussed.  相似文献   

10.
We present a well‐dated, high‐resolution and continuous sediment record spanning the last c. 24 000 years from lake Bolshoye Shchuchye located in the Polar Ural Mountains, Arctic Russia. This is the first continuous sediment succession reaching back into the Last Glacial Maximum (LGM) ever retrieved from this region. We reconstruct the glacial and climate history in the area since the LGM based on sedimentological and geochemical analysis of a 24‐m‐long sediment core. A robust chronology was established using a combination of AMS 14C‐dating, the position of the Vedde Ash and varve counting. The varved part of the sediment core spans across the LGM from 24 to 18.7 cal. ka BP. We conclude that the lake basin remained ice‐free throughout the LGM, but that mountain glaciers were present in the lake catchment. A decrease in both glacial varve preservation and sedimentation rate suggests that these glaciers started to retreat c. 18.7 cal. ka BP and had disappeared from the catchment by 14.35 cal. ka BP. There are no indications of glacier regrowth during the Younger Dryas. We infer a distinct climatic amelioration following the onset of the Holocene and an Early to Middle Holocene thermal optimum between 10–5 cal. ka BP. Our results provide a long‐awaited continuous and high‐resolution record of past climate that supplements the existing, more fragmentary data from moraines and exposed strata along river banks and coastal cliffs around the Russian Arctic.  相似文献   

11.
We present a high‐resolution record of lacustrine sedimentation spanning ca. 30 000 to 9000 cal. a BP from Onepoto maar, northern North Island, New Zealand. The multi‐proxy record of environmental change is constrained by tephrochronology and accelerator mass spectrometric 14C ages and provides evidence for episodes of rapid environmental change during the Last Glacial Coldest Period (LGCP) and Last Glacial–Interglacial Transition (LGIT) from northern New Zealand. The multi‐proxy palaeoenvironmental record from Onepoto indicates that the LGCP was cold, dry and windy in the Auckland region, with vegetation dominated by herb and grass in a beech forest mosaic between ca. 28 500 and 18 000 cal. a BP. The LGCP was accompanied by more frequent fires and influx of clastic sediment indicating increased erosion during the LGCP, with a mid‐LGCP interstadial identified between ca. 25 000 and 23 000 cal. a BP. Rapid climate amelioration at ca. 18 000 cal. a BP was accompanied by increased terrestrial biomass exemplified by the expansion of lowland podocarp forest, especially Dacrydium cupressinum. Increasing biomass production is reversed briefly by LGIT perturbations which are apparent in many of the proxies that span ca. 14 000–10 500 cal. a BP, suggesting generally increased wetness and higher in situ aquatic plant productivity with reduced terrestrial organic matter and terrigenous detrital influx. Furthermore, conditions at that time were probably warmer and frosts rare based on the increasing importance of Ascarina. The subsequent early Holocene is characterised by podocarp conifer forest and moist mild conditions. Postglacial sea‐level rise breached the crater rim and deposited 36 m of estuarine mud after ca. 9000 cal. a BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Tephra abundance data and geochemistry in Late‐glacial and Holocene sediments on the East Greenland shelf are presented. Two well‐known tephras were identified from electron microprobe analysis of tephra shards picked from ash peaks in the cores. These are the Vedde Ash and Saksunarvatn Ash, which probably were deposited on the shelf after transport on drifting ice. The radiocarbon dates (marine reservoir corrected by −550 yr) that constrain the timing of deposition of the tephra layers compare well with the terrestrial and ice‐core ages of the tephras without requiring additional reservoir correction to align them with the known tephra ages. Several prominent tephra layers with a composition of Ash Zone 2 tephra punctuate the deglacial sediments. These tephra peaks coincide with significant light stable isotope events (signifying glacial meltwater) and fine‐grained sediments poor in ice‐rafted detritus. We interpret the Ash Zone 2 tephra peaks as sediment released from the Greenland Ice Sheet during strong melting pulses of the deglaciation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
The Vedde Ash (c. 10 300 14 C BP) provides a key time-parallel marker horizon within the Younger Dryas chronozone or GS-1 event of the GRIP stratigraphy. Until recently, the known distribution of wind-blown Vedde Ash outside Iceland was restricted to the west coast of Norway, off-shore sequences close to the Outer Hebrides and the Greenland summit GRIP ice core. The first discoveries of the Vedde Ash in Scotland were reported in 1997, following the development of a new technique for extracting rhyolitic micro-tephra particles from minerogenic deposits. Here we report on the discovery of the Vedde Ash at additional sites in Scotland and at sites in southern Sweden. The concentration of tephra particles in sediments is highest in sites in western Norway, but is also relatively high in sites in southwestern Sweden, suggesting that the main ash cloud travelled eastwards from its volcanic source of Katla, in southern Iceland. Electron microprobe analyses do not indicate any clear geochemical evolution within the samples reported here.  相似文献   

14.
The history of the Lateglacial and Preboreal sedimentary succession from the Store Slotseng kettle hole basin, SW Denmark is presented. A tephrostratigraphical and multi‐proxy investigation of the sediments, including stable isotope geochemistry, reveals small‐ and large‐scale changes in the surrounding environment through time. Three distinct tephra horizons are observed. Two of them are identified as the Preboreal Hässeldalen Tephra and the Younger Dryas Vedde Ash. The third was deposited around the Pre‐Bølling/Bølling transition. The Preboreal sediments record two significant decreases in authigenic carbonate content. Using tephrostratigraphy the lower one is identified as occurring during the Preboreal Oscillation, while the upper one is contemporaneous with the Rammelbeek Phase, which by some is recognised above the Preboreal Oscillation. This period has not previously been observed in this region. The discovery of the Hässeldalen Tephra in the Store Slotseng basin expands the known southwestern limit of the ash cloud, and increases the area for potential future observations. The Hässeldalen Tephra (c. 11.3 cal. ka BP) was deposited just prior to the Preboreal Oscillation and as such has a large potential for precise correlation and characterization of this short climatic perturbation.  相似文献   

15.
Evidence is presented to show that two measurable concentrations of microtephra particles can be detected in deposits of Late Devensian Late-glacial age in three sites in Scotland. One layer is attributed to the Vedde Ash, a marker horizon within the Younger Dryas chronozone. The second is a new tephra reported for the first time, which we name the Borrobol Tephra. This occurs consistently near the base of the Late-glacial Interstadial organic sediments at each site, and is thought to date to around 12.5 14C ka BP. Geochemical determinations using an electron microprobe confirm the identification of the Vedde Ash, suggest the Borrobol Tephra to have an Icelandic origin, and demonstrate the consistency of the geochemical signals at all three sites. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
At Airedale Reef, western North Island, New Zealand, a ca. 4 m thick volcanogenic debris avalanche deposit has facilitated the preservation of an enveloping sequence of peats with interbedded andesitic tephras spanning marine isotope (MIS) 5. The sequence closely overlies a wave‐cut terrace correlated to MIS 5e and, in turn, is overlain by andic beds with tephra interbeds including the Rotoehu and Kawakawa tephras deposited during early MIS 3 and mid‐MIS 2, respectively. Pollen analysis of the organic sequence shows a coherent pattern of fluctuating climate for the Last Interglacial–Last Glacial transition that corresponds with marine isotope stratigraphy and supports the contention that orbital variations were a primary factor in late Quaternary southern mid‐latitude climate change. A five‐stage subdivision of MIS 5 is clearly recognised, with marine isotope substage (MISS) 5b drier than MISS 5d, and the cooling transition from 5a to MIS 4 also may have been comparatively dry and characterised by natural fire, perhaps associated with volcanism. Several other examples of volcanic impact on vegetation and the landscape are evident. The Airedale Reef sequence exhibits strong similarities with fragmentary MIS 5 pollen records preserved elsewhere in New Zealand and enables the proxy record of southern mid‐latitude climatic variability during the Last Interglacial–Glacial cycle to be extended. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
A composite stratigraphical sequence, the Fnjóskadalur Sequence, reveals ten cycles of glacier advances and formation of ice-dammed lakes in Fnjóskadalur in central North Iceland. Chemical analyses of the Skógar Tephra, with its type locality in this valley, have enabled a correlation with Ash zone I in deep sea sediments of the North Atlantic and with the Vedde Ash Bed on land in western Norway, where it is dated to 10,600 BP. The Skógar Tephra is composed of two layers, a basaltic tephra (STP-1) and a rhyolitic tephra (STP-2) erupted almost simultaneously from two different Icelandic volcanoes. The STP-1 tephra originates from the Katla volcano in South Iceland, and the öræfajökull volcano in Southeast Iceland is considered a plausible source of the STP-2 tephra. This new dating of the Skógar Tephra puts the three youngest glacier advances of the Fnjóskadalur Sequence within a 1000 year period between 10,600 and 9650 BP. The redated Late Weichselian glacial history now extracted from the Fnjóskadalur Sequence shows that glaciers in North Iceland were more extended in Younger Dryas and Preboreal times than previously assumed. This fits with the revised deglaciation pattern which has evolved in recent years.  相似文献   

18.
A bed of volcanic ash up to 23 cm thick is found in lacustrine and marine sediments in western Norway. It is formally mamed the Vedde Ash Bed, and its age is approximately 10,600 yr B.P., i.e., mid-Younger Dryas. The bed consits of pure glass having a bimodal basaltic and rhyolitic somposition. The geochemistry of the glass shards suggests an Icelandic source. By means of stratigraphic position and geochemistry, the ash is correlated with ash zones found in cores from the continental shelf, the Norwegian Sea, and the North Atlatic.  相似文献   

19.
A late Quaternary deep-water stratigraphic framework has been established for the deep-water areas (>450m) of the northern Rockall Trough and Faeroe-Shetland Channel. Four stratigraphic units (1–4) are identified; these are primarily biostratigraphic units based on dinoflagellate cyst evidence. Unit 1 represents the late Weichselian glacial (pre-13 000 yr BP); unit 2 the Late Glacial Interstadial (11 000-13 000 yr BP); unit 3 is of Younger Dryas age (10 000-11 000 yr BP); and unit 4 represents the Holocene interglacial (post-10 000 yr BP). This stratigraphy is supported by the discovery of the mixed Vedde Ash (10 600 yr BP) and North Atlantic Ash zone 1, and the Saksunarvatn Ash (9000–9100 yr BP), concentrated in units 3 and 4 respectively. The sedimentology indicates that the oceanographic regime underwent a major change between the glacial and interglacial stages. This is marked by the onset of strong bottom current activity, allied to the restoration of overflow of the Norwegian Sea Deep Water into the North Atlantic, towards the end of the Younger Dryas Stadial. Despite intense bioturbation and bottom-current reworking the basic stratigraphic framework is maintained. Recognition of two volcanic ash markers enables correlation with established onshore and offshore sequences of marine and non-marine environments.  相似文献   

20.
The known distribution of wind‐blown Vedde Ash (ca. 10.3 ka BP) has been extended to the Karelian Isthmus in northwestern Russia. This has been possible as the result of a density separation technique that separates the rhyolitic Vedde Ash shards from the minerogenic host sediment. The Vedde Ash occurs in the middle of a pollen zone with high percentages of, for example, Artemisia and Chenopodiaceae, suggesting that the Younger Dryas (or GS‐I in the GRIP ice‐core event stratigraphy) was cold and dry throughout its duration. This is in agreement with sites in south Sweden where the Vedde Ash also occurs in the middle of a pollen zone dominated by Artemisia, Chenopodiaceae and Cyperaceae. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号