首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
张婷  张杰  王进  孟俊敏 《海洋科学》2014,38(6):43-46
基于南海北部PY30-1平台上2012年2月至9月测风仪观测的风速数据,开展了HY-2扫描辐射计风速数据比较研究。选取时空匹配窗口为5 min和25 km,利用HY-2扫描辐射计RM 100,70和35 km分辨率3种风速数据,分别与平台观测数据进行了比较。比较结果表明:在南海北部海域,HY-2扫描辐射计100 km分辨率风速和平台观测风速的均方根偏差为3.86 m/s;70 km分辨率风速和平台观测风速的均方根偏差为10.52 m/s;35 km分辨率风速和平台观测风速的均方根偏差为5.54 m/s。还进一步比较了有雨和无雨两种情况下HY-2扫描辐射计和平台数据的偏差,结果表明:有雨和无雨条件下都是100 km分辨率的数据偏差最小。这为在我国南海北部海域应用HY-2扫描辐射计的风速数据产品的选择提供了依据。  相似文献   

2.
利用NCEP风场产品和dropsonde探测资料,对中国近海ASCAT全场和单点的风速反演精度进行验证分析.研究发现ASCAT反演风场与NCEP风场的风速、风向平均绝对偏差分别为2.06 m/s和21.98°;均方根误差分别为2.87 m/s和34.29°.两者风速反演精度较一致,风向误差相对偏大.ASCAT反演风场与dropsonde探测资料的风速、风向平均绝对偏差分别为1.55 m/s和3.43°;均方根误差分别为1.73 m/s和4.15°.ASCAT资料可以较好的反演台风风场.  相似文献   

3.
星载微波散射计是获取全球海面风场信息的主要手段, HY-2B卫星散射计的成功发射为全球海面风场数据获取的持续性提供了重要保障。本文利用欧洲中期天气预报中心(European Center for Medium-Range Weather Forecasts, ECMWF)再分析风场数据、热带大气海洋观测计划(Tropical Atmosphere Ocean Array, TAO)和美国国家数据浮标中心(National Data Buoy Center, NDBC)浮标获取的海面风矢量实测数据, 对HY-2B散射计海面风场数据产品的质量进行统计分析。分析表明, HY-2B风场与ECMWF再分析风场对比, 在4~24m·s-1风速区间内, 风速和风向均方根误差(root mean square error, RMSE)分别为1.58m·s-1和15.34°; 与位于开阔海域的TAO浮标数据对比, 风速、风向RMSE分别为1.03m·s-1和14.98°, 可见HY-2B风场能较好地满足业务化应用的精度要求(风速优于2m·s-1, 风向优于20°)。与主要位于近海海域的NDBC浮标对比, HY-2B风场的风速、风向RMSE分别为1.60m·s-1和19.14°, 说明HY-2B散射计同时具备了对近海海域风场的良好观测能力。本文还发现HY-2B风场质量会随风速、地面交轨位置等变化, 为用户更好地使用HY-2B风场产品提供参考。  相似文献   

4.
利用国际海-气综合数据集(ICOADS)中的海面风场实测数据作为真实值,对海洋二号卫星散射计风场产品进行真实性检验,得到初步结论:(1)在中、低风速条件下,海洋二号散射计风速与ICOADS实测风速具有较好一致性,但在较高风速条件下海洋二号散射计会出现风速低估现象;(2)海洋二号散射计风向与ICOADS实测风向的误差主要集中在-15°—15°范围内,在低风速条件下,海洋二号散射计与ICOADS两者风向存在较大偏差,风向多解也主要发生在低风速时;(3)在2—24 m/s风速条件下,剔除超过3个标准偏差风速样本后,海洋二号与ICOADS两者风速的平均绝对误差为1.36 m/s,均方根误差为1.92 m/s,若忽略风向多解的影响,两者风向的平均绝对误差为14.98°,均方根误差为20.21°。  相似文献   

5.
海面风场的遥感探测主要通过合成孔径雷达(Synthetic Aperture Radar,SAR)和微波散射计等微波遥感器进行,近年来波谱仪也可用来探测风场信息。各遥感器独立工作,具有不同的入射角、覆盖范围和分辨率,在风场探测方面各有其优势和局限性。本文基于各类微波遥感器独特的观测方式,根据各自的时空匹配规则,相互借助实现3种载荷的两两联合,波谱仪和散射计分别与SAR联合为其提供风向并得到SAR的风速结果,与ERA5的均方根误差分别为1.972 7 m/s和1.986 0 m/s,散射计与波谱仪相互联合为波谱仪去除风向模糊,去模糊的风向结果为26.758 9°,都符合目前风场反演公认的标准,风速和风向的均方根误差小于2 m/s和30°。本文解决了现阶段单模式观测风场的缺陷,为我国未来发射SAR、散射计、波谱仪多载荷卫星的风场反演提供互补信息的支持,为实现多载荷区域大范围高精度风场研究做准备。  相似文献   

6.
利用南海浮标及海洋观测站的实测资料作为真实值对HY-2A散射计反演的风矢量作多角度对比分析,结果表明:HY-2A散射计风速与浮标(海洋站)实测风速数据具有良好的相关性,散射计观测风速普遍大于浮标(海洋站)实测风速;风速误差符合正态分布,风力≤3级时,风向的平均绝对误差最大;4~5级时风速平均偏差和平均绝对偏差均最小。逐月统计发现:1—3月的风速平均偏差最小,两者基本吻合。7—9月的风速平均偏差最大,12月的风向平均偏差最小。另外,东北向的风速平均偏差最小,西北向风速平均偏差最大;远海站点的风速和风向检验误差均小于近海站点。以上结论表明HY-2A散射计风场资料在南海海域具有可信性,为HY-2A散射计风场在南海的应用和研究提供依据。  相似文献   

7.
汪栋  张杰  范陈清  孟俊敏 《海洋科学》2016,40(4):108-115
基于浮标和步进频率微波辐射计(SFMR,Stepped-Frequency Microwave Radiometer)数据对NASA JPL(Jet Propulsion Laboratory)和RSS(Remote Sensing Systems)公司分别发布的已广泛应用于全球海面风场观测的ASCAT(Advanced SCATterometer)散射计风产品进行了比较和分析。结果表明,两者风速在中低风速(15 m/s)时基本一致;高风速(15 m/s)时RSS风速整体高于JPL风速。通过浮标数据对比,风速15 m/s时两者风速精度一致;风速15 m/s时两者风速RMS相当,但JPL和RSS风速分别低估和高估。利用SFMR数据检验表明RSS风速与SFMR风速一致性更好。两者风向精度在低风速(5 m/s)时较低,但随风速增加而提高并趋于稳定。该研究结果对相关科研人员的ASCAT散射计风产品选择具有重要的指导意义。  相似文献   

8.
海洋微波散射模型相比于以经验统计建立的地球物理模式函数具有不受特定微波频率限制的优势。组合布拉格散射模型和几何光学模型形成了复合雷达后向散射模型。利用南海北部气象浮标2014年海面风速风向实测值作为散射模型输入,分别比较了复合雷达后向散射模型与RADARSAT-2卫星C波段SAR、HY-2A卫星Ku波段微波散射计的海面后向散射系数,偏差分别为(?0.22±1.88) dB (SAR)、(0.33±2.71) dB (散射计VV极化)和(?1.35±2.88) dB (散射计HH极化);以美国浮标数据中心(NDBC)浮标2011年10月1日至2014年9月30日共3年的海面风速、风向实测值作为散射模型输入,分别比较了复合雷达后向散射模型与Jason-2、HY-2A卫星Ku波段高度计海面后向散射系数,偏差分别为(1.01±1.15) dB和(1.12±1.29) dB。中等入射角和垂直入射下的卫星传感器后向散射系数观测值与复合雷达后向散射模型模拟值比较,具有不同的偏差,但具有相同的海面风速检验精度,均方根误差小于1.71 m/s。结果表明,复合雷达后向散射模型可模拟计算星载SAR、散射计和高度计观测条件下的海面雷达后向散射系数,且与CMOD5、NSCAT-2、高度计业务化海面风速反演的地球物理模式函数的计算结果具有一致性;复合雷达后向散射模型可用于微波遥感器的定标与检验、海面雷达后向散射的模拟。  相似文献   

9.
HY-2卫星散射计热带气旋自动识别算法   总被引:2,自引:1,他引:1  
对基于HY-2卫星散射计风矢量产品的热带气旋自动识别算法进行了研究。算法分为粗搜索与精搜索两部分。粗搜索利用热带气旋风场的风速与风向分布直方图特征确定搜索的阈值,快速剔除比较容易识别的非热带气旋区域。在此基础上,精搜索利用热带气旋风向的螺旋状分布特征,通过搜索目标区域内是否存在螺旋状流线的方法,确定目标区域的风向是否存在螺旋状流线特征,从而实现对热带气旋的准确自动识别。作为示例,将该方法应用到对HY-2散射计观测到的2012年6号强热带风暴"杜苏芮"的自动识别,结果表明,本文提出的算法可以从HY-2散射计风场数据中准确有效的自动识别出热带气旋。  相似文献   

10.
星载SAR对雨团催生海面风场的观测研究   总被引:2,自引:1,他引:1  
雨团或对流雨是热带与亚热带地区的主要降雨形式,较易被高分辨率星载合成孔径雷达(SAR)探测到。SAR图像上的雨团足印是由大气中雨滴的散射与吸收、下沉气流等共同导致形成的。本文以RADARSAT-2卫星100 m分辨率的SAR图像上雨团引起的海面风场及其结构反演与解译作为实例进行分析。使用CMOD4地球物理模式函数,分别以NCEP再分析数据、欧洲MetOp-A卫星先进散射计(ASCAT)和中国HY-2卫星微波散射计的风向为外部风向,进行了SAR图像的海面风场反演。反演的海面风速相对于NCEP、ASCAT和HY-2的均方根误差(RMSE)分别为1.48 m/s,1.64 m/s和2.14 m/s。SAR图像上一侧明亮另一侧昏暗的圆形信号图斑被解译为雨团携带的下沉气流对海面风场(海面粗糙度)的改变所致。平行于海面背景风场其通过雨团圆形足印中心的剖面上的风速变化可拟合为正弦或余弦曲线,其拟合线性相关系数均不低于0.80。背景风场的风速大小、雨团引起的风速大小以及雨团足印的直径可利用拟合曲线获得,雨团足印的直径大小一般为数千米或数十千米,本文的8例个例解译与分析均验证了该结论。  相似文献   

11.
星载微波散射计海面风场与海洋环境噪声的相关特性分析   总被引:2,自引:1,他引:1  
根据海洋环境噪声机理及风关噪声已有的研究成果,提出利用星载微波散射计反演的海面风场数据进行海洋环境噪声分析,并对HY-2A和ASCAT数据与噪声谱级的相关性进行了对比分析。选取南海海域作为研究区,利用潜标测量系统获取的噪声数据和多源散射计风场数据开展了相关实验,并采用NCEP海面风场数据进行对比分析。结果表明,ASCAT数据与噪声的相关性优于HY-2A,散射计数据优于NCEP数据,散射计风场更适合海洋环境噪声的分析研究。该研究内容拓展了微波散射计风场数据的应用领域,并为海洋环境噪声研究提供了更好的技术手段。  相似文献   

12.
A scanning microwave radiometer(RM) was launched on August 16,2011,on board HY-2 satellite.The six-month long global sea surface wind speeds observed by the HY-2 scanning microwave radiometer are preliminarily validated using in-situ measurements and WindSat observations,respectively,from January to June 2012.The wind speed root-mean-square(RMS) difference of the comparisons with in-situ data is 1.89 m/s for the measurements of NDBC and 1.72 m/s for the recent four-month data measured by PY30-1 oil platform,respectively.On a global scale,the wind speeds of HY-2 RM are compared with the sea surface wind speeds derived from WindSat,the RMS difference of 1.85 m/s for HY-2 RM collocated observations data set is calculated in the same period as above.With analyzing the global map of a mean difference between HY-2 RM and WindSat,it appears that the bias of the sea surface wind speed is obviously higher in the inshore regions.In the open sea,there is a relatively higher positive bias in the mid-latitude regions due to the overestimation of wind speed observations,while the wind speeds are underestimated in the Southern Ocean by HY-2 RM relative to WindSat observations.  相似文献   

13.
The HY-2 satellite was successfully launched on 16 August 2011. The HY-2 significant wave height (SWH) is validated by the data from the South China Sea (SCS) field experiment, National Data Buoy Center (NDBC/ buoys and Jason-1/2 altimeters, and is corrected using a linear regression with in-situ measurements. Com- pared with NDBC SWH, the HY-2 SWH show a RMS of 0.36 m, which is similar to Jason- 1 and Jason-2 SWH with the RMS of 0.35 m and 0.37 m respectively; the RMS of corrected HY-2 SWH is 0.27 m, similar to 0.27 m and 0.23 m of corrected Jason-1 and Jason-2 SWH. Therefore the accuracy of HY-2 SWH products is close to that of Jason-1/2 SWH, and the linear regression function derived can improve the accuracy of HY-2 SWH products.  相似文献   

14.
The first Chinese microwave ocean environment satellite HY-2A, carrying a Ku-band scatteromenter (SCAT), was successfully launched in August 2011. The first quality assessment of HY-2A SCAT wind products is presented through the comparison of the first 6 months operationally released SCAT products with in situ data. The in situ winds from the National Data Buoy Center (NDBC) buoys, R/V Polarstern, Aurora Australis, Roger Revelle and PY30-1 oil platform, were converted to the 10 m equivalent neutral winds. The temporal and spatial differences between the HY-2A SCAT and the in situ observations were limited to less than 5 min and 12.5 km. For HY-2A SCAT wind speed products, the comparison and analysis using the NDBC buoys yield a bias of-0.49 m/s, a root mean square error (RMSE) of 1.3 m/s and an increase negative bias with increasing wind speed observation above 3 m/s. Although less accurate of HY-2A SCAT wind direction at low winds, the RMSE of 19.19° with a bias of 0.92° is found for wind speeds higher than 3 m/s. These results are found consistent with those from R/Vs and oil platform comparisons. Moreover, the NDBC buoy comparison results also suggest that the accuracy of HY-2A SCAT winds is consistent over the first half year of 2012. The encouraging assessment results over the first 6 months show that wind products from HY-2A SCAT will be useful for scientific community.  相似文献   

15.
海面有效波高(H1/3)是表征海浪的重要参数,随着卫星遥感技术的发展,雷达高度计已成为获取海面有效波高的重要手段,但也只能对卫星星下点轨迹处进行有效观测,远无法满足大范围应用的需求.本研究结合2013年10月HY-2雷达高度计观测的海面有效波高和微波散射计观测的海面风场资料,分别对高、低风速下风浪数据进行拟合,建立了适用于0~40 m/s风速范围内的南海海域风浪关系模型,经模型比对和结果验证,结果表明,基于HY-2卫星数据分析建立的南海海域风浪关系模型是可信的,特别是低风速的风浪模型与实测数据建立的风浪模型具有很好的一致性;根据建立的风浪关系模型,从卫星散射计大面观测的海面风场出发,能推算出风浪条件下海面有效波高的大面信息,数据覆盖远高于卫星高度计的星下点观测,能为分析和预报海浪、风暴潮灾害提供大范围的海面有效波高信息.  相似文献   

16.
HY-2 has been launched by China on August 16, 2011 which assembles multi-microwave remote sensing payloads in a body and has the ability of monitoring ocean dynamic environments. The HY-2 satellite data need to be calibrated and validated before being put into use. Based on the in-situ buoys from the Nation- al Data Buoy Center (NDBC), Ku-band significant wave heights (SWH, hs) of HY-2 altimeter are validated. Eleven months of HY-2 altimeter Level 2 products data are chose from October 1, 2011 to August 29, 2012. Using NDBC 60 buoys yield 902 collocations for HY-2 by adopting collocation criteria of 30 min for tempo- ral window and 50 km for a spatial window. An overall RMS difference of the SWH between HY-2 and buoy data is 0.297 m. A correlation coefficient between these is 0.964. An ordinary least squares (OLS) regression is performed with the buoy data as an independent variable and the altimeter data as a dependent vari- able. The regression equation of hs is hs (HY-2)=0.891 × hs (NDBC)+0.022. In addition, 2016 collocations are matched with temporal window of 30 rain at the crossing points of HY-2 and Jason-2 orbits. RMS difference of Ku-band SWH between the two data sets is 0.452 m.  相似文献   

17.
The Chinese marine dynamic environment satellite HY-2B was launched in October 2018 and carries a Ku-band scatterometer. This paper focuses on the accuracies of HY-2B scatterometer wind data during the period from November 2018 to May 2021. The HY-2B wind data are validated against global moored buoys operated by the U.S. National Data Buoy Center and Tropical Atmosphere Ocean, numerical model data by the National Centers for Environmental Prediction, and the Advanced Scatterometer data issued b...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号